L(s) = 1 | − 16·2-s + 45·3-s + 192·4-s + 250·5-s − 720·6-s − 686·7-s − 2.04e3·8-s − 2.50e3·9-s − 4.00e3·10-s − 2.84e3·11-s + 8.64e3·12-s + 753·13-s + 1.09e4·14-s + 1.12e4·15-s + 2.04e4·16-s − 6.41e3·17-s + 4.00e4·18-s + 2.50e3·19-s + 4.80e4·20-s − 3.08e4·21-s + 4.55e4·22-s − 3.11e4·23-s − 9.21e4·24-s + 4.68e4·25-s − 1.20e4·26-s − 2.18e5·27-s − 1.31e5·28-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 0.962·3-s + 3/2·4-s + 0.894·5-s − 1.36·6-s − 0.755·7-s − 1.41·8-s − 1.14·9-s − 1.26·10-s − 0.644·11-s + 1.44·12-s + 0.0950·13-s + 1.06·14-s + 0.860·15-s + 5/4·16-s − 0.316·17-s + 1.61·18-s + 0.0836·19-s + 1.34·20-s − 0.727·21-s + 0.911·22-s − 0.533·23-s − 1.36·24-s + 3/5·25-s − 0.134·26-s − 2.13·27-s − 1.13·28-s + ⋯ |
Λ(s)=(=(4900s/2ΓC(s)2L(s)Λ(8−s)
Λ(s)=(=(4900s/2ΓC(s+7/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
4900
= 22⋅52⋅72
|
Sign: |
1
|
Analytic conductor: |
478.163 |
Root analytic conductor: |
4.67621 |
Motivic weight: |
7 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 4900, ( :7/2,7/2), 1)
|
Particular Values
L(4) |
= |
0 |
L(21) |
= |
0 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1+p3T)2 |
| 5 | C1 | (1−p3T)2 |
| 7 | C1 | (1+p3T)2 |
good | 3 | D4 | 1−5p2T+1510pT2−5p9T3+p14T4 |
| 11 | D4 | 1+2845T−6692542T2+2845p7T3+p14T4 |
| 13 | D4 | 1−753T+77948396T2−753p7T3+p14T4 |
| 17 | D4 | 1+6413T+58578932T2+6413p7T3+p14T4 |
| 19 | D4 | 1−2502T+1748341838T2−2502p7T3+p14T4 |
| 23 | D4 | 1+31158T+461266174T2+31158p7T3+p14T4 |
| 29 | D4 | 1+72699T+27821734708T2+72699p7T3+p14T4 |
| 31 | D4 | 1+10472pT+64287828414T2+10472p8T3+p14T4 |
| 37 | D4 | 1+776108T+340404268782T2+776108p7T3+p14T4 |
| 41 | D4 | 1+935222T+600319227794T2+935222p7T3+p14T4 |
| 43 | D4 | 1+727354T+506716055022T2+727354p7T3+p14T4 |
| 47 | D4 | 1+916211T+1020403468094T2+916211p7T3+p14T4 |
| 53 | D4 | 1−29606T−543261749398T2−29606p7T3+p14T4 |
| 59 | D4 | 1−1596008T+5092471155638T2−1596008p7T3+p14T4 |
| 61 | D4 | 1−109862T+6102866214282T2−109862p7T3+p14T4 |
| 67 | D4 | 1−4832652T+17896221486422T2−4832652p7T3+p14T4 |
| 71 | D4 | 1+1051952T+18266757793454T2+1051952p7T3+p14T4 |
| 73 | D4 | 1+3819128T+23764134405534T2+3819128p7T3+p14T4 |
| 79 | D4 | 1−6266441T+25936515528558T2−6266441p7T3+p14T4 |
| 83 | D4 | 1+15296600T+107991709313990T2+15296600p7T3+p14T4 |
| 89 | D4 | 1−1772750T+12446633718458T2−1772750p7T3+p14T4 |
| 97 | D4 | 1+5483489T+115007232513276T2+5483489p7T3+p14T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.10609758522797859771256821079, −12.42206162447943073109168328261, −11.58563045935552238804058549910, −11.22657382225733352169505231375, −10.29298500099118194441680217492, −10.14592780685252230672728943790, −9.327596019227754802425382397941, −9.024684510819137764085553368750, −8.324708806454048781551817782678, −8.180956523572888834329760375498, −6.98673042660931856733980110776, −6.75315662679899539543134748377, −5.57794565451507156139192684169, −5.43569235955916930903886967872, −3.41538613585248844474751170471, −3.19234029650960505055856048384, −2.08826371578148989409550834858, −1.80203597040632905700581340077, 0, 0,
1.80203597040632905700581340077, 2.08826371578148989409550834858, 3.19234029650960505055856048384, 3.41538613585248844474751170471, 5.43569235955916930903886967872, 5.57794565451507156139192684169, 6.75315662679899539543134748377, 6.98673042660931856733980110776, 8.180956523572888834329760375498, 8.324708806454048781551817782678, 9.024684510819137764085553368750, 9.327596019227754802425382397941, 10.14592780685252230672728943790, 10.29298500099118194441680217492, 11.22657382225733352169505231375, 11.58563045935552238804058549910, 12.42206162447943073109168328261, 13.10609758522797859771256821079