Properties

Label 70.8.a.f
Level $70$
Weight $8$
Character orbit 70.a
Self dual yes
Analytic conductor $21.867$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [70,8,Mod(1,70)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(70, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("70.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 70 = 2 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 70.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(21.8669517839\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{1401}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 350 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{1401})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 8 q^{2} + ( - \beta + 23) q^{3} + 64 q^{4} + 125 q^{5} + (8 \beta - 184) q^{6} - 343 q^{7} - 512 q^{8} + ( - 45 \beta - 1308) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 8 q^{2} + ( - \beta + 23) q^{3} + 64 q^{4} + 125 q^{5} + (8 \beta - 184) q^{6} - 343 q^{7} - 512 q^{8} + ( - 45 \beta - 1308) q^{9} - 1000 q^{10} + (369 \beta - 1607) q^{11} + ( - 64 \beta + 1472) q^{12} + ( - 369 \beta + 561) q^{13} + 2744 q^{14} + ( - 125 \beta + 2875) q^{15} + 4096 q^{16} + (1485 \beta - 3949) q^{17} + (360 \beta + 10464) q^{18} + ( - 342 \beta + 1422) q^{19} + 8000 q^{20} + (343 \beta - 7889) q^{21} + ( - 2952 \beta + 12856) q^{22} + ( - 4338 \beta - 13410) q^{23} + (512 \beta - 11776) q^{24} + 15625 q^{25} + (2952 \beta - 4488) q^{26} + (2505 \beta - 64635) q^{27} - 21952 q^{28} + (4779 \beta - 38739) q^{29} + (1000 \beta - 23000) q^{30} + ( - 6984 \beta - 158824) q^{31} - 32768 q^{32} + (9725 \beta - 166111) q^{33} + ( - 11880 \beta + 31592) q^{34} - 42875 q^{35} + ( - 2880 \beta - 83712) q^{36} + (360 \beta - 388234) q^{37} + (2736 \beta - 11376) q^{38} + ( - 8679 \beta + 142053) q^{39} - 64000 q^{40} + ( - 4734 \beta - 465244) q^{41} + ( - 2744 \beta + 63112) q^{42} + (21978 \beta - 374666) q^{43} + (23616 \beta - 102848) q^{44} + ( - 5625 \beta - 163500) q^{45} + (34704 \beta + 107280) q^{46} + ( - 24057 \beta - 446077) q^{47} + ( - 4096 \beta + 94208) q^{48} + 117649 q^{49} - 125000 q^{50} + (36619 \beta - 610577) q^{51} + ( - 23616 \beta + 35904) q^{52} + ( - 90882 \beta + 60244) q^{53} + ( - 20040 \beta + 517080) q^{54} + (46125 \beta - 200875) q^{55} + 175616 q^{56} + ( - 8946 \beta + 152406) q^{57} + ( - 38232 \beta + 309912) q^{58} + (38592 \beta + 778708) q^{59} + ( - 8000 \beta + 184000) q^{60} + (23022 \beta + 43420) q^{61} + (55872 \beta + 1270592) q^{62} + (15435 \beta + 448644) q^{63} + 262144 q^{64} + ( - 46125 \beta + 70125) q^{65} + ( - 77800 \beta + 1328888) q^{66} + (13500 \beta + 2409576) q^{67} + (95040 \beta - 252736) q^{68} + ( - 82026 \beta + 1209870) q^{69} + 343000 q^{70} + ( - 23904 \beta - 514024) q^{71} + (23040 \beta + 669696) q^{72} + (75132 \beta - 1947130) q^{73} + ( - 2880 \beta + 3105872) q^{74} + ( - 15625 \beta + 359375) q^{75} + ( - 21888 \beta + 91008) q^{76} + ( - 126567 \beta + 551201) q^{77} + (69432 \beta - 1136424) q^{78} + ( - 252261 \beta + 3259351) q^{79} + 512000 q^{80} + (218160 \beta + 497241) q^{81} + (37872 \beta + 3721952) q^{82} + (116784 \beta - 7706692) q^{83} + (21952 \beta - 504896) q^{84} + (185625 \beta - 493625) q^{85} + ( - 175824 \beta + 2997328) q^{86} + (143877 \beta - 2563647) q^{87} + ( - 188928 \beta + 822784) q^{88} + (468270 \beta + 652240) q^{89} + (45000 \beta + 1308000) q^{90} + (126567 \beta - 192423) q^{91} + ( - 277632 \beta - 858240) q^{92} + (5176 \beta - 1208552) q^{93} + (192456 \beta + 3568616) q^{94} + ( - 42750 \beta + 177750) q^{95} + (32768 \beta - 753664) q^{96} + ( - 393039 \beta - 2545225) q^{97} - 941192 q^{98} + ( - 426942 \beta - 3709794) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 16 q^{2} + 45 q^{3} + 128 q^{4} + 250 q^{5} - 360 q^{6} - 686 q^{7} - 1024 q^{8} - 2661 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 16 q^{2} + 45 q^{3} + 128 q^{4} + 250 q^{5} - 360 q^{6} - 686 q^{7} - 1024 q^{8} - 2661 q^{9} - 2000 q^{10} - 2845 q^{11} + 2880 q^{12} + 753 q^{13} + 5488 q^{14} + 5625 q^{15} + 8192 q^{16} - 6413 q^{17} + 21288 q^{18} + 2502 q^{19} + 16000 q^{20} - 15435 q^{21} + 22760 q^{22} - 31158 q^{23} - 23040 q^{24} + 31250 q^{25} - 6024 q^{26} - 126765 q^{27} - 43904 q^{28} - 72699 q^{29} - 45000 q^{30} - 324632 q^{31} - 65536 q^{32} - 322497 q^{33} + 51304 q^{34} - 85750 q^{35} - 170304 q^{36} - 776108 q^{37} - 20016 q^{38} + 275427 q^{39} - 128000 q^{40} - 935222 q^{41} + 123480 q^{42} - 727354 q^{43} - 182080 q^{44} - 332625 q^{45} + 249264 q^{46} - 916211 q^{47} + 184320 q^{48} + 235298 q^{49} - 250000 q^{50} - 1184535 q^{51} + 48192 q^{52} + 29606 q^{53} + 1014120 q^{54} - 355625 q^{55} + 351232 q^{56} + 295866 q^{57} + 581592 q^{58} + 1596008 q^{59} + 360000 q^{60} + 109862 q^{61} + 2597056 q^{62} + 912723 q^{63} + 524288 q^{64} + 94125 q^{65} + 2579976 q^{66} + 4832652 q^{67} - 410432 q^{68} + 2337714 q^{69} + 686000 q^{70} - 1051952 q^{71} + 1362432 q^{72} - 3819128 q^{73} + 6208864 q^{74} + 703125 q^{75} + 160128 q^{76} + 975835 q^{77} - 2203416 q^{78} + 6266441 q^{79} + 1024000 q^{80} + 1212642 q^{81} + 7481776 q^{82} - 15296600 q^{83} - 987840 q^{84} - 801625 q^{85} + 5818832 q^{86} - 4983417 q^{87} + 1456640 q^{88} + 1772750 q^{89} + 2661000 q^{90} - 258279 q^{91} - 1994112 q^{92} - 2411928 q^{93} + 7329688 q^{94} + 312750 q^{95} - 1474560 q^{96} - 5483489 q^{97} - 1882384 q^{98} - 7846530 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
19.2150
−18.2150
−8.00000 3.78503 64.0000 125.000 −30.2803 −343.000 −512.000 −2172.67 −1000.00
1.2 −8.00000 41.2150 64.0000 125.000 −329.720 −343.000 −512.000 −488.326 −1000.00
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( -1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 70.8.a.f 2
4.b odd 2 1 560.8.a.c 2
5.b even 2 1 350.8.a.m 2
5.c odd 4 2 350.8.c.e 4
7.b odd 2 1 490.8.a.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.8.a.f 2 1.a even 1 1 trivial
350.8.a.m 2 5.b even 2 1
350.8.c.e 4 5.c odd 4 2
490.8.a.f 2 7.b odd 2 1
560.8.a.c 2 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 45T_{3} + 156 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(70))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 8)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 45T + 156 \) Copy content Toggle raw display
$5$ \( (T - 125)^{2} \) Copy content Toggle raw display
$7$ \( (T + 343)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 2845 T - 45666884 \) Copy content Toggle raw display
$13$ \( T^{2} - 753 T - 47548638 \) Copy content Toggle raw display
$17$ \( T^{2} + 6413 T - 762098414 \) Copy content Toggle raw display
$19$ \( T^{2} - 2502 T - 39401640 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots - 6348384720 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 6678017910 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots + 9262600192 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots + 150540514516 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots + 210810680032 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots - 36921167192 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 7157227168 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots - 2892684029072 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 115168186000 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 182619457760 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 5774798275776 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots + 76517476672 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 1669337367340 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 12471302443760 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 53719607334736 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 76016036072600 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 46589336442950 \) Copy content Toggle raw display
show more
show less