Properties

Label 70.8.a.a
Level $70$
Weight $8$
Character orbit 70.a
Self dual yes
Analytic conductor $21.867$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [70,8,Mod(1,70)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(70, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("70.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 70 = 2 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 70.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(21.8669517839\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 8 q^{2} - 93 q^{3} + 64 q^{4} + 125 q^{5} - 744 q^{6} + 343 q^{7} + 512 q^{8} + 6462 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 8 q^{2} - 93 q^{3} + 64 q^{4} + 125 q^{5} - 744 q^{6} + 343 q^{7} + 512 q^{8} + 6462 q^{9} + 1000 q^{10} - 2167 q^{11} - 5952 q^{12} - 1661 q^{13} + 2744 q^{14} - 11625 q^{15} + 4096 q^{16} - 35771 q^{17} + 51696 q^{18} + 20222 q^{19} + 8000 q^{20} - 31899 q^{21} - 17336 q^{22} - 42130 q^{23} - 47616 q^{24} + 15625 q^{25} - 13288 q^{26} - 397575 q^{27} + 21952 q^{28} - 111789 q^{29} - 93000 q^{30} - 269504 q^{31} + 32768 q^{32} + 201531 q^{33} - 286168 q^{34} + 42875 q^{35} + 413568 q^{36} + 532774 q^{37} + 161776 q^{38} + 154473 q^{39} + 64000 q^{40} + 158056 q^{41} - 255192 q^{42} - 521874 q^{43} - 138688 q^{44} + 807750 q^{45} - 337040 q^{46} - 939733 q^{47} - 380928 q^{48} + 117649 q^{49} + 125000 q^{50} + 3326703 q^{51} - 106304 q^{52} - 408384 q^{53} - 3180600 q^{54} - 270875 q^{55} + 175616 q^{56} - 1880646 q^{57} - 894312 q^{58} - 522172 q^{59} - 744000 q^{60} + 350080 q^{61} - 2156032 q^{62} + 2216466 q^{63} + 262144 q^{64} - 207625 q^{65} + 1612248 q^{66} - 3931176 q^{67} - 2289344 q^{68} + 3918090 q^{69} + 343000 q^{70} + 1194016 q^{71} + 3308544 q^{72} + 998350 q^{73} + 4262192 q^{74} - 1453125 q^{75} + 1294208 q^{76} - 743281 q^{77} + 1235784 q^{78} - 2120709 q^{79} + 512000 q^{80} + 22842081 q^{81} + 1264448 q^{82} - 1746708 q^{83} - 2041536 q^{84} - 4471375 q^{85} - 4174992 q^{86} + 10396377 q^{87} - 1109504 q^{88} - 10077740 q^{89} + 6462000 q^{90} - 569723 q^{91} - 2696320 q^{92} + 25063872 q^{93} - 7517864 q^{94} + 2527750 q^{95} - 3047424 q^{96} - 6238295 q^{97} + 941192 q^{98} - 14003154 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
8.00000 −93.0000 64.0000 125.000 −744.000 343.000 512.000 6462.00 1000.00
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 70.8.a.a 1
4.b odd 2 1 560.8.a.b 1
5.b even 2 1 350.8.a.e 1
5.c odd 4 2 350.8.c.a 2
7.b odd 2 1 490.8.a.e 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.8.a.a 1 1.a even 1 1 trivial
350.8.a.e 1 5.b even 2 1
350.8.c.a 2 5.c odd 4 2
490.8.a.e 1 7.b odd 2 1
560.8.a.b 1 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} + 93 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(70))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 8 \) Copy content Toggle raw display
$3$ \( T + 93 \) Copy content Toggle raw display
$5$ \( T - 125 \) Copy content Toggle raw display
$7$ \( T - 343 \) Copy content Toggle raw display
$11$ \( T + 2167 \) Copy content Toggle raw display
$13$ \( T + 1661 \) Copy content Toggle raw display
$17$ \( T + 35771 \) Copy content Toggle raw display
$19$ \( T - 20222 \) Copy content Toggle raw display
$23$ \( T + 42130 \) Copy content Toggle raw display
$29$ \( T + 111789 \) Copy content Toggle raw display
$31$ \( T + 269504 \) Copy content Toggle raw display
$37$ \( T - 532774 \) Copy content Toggle raw display
$41$ \( T - 158056 \) Copy content Toggle raw display
$43$ \( T + 521874 \) Copy content Toggle raw display
$47$ \( T + 939733 \) Copy content Toggle raw display
$53$ \( T + 408384 \) Copy content Toggle raw display
$59$ \( T + 522172 \) Copy content Toggle raw display
$61$ \( T - 350080 \) Copy content Toggle raw display
$67$ \( T + 3931176 \) Copy content Toggle raw display
$71$ \( T - 1194016 \) Copy content Toggle raw display
$73$ \( T - 998350 \) Copy content Toggle raw display
$79$ \( T + 2120709 \) Copy content Toggle raw display
$83$ \( T + 1746708 \) Copy content Toggle raw display
$89$ \( T + 10077740 \) Copy content Toggle raw display
$97$ \( T + 6238295 \) Copy content Toggle raw display
show more
show less