L(s) = 1 | + (−1.20 − 0.739i)2-s + (2.47 + 0.664i)3-s + (0.906 + 1.78i)4-s + (−2.49 − 2.63i)6-s + (−1.41 − 2.23i)7-s + (0.224 − 2.81i)8-s + (3.10 + 1.79i)9-s + (1.59 − 0.921i)11-s + (1.06 + 5.02i)12-s + (2.94 + 2.94i)13-s + (0.0455 + 3.74i)14-s + (−2.35 + 3.23i)16-s + (2.96 + 0.795i)17-s + (−2.41 − 4.45i)18-s + (2.66 − 4.61i)19-s + ⋯ |
L(s) = 1 | + (−0.852 − 0.522i)2-s + (1.43 + 0.383i)3-s + (0.453 + 0.891i)4-s + (−1.01 − 1.07i)6-s + (−0.533 − 0.846i)7-s + (0.0793 − 0.996i)8-s + (1.03 + 0.597i)9-s + (0.481 − 0.277i)11-s + (0.307 + 1.44i)12-s + (0.817 + 0.817i)13-s + (0.0121 + 0.999i)14-s + (−0.588 + 0.808i)16-s + (0.720 + 0.192i)17-s + (−0.570 − 1.05i)18-s + (0.611 − 1.05i)19-s + ⋯ |
Λ(s)=(=(700s/2ΓC(s)L(s)(0.902+0.430i)Λ(2−s)
Λ(s)=(=(700s/2ΓC(s+1/2)L(s)(0.902+0.430i)Λ(1−s)
Degree: |
2 |
Conductor: |
700
= 22⋅52⋅7
|
Sign: |
0.902+0.430i
|
Analytic conductor: |
5.58952 |
Root analytic conductor: |
2.36421 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ700(443,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 700, ( :1/2), 0.902+0.430i)
|
Particular Values
L(1) |
≈ |
1.64256−0.371250i |
L(21) |
≈ |
1.64256−0.371250i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.20+0.739i)T |
| 5 | 1 |
| 7 | 1+(1.41+2.23i)T |
good | 3 | 1+(−2.47−0.664i)T+(2.59+1.5i)T2 |
| 11 | 1+(−1.59+0.921i)T+(5.5−9.52i)T2 |
| 13 | 1+(−2.94−2.94i)T+13iT2 |
| 17 | 1+(−2.96−0.795i)T+(14.7+8.5i)T2 |
| 19 | 1+(−2.66+4.61i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−0.654−2.44i)T+(−19.9+11.5i)T2 |
| 29 | 1+6.35iT−29T2 |
| 31 | 1+(3.78−2.18i)T+(15.5−26.8i)T2 |
| 37 | 1+(−1.03−3.86i)T+(−32.0+18.5i)T2 |
| 41 | 1−10.6T+41T2 |
| 43 | 1+(−1.02+1.02i)T−43iT2 |
| 47 | 1+(−0.785+0.210i)T+(40.7−23.5i)T2 |
| 53 | 1+(0.699−2.61i)T+(−45.8−26.5i)T2 |
| 59 | 1+(2.11+3.66i)T+(−29.5+51.0i)T2 |
| 61 | 1+(6.00−10.4i)T+(−30.5−52.8i)T2 |
| 67 | 1+(0.856−3.19i)T+(−58.0−33.5i)T2 |
| 71 | 1+10.5iT−71T2 |
| 73 | 1+(−0.529+1.97i)T+(−63.2−36.5i)T2 |
| 79 | 1+(3.95−6.85i)T+(−39.5−68.4i)T2 |
| 83 | 1+(−0.227+0.227i)T−83iT2 |
| 89 | 1+(−3.75−2.16i)T+(44.5+77.0i)T2 |
| 97 | 1+(0.196−0.196i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.13089499702205948862147395375, −9.270481705161573494219005107138, −9.065537111655067834647912677902, −7.940549272924150827863544535684, −7.32816732495371999304862793360, −6.28008057365453456086424578973, −4.21918360073036618876404166930, −3.58576604179124881810670123026, −2.71217059043217501217093232334, −1.24621386825213704116879224174,
1.40559202643516359127549458493, 2.63442808409138624049607028261, 3.58884791124101319253014426850, 5.45214784019173952052419484204, 6.25297768165720013552613111723, 7.39804777337610795976559266180, 7.969193708803843402669861407460, 8.825223951136063560479832765652, 9.300164621658838762934604605480, 10.08529478292944289462275905817