Properties

Label 70.8.a.f
Level $70$
Weight $8$
Character orbit 70.a
Self dual yes
Analytic conductor $21.867$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [70,8,Mod(1,70)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(70, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("70.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 70 = 2 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 70.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(21.8669517839\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{1401}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 350 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{1401})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 8 q^{2} + ( - \beta + 23) q^{3} + 64 q^{4} + 125 q^{5} + (8 \beta - 184) q^{6} - 343 q^{7} - 512 q^{8} + ( - 45 \beta - 1308) q^{9} - 1000 q^{10} + (369 \beta - 1607) q^{11} + ( - 64 \beta + 1472) q^{12}+ \cdots + ( - 426942 \beta - 3709794) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 16 q^{2} + 45 q^{3} + 128 q^{4} + 250 q^{5} - 360 q^{6} - 686 q^{7} - 1024 q^{8} - 2661 q^{9} - 2000 q^{10} - 2845 q^{11} + 2880 q^{12} + 753 q^{13} + 5488 q^{14} + 5625 q^{15} + 8192 q^{16} - 6413 q^{17}+ \cdots - 7846530 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
19.2150
−18.2150
−8.00000 3.78503 64.0000 125.000 −30.2803 −343.000 −512.000 −2172.67 −1000.00
1.2 −8.00000 41.2150 64.0000 125.000 −329.720 −343.000 −512.000 −488.326 −1000.00
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( -1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 70.8.a.f 2
4.b odd 2 1 560.8.a.c 2
5.b even 2 1 350.8.a.m 2
5.c odd 4 2 350.8.c.e 4
7.b odd 2 1 490.8.a.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.8.a.f 2 1.a even 1 1 trivial
350.8.a.m 2 5.b even 2 1
350.8.c.e 4 5.c odd 4 2
490.8.a.f 2 7.b odd 2 1
560.8.a.c 2 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 45T_{3} + 156 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(70))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 8)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 45T + 156 \) Copy content Toggle raw display
$5$ \( (T - 125)^{2} \) Copy content Toggle raw display
$7$ \( (T + 343)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 2845 T - 45666884 \) Copy content Toggle raw display
$13$ \( T^{2} - 753 T - 47548638 \) Copy content Toggle raw display
$17$ \( T^{2} + 6413 T - 762098414 \) Copy content Toggle raw display
$19$ \( T^{2} - 2502 T - 39401640 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots - 6348384720 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 6678017910 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots + 9262600192 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots + 150540514516 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots + 210810680032 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots - 36921167192 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 7157227168 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots - 2892684029072 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 115168186000 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 182619457760 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 5774798275776 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots + 76517476672 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 1669337367340 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 12471302443760 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 53719607334736 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 76016036072600 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 46589336442950 \) Copy content Toggle raw display
show more
show less