Properties

Label 700.2.be.e.443.3
Level $700$
Weight $2$
Character 700.443
Analytic conductor $5.590$
Analytic rank $0$
Dimension $72$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [700,2,Mod(107,700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(700, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("700.107");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 700.be (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.58952814149\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(18\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 443.3
Character \(\chi\) \(=\) 700.443
Dual form 700.2.be.e.207.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.20559 - 0.739299i) q^{2} +(2.47915 + 0.664287i) q^{3} +(0.906874 + 1.78258i) q^{4} +(-2.49773 - 2.63369i) q^{6} +(-1.41045 - 2.23844i) q^{7} +(0.224544 - 2.81950i) q^{8} +(3.10685 + 1.79374i) q^{9} +(1.59653 - 0.921758i) q^{11} +(1.06414 + 5.02171i) q^{12} +(2.94578 + 2.94578i) q^{13} +(0.0455440 + 3.74138i) q^{14} +(-2.35516 + 3.23314i) q^{16} +(2.96933 + 0.795631i) q^{17} +(-2.41946 - 4.45940i) q^{18} +(2.66374 - 4.61374i) q^{19} +(-2.00976 - 6.48639i) q^{21} +(-2.60621 - 0.0690563i) q^{22} +(0.654945 + 2.44429i) q^{23} +(2.42964 - 6.84081i) q^{24} +(-1.37358 - 5.72920i) q^{26} +(1.06621 + 1.06621i) q^{27} +(2.71109 - 4.54422i) q^{28} -6.35796i q^{29} +(-3.78330 + 2.18429i) q^{31} +(5.22961 - 2.15666i) q^{32} +(4.57036 - 1.22462i) q^{33} +(-2.99158 - 3.15443i) q^{34} +(-0.379961 + 7.16490i) q^{36} +(1.03655 + 3.86848i) q^{37} +(-6.62230 + 3.59295i) q^{38} +(5.34619 + 9.25988i) q^{39} +10.6462 q^{41} +(-2.37244 + 9.30571i) q^{42} +(1.02386 - 1.02386i) q^{43} +(3.09096 + 2.01002i) q^{44} +(1.01747 - 3.43100i) q^{46} +(0.785472 - 0.210467i) q^{47} +(-7.98654 + 6.45096i) q^{48} +(-3.02124 + 6.31443i) q^{49} +(6.83291 + 3.94498i) q^{51} +(-2.57963 + 7.92252i) q^{52} +(-0.699675 + 2.61122i) q^{53} +(-0.497157 - 2.07365i) q^{54} +(-6.62800 + 3.47414i) q^{56} +(9.66867 - 9.66867i) q^{57} +(-4.70044 + 7.66507i) q^{58} +(-2.11446 - 3.66235i) q^{59} +(-6.00599 + 10.4027i) q^{61} +(6.17593 + 0.163643i) q^{62} +(-0.366883 - 9.48450i) q^{63} +(-7.89916 - 1.26620i) q^{64} +(-6.41532 - 1.90247i) q^{66} +(-0.856208 + 3.19541i) q^{67} +(1.27454 + 6.01460i) q^{68} +6.49484i q^{69} -10.5316i q^{71} +(5.75508 - 8.35700i) q^{72} +(0.529747 - 1.97704i) q^{73} +(1.61030 - 5.43010i) q^{74} +(10.6400 + 0.564249i) q^{76} +(-4.31513 - 2.27365i) q^{77} +(0.400526 - 15.1160i) q^{78} +(-3.95797 + 6.85541i) q^{79} +(-3.44620 - 5.96900i) q^{81} +(-12.8349 - 7.87075i) q^{82} +(0.227439 - 0.227439i) q^{83} +(9.73989 - 9.46489i) q^{84} +(-1.99129 + 0.477413i) q^{86} +(4.22352 - 15.7624i) q^{87} +(-2.24040 - 4.70839i) q^{88} +(3.75731 + 2.16929i) q^{89} +(2.43907 - 10.7488i) q^{91} +(-3.76318 + 3.38415i) q^{92} +(-10.8304 + 2.90199i) q^{93} +(-1.10255 - 0.326963i) q^{94} +(14.3977 - 1.87274i) q^{96} +(-0.196142 + 0.196142i) q^{97} +(8.31062 - 5.37899i) q^{98} +6.61358 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q - 2 q^{2} - 16 q^{6} + 4 q^{8} - 10 q^{12} - 28 q^{16} - 4 q^{17} + 20 q^{18} + 4 q^{21} + 16 q^{22} - 4 q^{26} - 42 q^{28} + 38 q^{32} + 64 q^{33} + 16 q^{36} + 4 q^{37} - 12 q^{38} - 40 q^{41} - 78 q^{42}+ \cdots + 90 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/700\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(477\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.20559 0.739299i −0.852478 0.522763i
\(3\) 2.47915 + 0.664287i 1.43134 + 0.383527i 0.889492 0.456950i \(-0.151058\pi\)
0.541848 + 0.840476i \(0.317725\pi\)
\(4\) 0.906874 + 1.78258i 0.453437 + 0.891288i
\(5\) 0 0
\(6\) −2.49773 2.63369i −1.01969 1.07520i
\(7\) −1.41045 2.23844i −0.533101 0.846051i
\(8\) 0.224544 2.81950i 0.0793882 0.996844i
\(9\) 3.10685 + 1.79374i 1.03562 + 0.597914i
\(10\) 0 0
\(11\) 1.59653 0.921758i 0.481372 0.277920i −0.239616 0.970868i \(-0.577022\pi\)
0.720988 + 0.692947i \(0.243688\pi\)
\(12\) 1.06414 + 5.02171i 0.307190 + 1.44964i
\(13\) 2.94578 + 2.94578i 0.817012 + 0.817012i 0.985674 0.168662i \(-0.0539447\pi\)
−0.168662 + 0.985674i \(0.553945\pi\)
\(14\) 0.0455440 + 3.74138i 0.0121721 + 0.999926i
\(15\) 0 0
\(16\) −2.35516 + 3.23314i −0.588790 + 0.808286i
\(17\) 2.96933 + 0.795631i 0.720169 + 0.192969i 0.600247 0.799815i \(-0.295069\pi\)
0.119922 + 0.992783i \(0.461736\pi\)
\(18\) −2.41946 4.45940i −0.570273 1.05109i
\(19\) 2.66374 4.61374i 0.611104 1.05846i −0.379950 0.925007i \(-0.624059\pi\)
0.991055 0.133457i \(-0.0426077\pi\)
\(20\) 0 0
\(21\) −2.00976 6.48639i −0.438566 1.41545i
\(22\) −2.60621 0.0690563i −0.555646 0.0147228i
\(23\) 0.654945 + 2.44429i 0.136565 + 0.509669i 0.999987 + 0.00518527i \(0.00165053\pi\)
−0.863421 + 0.504484i \(0.831683\pi\)
\(24\) 2.42964 6.84081i 0.495948 1.39638i
\(25\) 0 0
\(26\) −1.37358 5.72920i −0.269380 1.12359i
\(27\) 1.06621 + 1.06621i 0.205191 + 0.205191i
\(28\) 2.71109 4.54422i 0.512348 0.858778i
\(29\) 6.35796i 1.18064i −0.807168 0.590322i \(-0.799001\pi\)
0.807168 0.590322i \(-0.200999\pi\)
\(30\) 0 0
\(31\) −3.78330 + 2.18429i −0.679500 + 0.392310i −0.799667 0.600444i \(-0.794991\pi\)
0.120166 + 0.992754i \(0.461657\pi\)
\(32\) 5.22961 2.15666i 0.924473 0.381248i
\(33\) 4.57036 1.22462i 0.795597 0.213180i
\(34\) −2.99158 3.15443i −0.513051 0.540980i
\(35\) 0 0
\(36\) −0.379961 + 7.16490i −0.0633268 + 1.19415i
\(37\) 1.03655 + 3.86848i 0.170409 + 0.635973i 0.997288 + 0.0735946i \(0.0234471\pi\)
−0.826880 + 0.562379i \(0.809886\pi\)
\(38\) −6.62230 + 3.59295i −1.07428 + 0.582854i
\(39\) 5.34619 + 9.25988i 0.856076 + 1.48277i
\(40\) 0 0
\(41\) 10.6462 1.66266 0.831331 0.555777i \(-0.187579\pi\)
0.831331 + 0.555777i \(0.187579\pi\)
\(42\) −2.37244 + 9.30571i −0.366076 + 1.43590i
\(43\) 1.02386 1.02386i 0.156137 0.156137i −0.624715 0.780853i \(-0.714785\pi\)
0.780853 + 0.624715i \(0.214785\pi\)
\(44\) 3.09096 + 2.01002i 0.465979 + 0.303022i
\(45\) 0 0
\(46\) 1.01747 3.43100i 0.150017 0.505873i
\(47\) 0.785472 0.210467i 0.114573 0.0306997i −0.201077 0.979575i \(-0.564444\pi\)
0.315650 + 0.948876i \(0.397777\pi\)
\(48\) −7.98654 + 6.45096i −1.15276 + 0.931116i
\(49\) −3.02124 + 6.31443i −0.431606 + 0.902062i
\(50\) 0 0
\(51\) 6.83291 + 3.94498i 0.956799 + 0.552408i
\(52\) −2.57963 + 7.92252i −0.357730 + 1.09866i
\(53\) −0.699675 + 2.61122i −0.0961077 + 0.358679i −0.997185 0.0749796i \(-0.976111\pi\)
0.901077 + 0.433658i \(0.142778\pi\)
\(54\) −0.497157 2.07365i −0.0676546 0.282188i
\(55\) 0 0
\(56\) −6.62800 + 3.47414i −0.885703 + 0.464252i
\(57\) 9.66867 9.66867i 1.28065 1.28065i
\(58\) −4.70044 + 7.66507i −0.617198 + 1.00647i
\(59\) −2.11446 3.66235i −0.275279 0.476797i 0.694927 0.719081i \(-0.255437\pi\)
−0.970205 + 0.242284i \(0.922104\pi\)
\(60\) 0 0
\(61\) −6.00599 + 10.4027i −0.768988 + 1.33193i 0.169124 + 0.985595i \(0.445906\pi\)
−0.938112 + 0.346332i \(0.887427\pi\)
\(62\) 6.17593 + 0.163643i 0.784344 + 0.0207826i
\(63\) −0.366883 9.48450i −0.0462229 1.19493i
\(64\) −7.89916 1.26620i −0.987395 0.158275i
\(65\) 0 0
\(66\) −6.41532 1.90247i −0.789672 0.234178i
\(67\) −0.856208 + 3.19541i −0.104602 + 0.390382i −0.998300 0.0582888i \(-0.981436\pi\)
0.893697 + 0.448670i \(0.148102\pi\)
\(68\) 1.27454 + 6.01460i 0.154560 + 0.729378i
\(69\) 6.49484i 0.781886i
\(70\) 0 0
\(71\) 10.5316i 1.24988i −0.780675 0.624938i \(-0.785124\pi\)
0.780675 0.624938i \(-0.214876\pi\)
\(72\) 5.75508 8.35700i 0.678243 0.984882i
\(73\) 0.529747 1.97704i 0.0620022 0.231395i −0.927971 0.372653i \(-0.878448\pi\)
0.989973 + 0.141258i \(0.0451147\pi\)
\(74\) 1.61030 5.43010i 0.187194 0.631237i
\(75\) 0 0
\(76\) 10.6400 + 0.564249i 1.22049 + 0.0647238i
\(77\) −4.31513 2.27365i −0.491755 0.259106i
\(78\) 0.400526 15.1160i 0.0453507 1.71155i
\(79\) −3.95797 + 6.85541i −0.445307 + 0.771294i −0.998074 0.0620421i \(-0.980239\pi\)
0.552767 + 0.833336i \(0.313572\pi\)
\(80\) 0 0
\(81\) −3.44620 5.96900i −0.382912 0.663222i
\(82\) −12.8349 7.87075i −1.41738 0.869179i
\(83\) 0.227439 0.227439i 0.0249647 0.0249647i −0.694514 0.719479i \(-0.744381\pi\)
0.719479 + 0.694514i \(0.244381\pi\)
\(84\) 9.73989 9.46489i 1.06271 1.03270i
\(85\) 0 0
\(86\) −1.99129 + 0.477413i −0.214727 + 0.0514807i
\(87\) 4.22352 15.7624i 0.452808 1.68990i
\(88\) −2.24040 4.70839i −0.238828 0.501917i
\(89\) 3.75731 + 2.16929i 0.398274 + 0.229944i 0.685739 0.727847i \(-0.259479\pi\)
−0.287465 + 0.957791i \(0.592812\pi\)
\(90\) 0 0
\(91\) 2.43907 10.7488i 0.255684 1.12678i
\(92\) −3.76318 + 3.38415i −0.392338 + 0.352822i
\(93\) −10.8304 + 2.90199i −1.12306 + 0.300922i
\(94\) −1.10255 0.326963i −0.113720 0.0337237i
\(95\) 0 0
\(96\) 14.3977 1.87274i 1.46945 0.191136i
\(97\) −0.196142 + 0.196142i −0.0199152 + 0.0199152i −0.716994 0.697079i \(-0.754483\pi\)
0.697079 + 0.716994i \(0.254483\pi\)
\(98\) 8.31062 5.37899i 0.839500 0.543360i
\(99\) 6.61358 0.664690
\(100\) 0 0
\(101\) 3.67449 + 6.36440i 0.365625 + 0.633281i 0.988876 0.148741i \(-0.0475219\pi\)
−0.623251 + 0.782022i \(0.714189\pi\)
\(102\) −5.32114 9.80758i −0.526871 0.971095i
\(103\) −3.53030 13.1752i −0.347850 1.29820i −0.889247 0.457428i \(-0.848771\pi\)
0.541396 0.840768i \(-0.317896\pi\)
\(104\) 8.96707 7.64416i 0.879294 0.749572i
\(105\) 0 0
\(106\) 2.77399 2.63078i 0.269434 0.255524i
\(107\) −4.51112 + 1.20875i −0.436107 + 0.116854i −0.470191 0.882565i \(-0.655815\pi\)
0.0340847 + 0.999419i \(0.489148\pi\)
\(108\) −0.933680 + 2.86751i −0.0898434 + 0.275926i
\(109\) −8.77373 + 5.06552i −0.840371 + 0.485188i −0.857390 0.514667i \(-0.827916\pi\)
0.0170193 + 0.999855i \(0.494582\pi\)
\(110\) 0 0
\(111\) 10.2791i 0.975651i
\(112\) 10.5590 + 0.711693i 0.997736 + 0.0672486i
\(113\) 7.70435 + 7.70435i 0.724764 + 0.724764i 0.969572 0.244807i \(-0.0787247\pi\)
−0.244807 + 0.969572i \(0.578725\pi\)
\(114\) −18.8045 + 4.50837i −1.76120 + 0.422248i
\(115\) 0 0
\(116\) 11.3336 5.76587i 1.05229 0.535348i
\(117\) 3.86813 + 14.4361i 0.357609 + 1.33461i
\(118\) −0.158411 + 5.97849i −0.0145829 + 0.550365i
\(119\) −2.40713 7.76888i −0.220662 0.712172i
\(120\) 0 0
\(121\) −3.80073 + 6.58305i −0.345521 + 0.598459i
\(122\) 14.9314 8.10110i 1.35183 0.733439i
\(123\) 26.3937 + 7.07216i 2.37984 + 0.637675i
\(124\) −7.32463 4.76315i −0.657772 0.427743i
\(125\) 0 0
\(126\) −6.56957 + 11.7056i −0.585264 + 1.04282i
\(127\) −9.01446 9.01446i −0.799904 0.799904i 0.183176 0.983080i \(-0.441362\pi\)
−0.983080 + 0.183176i \(0.941362\pi\)
\(128\) 8.58701 + 7.36636i 0.758992 + 0.651100i
\(129\) 3.21845 1.85817i 0.283369 0.163603i
\(130\) 0 0
\(131\) −16.2391 9.37562i −1.41881 0.819152i −0.422618 0.906308i \(-0.638889\pi\)
−0.996195 + 0.0871562i \(0.972222\pi\)
\(132\) 6.32772 + 7.03644i 0.550758 + 0.612443i
\(133\) −14.0847 + 0.544828i −1.22130 + 0.0472426i
\(134\) 3.39460 3.21935i 0.293248 0.278109i
\(135\) 0 0
\(136\) 2.91003 8.19338i 0.249533 0.702577i
\(137\) −17.4309 4.67059i −1.48922 0.399035i −0.579747 0.814797i \(-0.696849\pi\)
−0.909474 + 0.415761i \(0.863515\pi\)
\(138\) 4.80163 7.83008i 0.408742 0.666541i
\(139\) 2.38747 0.202503 0.101251 0.994861i \(-0.467715\pi\)
0.101251 + 0.994861i \(0.467715\pi\)
\(140\) 0 0
\(141\) 2.08712 0.175767
\(142\) −7.78603 + 12.6968i −0.653389 + 1.06549i
\(143\) 7.41832 + 1.98773i 0.620351 + 0.166223i
\(144\) −13.1166 + 5.82035i −1.09305 + 0.485029i
\(145\) 0 0
\(146\) −2.10028 + 1.99185i −0.173821 + 0.164847i
\(147\) −11.6847 + 13.6475i −0.963740 + 1.12563i
\(148\) −5.95583 + 5.35596i −0.489566 + 0.440257i
\(149\) −9.54286 5.50957i −0.781781 0.451362i 0.0552800 0.998471i \(-0.482395\pi\)
−0.837061 + 0.547109i \(0.815728\pi\)
\(150\) 0 0
\(151\) −14.3323 + 8.27478i −1.16635 + 0.673392i −0.952817 0.303544i \(-0.901830\pi\)
−0.213532 + 0.976936i \(0.568497\pi\)
\(152\) −12.4103 8.54641i −1.00661 0.693205i
\(153\) 7.79813 + 7.79813i 0.630441 + 0.630441i
\(154\) 3.52136 + 5.93125i 0.283759 + 0.477954i
\(155\) 0 0
\(156\) −11.6581 + 17.9275i −0.933397 + 1.43535i
\(157\) −5.47844 1.46794i −0.437227 0.117155i 0.0334897 0.999439i \(-0.489338\pi\)
−0.470717 + 0.882284i \(0.656005\pi\)
\(158\) 9.83987 5.33866i 0.782818 0.424721i
\(159\) −3.46920 + 6.00883i −0.275126 + 0.476532i
\(160\) 0 0
\(161\) 4.54763 4.91361i 0.358403 0.387247i
\(162\) −0.258183 + 9.74392i −0.0202848 + 0.765555i
\(163\) −0.768508 2.86811i −0.0601942 0.224648i 0.929276 0.369387i \(-0.120432\pi\)
−0.989470 + 0.144739i \(0.953766\pi\)
\(164\) 9.65479 + 18.9777i 0.753912 + 1.48191i
\(165\) 0 0
\(166\) −0.442343 + 0.106052i −0.0343324 + 0.00823121i
\(167\) 11.1720 + 11.1720i 0.864517 + 0.864517i 0.991859 0.127342i \(-0.0406446\pi\)
−0.127342 + 0.991859i \(0.540645\pi\)
\(168\) −18.7397 + 4.21005i −1.44580 + 0.324812i
\(169\) 4.35520i 0.335016i
\(170\) 0 0
\(171\) 16.5517 9.55613i 1.26574 0.730776i
\(172\) 2.75362 + 0.896599i 0.209962 + 0.0683650i
\(173\) −6.70516 + 1.79664i −0.509784 + 0.136596i −0.504537 0.863390i \(-0.668337\pi\)
−0.00524677 + 0.999986i \(0.501670\pi\)
\(174\) −16.7449 + 15.8805i −1.26943 + 1.20389i
\(175\) 0 0
\(176\) −0.779913 + 7.33270i −0.0587881 + 0.552723i
\(177\) −2.80921 10.4841i −0.211154 0.788036i
\(178\) −2.92601 5.39304i −0.219314 0.404225i
\(179\) 5.08815 + 8.81294i 0.380307 + 0.658710i 0.991106 0.133075i \(-0.0424852\pi\)
−0.610799 + 0.791785i \(0.709152\pi\)
\(180\) 0 0
\(181\) −10.8055 −0.803166 −0.401583 0.915823i \(-0.631540\pi\)
−0.401583 + 0.915823i \(0.631540\pi\)
\(182\) −10.8871 + 11.1554i −0.807006 + 0.826896i
\(183\) −21.8002 + 21.8002i −1.61151 + 1.61151i
\(184\) 7.03873 1.29777i 0.518902 0.0956727i
\(185\) 0 0
\(186\) 15.2024 + 4.50829i 1.11469 + 0.330564i
\(187\) 5.47401 1.46676i 0.400299 0.107260i
\(188\) 1.08750 + 1.20930i 0.0793139 + 0.0881971i
\(189\) 0.882806 3.89047i 0.0642147 0.282990i
\(190\) 0 0
\(191\) 11.9741 + 6.91324i 0.866415 + 0.500225i 0.866155 0.499775i \(-0.166584\pi\)
0.000259570 1.00000i \(0.499917\pi\)
\(192\) −18.7421 8.38642i −1.35260 0.605238i
\(193\) −1.78515 + 6.66228i −0.128498 + 0.479561i −0.999940 0.0109371i \(-0.996519\pi\)
0.871442 + 0.490498i \(0.163185\pi\)
\(194\) 0.381473 0.0914581i 0.0273881 0.00656631i
\(195\) 0 0
\(196\) −13.9959 + 0.340795i −0.999704 + 0.0243425i
\(197\) 7.85372 7.85372i 0.559554 0.559554i −0.369626 0.929181i \(-0.620514\pi\)
0.929181 + 0.369626i \(0.120514\pi\)
\(198\) −7.97324 4.88942i −0.566633 0.347476i
\(199\) −8.63793 14.9613i −0.612327 1.06058i −0.990847 0.134988i \(-0.956900\pi\)
0.378520 0.925593i \(-0.376433\pi\)
\(200\) 0 0
\(201\) −4.24534 + 7.35315i −0.299443 + 0.518651i
\(202\) 0.275285 10.3894i 0.0193690 0.730994i
\(203\) −14.2319 + 8.96761i −0.998886 + 0.629403i
\(204\) −0.835649 + 15.7578i −0.0585071 + 1.10327i
\(205\) 0 0
\(206\) −5.48437 + 18.4938i −0.382114 + 1.28853i
\(207\) −2.34960 + 8.76884i −0.163309 + 0.609477i
\(208\) −16.4619 + 2.58634i −1.14143 + 0.179331i
\(209\) 9.82130i 0.679353i
\(210\) 0 0
\(211\) 18.6740i 1.28557i 0.766045 + 0.642787i \(0.222222\pi\)
−0.766045 + 0.642787i \(0.777778\pi\)
\(212\) −5.28922 + 1.12082i −0.363265 + 0.0769785i
\(213\) 6.99603 26.1096i 0.479360 1.78900i
\(214\) 6.33217 + 1.87781i 0.432858 + 0.128365i
\(215\) 0 0
\(216\) 3.24558 2.76676i 0.220834 0.188254i
\(217\) 10.2256 + 5.38786i 0.694157 + 0.365751i
\(218\) 14.3224 + 0.379499i 0.970036 + 0.0257029i
\(219\) 2.62665 4.54949i 0.177492 0.307426i
\(220\) 0 0
\(221\) 6.40324 + 11.0907i 0.430729 + 0.746044i
\(222\) 7.59934 12.3924i 0.510035 0.831721i
\(223\) −11.0752 + 11.0752i −0.741650 + 0.741650i −0.972895 0.231245i \(-0.925720\pi\)
0.231245 + 0.972895i \(0.425720\pi\)
\(224\) −12.2037 8.66430i −0.815393 0.578908i
\(225\) 0 0
\(226\) −3.59243 14.9841i −0.238965 0.996726i
\(227\) 0.679495 2.53591i 0.0450997 0.168314i −0.939703 0.341992i \(-0.888898\pi\)
0.984803 + 0.173678i \(0.0555651\pi\)
\(228\) 26.0034 + 8.46689i 1.72212 + 0.560733i
\(229\) 1.76043 + 1.01639i 0.116333 + 0.0671646i 0.557037 0.830488i \(-0.311938\pi\)
−0.440705 + 0.897652i \(0.645271\pi\)
\(230\) 0 0
\(231\) −9.18753 8.50321i −0.604495 0.559470i
\(232\) −17.9263 1.42764i −1.17692 0.0937293i
\(233\) 13.4574 3.60589i 0.881621 0.236230i 0.210514 0.977591i \(-0.432486\pi\)
0.671106 + 0.741361i \(0.265819\pi\)
\(234\) 6.00920 20.2636i 0.392834 1.32467i
\(235\) 0 0
\(236\) 4.61087 7.09047i 0.300142 0.461550i
\(237\) −14.3664 + 14.3664i −0.933197 + 0.933197i
\(238\) −2.84152 + 11.1456i −0.184188 + 0.722465i
\(239\) −9.72902 −0.629318 −0.314659 0.949205i \(-0.601890\pi\)
−0.314659 + 0.949205i \(0.601890\pi\)
\(240\) 0 0
\(241\) −7.97303 13.8097i −0.513588 0.889560i −0.999876 0.0157617i \(-0.994983\pi\)
0.486288 0.873799i \(-0.338351\pi\)
\(242\) 9.44894 5.12656i 0.607401 0.329548i
\(243\) −5.74932 21.4567i −0.368819 1.37645i
\(244\) −23.9903 1.27222i −1.53582 0.0814458i
\(245\) 0 0
\(246\) −26.5914 28.0389i −1.69540 1.78770i
\(247\) 21.4378 5.74425i 1.36406 0.365498i
\(248\) 5.30908 + 11.1575i 0.337127 + 0.708500i
\(249\) 0.714941 0.412771i 0.0453075 0.0261583i
\(250\) 0 0
\(251\) 5.62289i 0.354913i 0.984129 + 0.177457i \(0.0567870\pi\)
−0.984129 + 0.177457i \(0.943213\pi\)
\(252\) 16.5741 9.25524i 1.04407 0.583025i
\(253\) 3.29868 + 3.29868i 0.207386 + 0.207386i
\(254\) 4.20332 + 17.5321i 0.263740 + 1.10006i
\(255\) 0 0
\(256\) −4.90644 15.2291i −0.306652 0.951822i
\(257\) −1.32646 4.95043i −0.0827426 0.308799i 0.912135 0.409891i \(-0.134433\pi\)
−0.994877 + 0.101091i \(0.967767\pi\)
\(258\) −5.25386 0.139211i −0.327091 0.00866687i
\(259\) 7.19735 7.77657i 0.447221 0.483213i
\(260\) 0 0
\(261\) 11.4045 19.7533i 0.705924 1.22270i
\(262\) 12.6462 + 23.3086i 0.781284 + 1.44001i
\(263\) −7.62222 2.04237i −0.470006 0.125938i 0.0160390 0.999871i \(-0.494894\pi\)
−0.486045 + 0.873934i \(0.661561\pi\)
\(264\) −2.42658 13.1611i −0.149346 0.810010i
\(265\) 0 0
\(266\) 17.3831 + 9.75594i 1.06582 + 0.598175i
\(267\) 7.87393 + 7.87393i 0.481877 + 0.481877i
\(268\) −6.47254 + 1.37158i −0.395373 + 0.0837824i
\(269\) −3.97953 + 2.29758i −0.242636 + 0.140086i −0.616388 0.787443i \(-0.711405\pi\)
0.373752 + 0.927529i \(0.378071\pi\)
\(270\) 0 0
\(271\) 24.8226 + 14.3314i 1.50787 + 0.870568i 0.999958 + 0.00915707i \(0.00291483\pi\)
0.507909 + 0.861411i \(0.330419\pi\)
\(272\) −9.56565 + 7.72644i −0.580002 + 0.468485i
\(273\) 13.1871 25.0278i 0.798122 1.51475i
\(274\) 17.5615 + 18.5174i 1.06093 + 1.11868i
\(275\) 0 0
\(276\) −11.5775 + 5.89000i −0.696886 + 0.354536i
\(277\) 5.19134 + 1.39102i 0.311918 + 0.0835781i 0.411382 0.911463i \(-0.365046\pi\)
−0.0994644 + 0.995041i \(0.531713\pi\)
\(278\) −2.87830 1.76506i −0.172629 0.105861i
\(279\) −15.6722 −0.938270
\(280\) 0 0
\(281\) 24.2851 1.44873 0.724365 0.689417i \(-0.242133\pi\)
0.724365 + 0.689417i \(0.242133\pi\)
\(282\) −2.51620 1.54300i −0.149837 0.0918846i
\(283\) −9.83724 2.63588i −0.584763 0.156687i −0.0457044 0.998955i \(-0.514553\pi\)
−0.539059 + 0.842268i \(0.681220\pi\)
\(284\) 18.7735 9.55086i 1.11400 0.566739i
\(285\) 0 0
\(286\) −7.47389 7.88074i −0.441940 0.465998i
\(287\) −15.0160 23.8310i −0.886367 1.40670i
\(288\) 20.1161 + 2.68013i 1.18535 + 0.157928i
\(289\) −6.53852 3.77501i −0.384619 0.222060i
\(290\) 0 0
\(291\) −0.616559 + 0.355971i −0.0361434 + 0.0208674i
\(292\) 4.00464 0.848613i 0.234354 0.0496613i
\(293\) −19.5889 19.5889i −1.14440 1.14440i −0.987636 0.156762i \(-0.949894\pi\)
−0.156762 0.987636i \(-0.550106\pi\)
\(294\) 24.1765 7.81470i 1.41000 0.455763i
\(295\) 0 0
\(296\) 11.1399 2.05392i 0.647495 0.119382i
\(297\) 2.68501 + 0.719447i 0.155800 + 0.0417466i
\(298\) 7.43151 + 13.6973i 0.430496 + 0.793462i
\(299\) −5.27100 + 9.12965i −0.304830 + 0.527981i
\(300\) 0 0
\(301\) −3.73596 0.847746i −0.215337 0.0488632i
\(302\) 23.3964 + 0.619930i 1.34631 + 0.0356730i
\(303\) 4.88183 + 18.2192i 0.280454 + 1.04667i
\(304\) 8.64333 + 19.4783i 0.495729 + 1.11716i
\(305\) 0 0
\(306\) −3.63616 15.1665i −0.207865 0.867009i
\(307\) 20.7290 + 20.7290i 1.18307 + 1.18307i 0.978946 + 0.204121i \(0.0654335\pi\)
0.204121 + 0.978946i \(0.434567\pi\)
\(308\) 0.139669 9.75397i 0.00795836 0.555784i
\(309\) 35.0086i 1.99157i
\(310\) 0 0
\(311\) −3.76125 + 2.17156i −0.213281 + 0.123138i −0.602835 0.797866i \(-0.705962\pi\)
0.389554 + 0.921003i \(0.372629\pi\)
\(312\) 27.3087 12.9943i 1.54605 0.735660i
\(313\) −7.58085 + 2.03128i −0.428495 + 0.114815i −0.466620 0.884458i \(-0.654528\pi\)
0.0381246 + 0.999273i \(0.487862\pi\)
\(314\) 5.51948 + 5.81993i 0.311482 + 0.328438i
\(315\) 0 0
\(316\) −15.8097 0.838401i −0.889364 0.0471637i
\(317\) 0.627741 + 2.34276i 0.0352574 + 0.131583i 0.981311 0.192427i \(-0.0616358\pi\)
−0.946054 + 0.324009i \(0.894969\pi\)
\(318\) 8.62475 4.67939i 0.483652 0.262407i
\(319\) −5.86050 10.1507i −0.328125 0.568329i
\(320\) 0 0
\(321\) −11.9867 −0.669034
\(322\) −9.11518 + 2.56172i −0.507969 + 0.142759i
\(323\) 11.5804 11.5804i 0.644349 0.644349i
\(324\) 7.51493 11.5563i 0.417496 0.642014i
\(325\) 0 0
\(326\) −1.19389 + 4.02591i −0.0661234 + 0.222975i
\(327\) −25.1164 + 6.72992i −1.38894 + 0.372165i
\(328\) 2.39055 30.0171i 0.131996 1.65741i
\(329\) −1.57899 1.46138i −0.0870525 0.0805685i
\(330\) 0 0
\(331\) −11.1137 6.41652i −0.610866 0.352684i 0.162438 0.986719i \(-0.448064\pi\)
−0.773304 + 0.634035i \(0.781398\pi\)
\(332\) 0.611686 + 0.199169i 0.0335706 + 0.0109308i
\(333\) −3.71862 + 13.8781i −0.203779 + 0.760515i
\(334\) −5.20936 21.7283i −0.285044 1.18892i
\(335\) 0 0
\(336\) 25.7047 + 8.77864i 1.40231 + 0.478914i
\(337\) −25.1079 + 25.1079i −1.36771 + 1.36771i −0.504022 + 0.863691i \(0.668147\pi\)
−0.863691 + 0.504022i \(0.831853\pi\)
\(338\) 3.21980 5.25057i 0.175134 0.285593i
\(339\) 13.9824 + 24.2182i 0.759418 + 1.31535i
\(340\) 0 0
\(341\) −4.02677 + 6.97457i −0.218062 + 0.377694i
\(342\) −27.0193 0.715927i −1.46104 0.0387129i
\(343\) 18.3958 2.14334i 0.993281 0.115729i
\(344\) −2.65688 3.11668i −0.143249 0.168040i
\(345\) 0 0
\(346\) 9.41190 + 2.79111i 0.505987 + 0.150051i
\(347\) 1.10061 4.10753i 0.0590838 0.220504i −0.930071 0.367379i \(-0.880255\pi\)
0.989155 + 0.146876i \(0.0469217\pi\)
\(348\) 31.9278 6.76574i 1.71151 0.362682i
\(349\) 4.09263i 0.219074i 0.993983 + 0.109537i \(0.0349368\pi\)
−0.993983 + 0.109537i \(0.965063\pi\)
\(350\) 0 0
\(351\) 6.28161i 0.335288i
\(352\) 6.36131 8.26361i 0.339059 0.440452i
\(353\) −5.17152 + 19.3004i −0.275252 + 1.02726i 0.680420 + 0.732823i \(0.261798\pi\)
−0.955672 + 0.294433i \(0.904869\pi\)
\(354\) −4.36416 + 14.7164i −0.231953 + 0.782166i
\(355\) 0 0
\(356\) −0.459511 + 8.66497i −0.0243540 + 0.459242i
\(357\) −0.806886 20.8593i −0.0427049 1.10399i
\(358\) 0.381195 14.3864i 0.0201468 0.760346i
\(359\) 4.85897 8.41598i 0.256446 0.444178i −0.708841 0.705368i \(-0.750782\pi\)
0.965287 + 0.261190i \(0.0841150\pi\)
\(360\) 0 0
\(361\) −4.69104 8.12512i −0.246897 0.427638i
\(362\) 13.0270 + 7.98850i 0.684681 + 0.419866i
\(363\) −13.7956 + 13.7956i −0.724082 + 0.724082i
\(364\) 21.3725 5.40000i 1.12023 0.283037i
\(365\) 0 0
\(366\) 42.3988 10.1651i 2.21622 0.531339i
\(367\) −3.93209 + 14.6748i −0.205254 + 0.766017i 0.784119 + 0.620611i \(0.213115\pi\)
−0.989372 + 0.145406i \(0.953551\pi\)
\(368\) −9.44523 3.63916i −0.492367 0.189704i
\(369\) 33.0763 + 19.0966i 1.72188 + 0.994129i
\(370\) 0 0
\(371\) 6.83192 2.11682i 0.354696 0.109900i
\(372\) −14.9948 16.6742i −0.777444 0.864519i
\(373\) 31.1771 8.35388i 1.61429 0.432548i 0.664972 0.746868i \(-0.268443\pi\)
0.949317 + 0.314320i \(0.101777\pi\)
\(374\) −7.68376 2.27863i −0.397318 0.117825i
\(375\) 0 0
\(376\) −0.417038 2.26190i −0.0215071 0.116648i
\(377\) 18.7291 18.7291i 0.964600 0.964600i
\(378\) −3.94052 + 4.03764i −0.202679 + 0.207674i
\(379\) 29.2598 1.50297 0.751487 0.659747i \(-0.229337\pi\)
0.751487 + 0.659747i \(0.229337\pi\)
\(380\) 0 0
\(381\) −16.3600 28.3364i −0.838150 1.45172i
\(382\) −9.32484 17.1869i −0.477100 0.879360i
\(383\) −2.92209 10.9054i −0.149312 0.557240i −0.999526 0.0308021i \(-0.990194\pi\)
0.850213 0.526438i \(-0.176473\pi\)
\(384\) 16.3951 + 23.9666i 0.836661 + 1.22304i
\(385\) 0 0
\(386\) 7.07757 6.71218i 0.360239 0.341641i
\(387\) 5.01753 1.34444i 0.255055 0.0683419i
\(388\) −0.527513 0.171762i −0.0267804 0.00871988i
\(389\) 33.4554 19.3155i 1.69625 0.979333i 0.747000 0.664824i \(-0.231494\pi\)
0.949255 0.314508i \(-0.101840\pi\)
\(390\) 0 0
\(391\) 7.77900i 0.393401i
\(392\) 17.1251 + 9.93626i 0.864951 + 0.501857i
\(393\) −34.0310 34.0310i −1.71664 1.71664i
\(394\) −15.2746 + 3.66208i −0.769522 + 0.184493i
\(395\) 0 0
\(396\) 5.99768 + 11.7892i 0.301395 + 0.592431i
\(397\) 2.22097 + 8.28877i 0.111467 + 0.416002i 0.998998 0.0447462i \(-0.0142479\pi\)
−0.887531 + 0.460748i \(0.847581\pi\)
\(398\) −0.647137 + 24.4232i −0.0324381 + 1.22422i
\(399\) −35.2800 8.00555i −1.76621 0.400779i
\(400\) 0 0
\(401\) 1.16330 2.01489i 0.0580922 0.100619i −0.835517 0.549465i \(-0.814832\pi\)
0.893609 + 0.448846i \(0.148165\pi\)
\(402\) 10.5543 5.72627i 0.526401 0.285600i
\(403\) −17.5792 4.71033i −0.875681 0.234638i
\(404\) −8.01273 + 12.3218i −0.398648 + 0.613030i
\(405\) 0 0
\(406\) 23.7876 0.289567i 1.18056 0.0143710i
\(407\) 5.22069 + 5.22069i 0.258780 + 0.258780i
\(408\) 12.6572 18.3796i 0.626623 0.909924i
\(409\) −0.162801 + 0.0939930i −0.00804997 + 0.00464765i −0.504020 0.863692i \(-0.668146\pi\)
0.495970 + 0.868340i \(0.334813\pi\)
\(410\) 0 0
\(411\) −40.1112 23.1582i −1.97854 1.14231i
\(412\) 20.2844 18.2413i 0.999339 0.898685i
\(413\) −5.21561 + 9.89866i −0.256643 + 0.487081i
\(414\) 9.31545 8.83453i 0.457829 0.434193i
\(415\) 0 0
\(416\) 21.7583 + 9.05221i 1.06679 + 0.443821i
\(417\) 5.91892 + 1.58597i 0.289851 + 0.0776652i
\(418\) −7.26088 + 11.8404i −0.355141 + 0.579134i
\(419\) −13.0861 −0.639297 −0.319648 0.947536i \(-0.603565\pi\)
−0.319648 + 0.947536i \(0.603565\pi\)
\(420\) 0 0
\(421\) 3.33535 0.162555 0.0812776 0.996692i \(-0.474100\pi\)
0.0812776 + 0.996692i \(0.474100\pi\)
\(422\) 13.8057 22.5131i 0.672051 1.09592i
\(423\) 2.81787 + 0.755046i 0.137009 + 0.0367116i
\(424\) 7.20523 + 2.55907i 0.349917 + 0.124279i
\(425\) 0 0
\(426\) −27.7371 + 26.3051i −1.34387 + 1.27449i
\(427\) 31.7570 1.22843i 1.53683 0.0594481i
\(428\) −6.24571 6.94524i −0.301898 0.335711i
\(429\) 17.0707 + 9.85579i 0.824183 + 0.475842i
\(430\) 0 0
\(431\) −2.08778 + 1.20538i −0.100565 + 0.0580612i −0.549439 0.835534i \(-0.685159\pi\)
0.448874 + 0.893595i \(0.351825\pi\)
\(432\) −5.95828 + 0.936111i −0.286668 + 0.0450386i
\(433\) −0.313016 0.313016i −0.0150426 0.0150426i 0.699545 0.714588i \(-0.253386\pi\)
−0.714588 + 0.699545i \(0.753386\pi\)
\(434\) −8.34456 14.0553i −0.400552 0.674675i
\(435\) 0 0
\(436\) −16.9863 11.0461i −0.813498 0.529011i
\(437\) 13.0219 + 3.48921i 0.622922 + 0.166911i
\(438\) −6.53008 + 3.54292i −0.312019 + 0.169287i
\(439\) 11.2300 19.4509i 0.535978 0.928341i −0.463138 0.886286i \(-0.653276\pi\)
0.999115 0.0420543i \(-0.0133902\pi\)
\(440\) 0 0
\(441\) −20.7130 + 14.1987i −0.986335 + 0.676128i
\(442\) 0.479719 18.1048i 0.0228179 0.861155i
\(443\) 4.51489 + 16.8498i 0.214509 + 0.800559i 0.986339 + 0.164730i \(0.0526751\pi\)
−0.771830 + 0.635829i \(0.780658\pi\)
\(444\) −18.3233 + 9.32186i −0.869586 + 0.442396i
\(445\) 0 0
\(446\) 21.5400 5.16422i 1.01995 0.244533i
\(447\) −19.9983 19.9983i −0.945886 0.945886i
\(448\) 8.30707 + 19.4677i 0.392472 + 0.919764i
\(449\) 24.3525i 1.14927i 0.818411 + 0.574633i \(0.194855\pi\)
−0.818411 + 0.574633i \(0.805145\pi\)
\(450\) 0 0
\(451\) 16.9970 9.81325i 0.800360 0.462088i
\(452\) −6.74673 + 20.7205i −0.317339 + 0.974609i
\(453\) −41.0289 + 10.9937i −1.92771 + 0.516528i
\(454\) −2.69399 + 2.55491i −0.126435 + 0.119908i
\(455\) 0 0
\(456\) −25.0898 29.4319i −1.17494 1.37827i
\(457\) 3.60868 + 13.4678i 0.168807 + 0.629996i 0.997524 + 0.0703280i \(0.0224046\pi\)
−0.828717 + 0.559668i \(0.810929\pi\)
\(458\) −1.37094 2.52682i −0.0640597 0.118071i
\(459\) 2.31762 + 4.01423i 0.108177 + 0.187368i
\(460\) 0 0
\(461\) −15.8798 −0.739597 −0.369799 0.929112i \(-0.620573\pi\)
−0.369799 + 0.929112i \(0.620573\pi\)
\(462\) 4.78994 + 17.0437i 0.222848 + 0.792944i
\(463\) 21.2388 21.2388i 0.987052 0.987052i −0.0128649 0.999917i \(-0.504095\pi\)
0.999917 + 0.0128649i \(0.00409513\pi\)
\(464\) 20.5562 + 14.9740i 0.954298 + 0.695152i
\(465\) 0 0
\(466\) −18.8898 5.60180i −0.875054 0.259499i
\(467\) −22.8692 + 6.12778i −1.05826 + 0.283560i −0.745661 0.666325i \(-0.767866\pi\)
−0.312599 + 0.949885i \(0.601200\pi\)
\(468\) −22.2255 + 19.9869i −1.02737 + 0.923896i
\(469\) 8.36038 2.59041i 0.386047 0.119614i
\(470\) 0 0
\(471\) −12.6068 7.27851i −0.580889 0.335376i
\(472\) −10.8008 + 5.13935i −0.497146 + 0.236558i
\(473\) 0.690874 2.57838i 0.0317664 0.118554i
\(474\) 27.9410 6.69885i 1.28337 0.307688i
\(475\) 0 0
\(476\) 11.6657 11.3363i 0.534695 0.519598i
\(477\) −6.85764 + 6.85764i −0.313990 + 0.313990i
\(478\) 11.7292 + 7.19266i 0.536480 + 0.328985i
\(479\) −11.7318 20.3200i −0.536038 0.928445i −0.999112 0.0421254i \(-0.986587\pi\)
0.463074 0.886319i \(-0.346746\pi\)
\(480\) 0 0
\(481\) −8.34221 + 14.4491i −0.380372 + 0.658823i
\(482\) −0.597324 + 22.5432i −0.0272073 + 1.02682i
\(483\) 14.5383 9.16066i 0.661516 0.416825i
\(484\) −15.1816 0.805092i −0.690071 0.0365951i
\(485\) 0 0
\(486\) −8.93166 + 30.1184i −0.405148 + 1.36620i
\(487\) 2.12851 7.94369i 0.0964518 0.359963i −0.900784 0.434268i \(-0.857007\pi\)
0.997236 + 0.0743048i \(0.0236738\pi\)
\(488\) 27.9818 + 19.2698i 1.26667 + 0.872301i
\(489\) 7.62100i 0.344633i
\(490\) 0 0
\(491\) 25.5075i 1.15114i 0.817753 + 0.575569i \(0.195219\pi\)
−0.817753 + 0.575569i \(0.804781\pi\)
\(492\) 11.3290 + 53.4623i 0.510753 + 2.41027i
\(493\) 5.05859 18.8789i 0.227827 0.850264i
\(494\) −30.0919 8.92378i −1.35390 0.401500i
\(495\) 0 0
\(496\) 1.84816 17.3763i 0.0829847 0.780219i
\(497\) −23.5745 + 14.8544i −1.05746 + 0.666310i
\(498\) −1.16708 0.0309240i −0.0522983 0.00138574i
\(499\) −12.2280 + 21.1796i −0.547402 + 0.948128i 0.451049 + 0.892499i \(0.351050\pi\)
−0.998451 + 0.0556294i \(0.982283\pi\)
\(500\) 0 0
\(501\) 20.2757 + 35.1186i 0.905853 + 1.56898i
\(502\) 4.15700 6.77887i 0.185536 0.302556i
\(503\) −18.7502 + 18.7502i −0.836032 + 0.836032i −0.988334 0.152302i \(-0.951331\pi\)
0.152302 + 0.988334i \(0.451331\pi\)
\(504\) −26.8239 1.09526i −1.19483 0.0487868i
\(505\) 0 0
\(506\) −1.53813 6.41555i −0.0683782 0.285206i
\(507\) −2.89311 + 10.7972i −0.128487 + 0.479522i
\(508\) 7.89399 24.2439i 0.350239 1.07565i
\(509\) −16.5443 9.55184i −0.733312 0.423378i 0.0863205 0.996267i \(-0.472489\pi\)
−0.819633 + 0.572889i \(0.805822\pi\)
\(510\) 0 0
\(511\) −5.17268 + 1.60272i −0.228826 + 0.0709001i
\(512\) −5.34377 + 21.9874i −0.236163 + 0.971713i
\(513\) 7.75929 2.07910i 0.342581 0.0917943i
\(514\) −2.06068 + 6.94882i −0.0908929 + 0.306499i
\(515\) 0 0
\(516\) 6.23106 + 4.05200i 0.274307 + 0.178380i
\(517\) 1.06003 1.06003i 0.0466201 0.0466201i
\(518\) −14.4262 + 4.05433i −0.633852 + 0.178137i
\(519\) −17.8166 −0.782062
\(520\) 0 0
\(521\) −5.20016 9.00694i −0.227823 0.394601i 0.729340 0.684152i \(-0.239827\pi\)
−0.957163 + 0.289551i \(0.906494\pi\)
\(522\) −28.3527 + 15.3829i −1.24097 + 0.673290i
\(523\) −1.09296 4.07897i −0.0477917 0.178361i 0.937904 0.346894i \(-0.112764\pi\)
−0.985696 + 0.168533i \(0.946097\pi\)
\(524\) 1.98600 37.4499i 0.0867588 1.63600i
\(525\) 0 0
\(526\) 7.67932 + 8.09735i 0.334834 + 0.353061i
\(527\) −12.9718 + 3.47577i −0.565059 + 0.151407i
\(528\) −6.80455 + 17.6608i −0.296130 + 0.768588i
\(529\) 14.3730 8.29825i 0.624913 0.360794i
\(530\) 0 0
\(531\) 15.1712i 0.658372i
\(532\) −13.7442 24.6129i −0.595887 1.06710i
\(533\) 31.3614 + 31.3614i 1.35841 + 1.35841i
\(534\) −3.67151 15.3139i −0.158882 0.662697i
\(535\) 0 0
\(536\) 8.81720 + 3.13159i 0.380845 + 0.135264i
\(537\) 6.75999 + 25.2286i 0.291715 + 1.08870i
\(538\) 6.49626 + 0.172130i 0.280074 + 0.00742106i
\(539\) 0.996869 + 12.8660i 0.0429382 + 0.554180i
\(540\) 0 0
\(541\) 0.191927 0.332427i 0.00825157 0.0142921i −0.861870 0.507129i \(-0.830707\pi\)
0.870122 + 0.492837i \(0.164040\pi\)
\(542\) −19.3306 35.6290i −0.830323 1.53040i
\(543\) −26.7885 7.17796i −1.14960 0.308036i
\(544\) 17.2444 2.24302i 0.739346 0.0961685i
\(545\) 0 0
\(546\) −34.4012 + 20.4239i −1.47224 + 0.874061i
\(547\) −0.879876 0.879876i −0.0376208 0.0376208i 0.688046 0.725667i \(-0.258469\pi\)
−0.725667 + 0.688046i \(0.758469\pi\)
\(548\) −7.48192 35.3075i −0.319612 1.50826i
\(549\) −37.3195 + 21.5464i −1.59276 + 0.919578i
\(550\) 0 0
\(551\) −29.3340 16.9360i −1.24967 0.721497i
\(552\) 18.3122 + 1.45838i 0.779419 + 0.0620726i
\(553\) 20.9280 0.809543i 0.889948 0.0344253i
\(554\) −5.23023 5.51494i −0.222211 0.234308i
\(555\) 0 0
\(556\) 2.16514 + 4.25586i 0.0918223 + 0.180488i
\(557\) 37.5586 + 10.0638i 1.59141 + 0.426417i 0.942434 0.334394i \(-0.108531\pi\)
0.648975 + 0.760810i \(0.275198\pi\)
\(558\) 18.8942 + 11.5864i 0.799854 + 0.490493i
\(559\) 6.03213 0.255132
\(560\) 0 0
\(561\) 14.5453 0.614102
\(562\) −29.2778 17.9540i −1.23501 0.757343i
\(563\) 9.14007 + 2.44907i 0.385208 + 0.103216i 0.446225 0.894921i \(-0.352768\pi\)
−0.0610177 + 0.998137i \(0.519435\pi\)
\(564\) 1.89275 + 3.72045i 0.0796992 + 0.156659i
\(565\) 0 0
\(566\) 9.91093 + 10.4504i 0.416587 + 0.439265i
\(567\) −8.50055 + 16.1331i −0.356990 + 0.677528i
\(568\) −29.6940 2.36481i −1.24593 0.0992254i
\(569\) −31.4026 18.1303i −1.31647 0.760062i −0.333308 0.942818i \(-0.608165\pi\)
−0.983158 + 0.182756i \(0.941498\pi\)
\(570\) 0 0
\(571\) 41.2518 23.8167i 1.72633 0.996699i 0.822575 0.568657i \(-0.192537\pi\)
0.903759 0.428042i \(-0.140797\pi\)
\(572\) 3.18419 + 15.0263i 0.133138 + 0.628283i
\(573\) 25.0932 + 25.0932i 1.04828 + 1.04828i
\(574\) 0.484872 + 39.8316i 0.0202382 + 1.66254i
\(575\) 0 0
\(576\) −22.2703 18.1030i −0.927929 0.754290i
\(577\) −44.0011 11.7901i −1.83179 0.490827i −0.833678 0.552251i \(-0.813769\pi\)
−0.998112 + 0.0614241i \(0.980436\pi\)
\(578\) 5.09188 + 9.38502i 0.211794 + 0.390366i
\(579\) −8.85133 + 15.3310i −0.367849 + 0.637133i
\(580\) 0 0
\(581\) −0.829901 0.188317i −0.0344301 0.00781270i
\(582\) 1.00648 + 0.0266686i 0.0417201 + 0.00110545i
\(583\) 1.28986 + 4.81383i 0.0534206 + 0.199368i
\(584\) −5.45532 1.93755i −0.225743 0.0801766i
\(585\) 0 0
\(586\) 9.13406 + 38.0982i 0.377325 + 1.57382i
\(587\) −15.9943 15.9943i −0.660155 0.660155i 0.295261 0.955417i \(-0.404593\pi\)
−0.955417 + 0.295261i \(0.904593\pi\)
\(588\) −34.9243 8.45239i −1.44025 0.348570i
\(589\) 23.2735i 0.958968i
\(590\) 0 0
\(591\) 24.6877 14.2535i 1.01552 0.586309i
\(592\) −14.9486 5.75955i −0.614383 0.236716i
\(593\) −6.44723 + 1.72753i −0.264756 + 0.0709412i −0.388755 0.921341i \(-0.627095\pi\)
0.123999 + 0.992282i \(0.460428\pi\)
\(594\) −2.70513 2.85238i −0.110993 0.117035i
\(595\) 0 0
\(596\) 1.16707 22.0074i 0.0478050 0.901457i
\(597\) −11.4761 42.8295i −0.469687 1.75290i
\(598\) 13.1042 7.10972i 0.535870 0.290738i
\(599\) 16.9948 + 29.4358i 0.694387 + 1.20271i 0.970387 + 0.241555i \(0.0776576\pi\)
−0.276000 + 0.961158i \(0.589009\pi\)
\(600\) 0 0
\(601\) 32.7782 1.33705 0.668526 0.743689i \(-0.266926\pi\)
0.668526 + 0.743689i \(0.266926\pi\)
\(602\) 3.87729 + 3.78402i 0.158026 + 0.154225i
\(603\) −8.39185 + 8.39185i −0.341743 + 0.341743i
\(604\) −27.7481 18.0443i −1.12905 0.734213i
\(605\) 0 0
\(606\) 7.58400 25.5740i 0.308079 1.03887i
\(607\) 20.2807 5.43419i 0.823167 0.220567i 0.177436 0.984132i \(-0.443220\pi\)
0.645731 + 0.763565i \(0.276553\pi\)
\(608\) 3.98005 29.8728i 0.161412 1.21150i
\(609\) −41.2402 + 12.7780i −1.67114 + 0.517791i
\(610\) 0 0
\(611\) 2.93381 + 1.69384i 0.118689 + 0.0685254i
\(612\) −6.82885 + 20.9727i −0.276040 + 0.847770i
\(613\) 7.58040 28.2904i 0.306169 1.14264i −0.625765 0.780012i \(-0.715213\pi\)
0.931934 0.362628i \(-0.118120\pi\)
\(614\) −9.66565 40.3155i −0.390074 1.62700i
\(615\) 0 0
\(616\) −7.37948 + 11.6560i −0.297328 + 0.469633i
\(617\) 27.0214 27.0214i 1.08784 1.08784i 0.0920892 0.995751i \(-0.470646\pi\)
0.995751 0.0920892i \(-0.0293545\pi\)
\(618\) −25.8818 + 42.2059i −1.04112 + 1.69777i
\(619\) 6.44385 + 11.1611i 0.259000 + 0.448601i 0.965974 0.258638i \(-0.0832737\pi\)
−0.706974 + 0.707239i \(0.749940\pi\)
\(620\) 0 0
\(621\) −1.90781 + 3.30442i −0.0765577 + 0.132602i
\(622\) 6.13994 + 0.162689i 0.246189 + 0.00652323i
\(623\) −0.443694 11.4702i −0.0177762 0.459544i
\(624\) −42.5297 4.52349i −1.70255 0.181085i
\(625\) 0 0
\(626\) 10.6411 + 3.15563i 0.425304 + 0.126124i
\(627\) 6.52416 24.3485i 0.260550 0.972386i
\(628\) −2.35153 11.0970i −0.0938362 0.442817i
\(629\) 12.3115i 0.490892i
\(630\) 0 0
\(631\) 35.1539i 1.39945i 0.714410 + 0.699727i \(0.246695\pi\)
−0.714410 + 0.699727i \(0.753305\pi\)
\(632\) 18.4401 + 12.6988i 0.733507 + 0.505133i
\(633\) −12.4049 + 46.2958i −0.493052 + 1.84009i
\(634\) 0.975205 3.28849i 0.0387304 0.130602i
\(635\) 0 0
\(636\) −13.8573 0.734867i −0.549479 0.0291394i
\(637\) −27.5008 + 9.70101i −1.08962 + 0.384368i
\(638\) −0.439057 + 16.5702i −0.0173824 + 0.656020i
\(639\) 18.8910 32.7202i 0.747318 1.29439i
\(640\) 0 0
\(641\) −4.98684 8.63746i −0.196968 0.341159i 0.750576 0.660784i \(-0.229776\pi\)
−0.947544 + 0.319625i \(0.896443\pi\)
\(642\) 14.4510 + 8.86178i 0.570336 + 0.349746i
\(643\) 25.3846 25.3846i 1.00107 1.00107i 0.00107009 0.999999i \(-0.499659\pi\)
0.999999 0.00107009i \(-0.000340620\pi\)
\(644\) 12.8830 + 3.65047i 0.507662 + 0.143849i
\(645\) 0 0
\(646\) −22.5225 + 5.39977i −0.886135 + 0.212451i
\(647\) −0.521998 + 1.94812i −0.0205218 + 0.0765886i −0.975427 0.220321i \(-0.929289\pi\)
0.954906 + 0.296910i \(0.0959561\pi\)
\(648\) −17.6034 + 8.37627i −0.691528 + 0.329051i
\(649\) −6.75159 3.89803i −0.265023 0.153011i
\(650\) 0 0
\(651\) 21.7717 + 20.1500i 0.853299 + 0.789742i
\(652\) 4.41569 3.97094i 0.172932 0.155514i
\(653\) −12.7709 + 3.42196i −0.499766 + 0.133912i −0.499891 0.866088i \(-0.666627\pi\)
0.000125665 1.00000i \(0.499960\pi\)
\(654\) 35.2554 + 10.4550i 1.37859 + 0.408824i
\(655\) 0 0
\(656\) −25.0736 + 34.4208i −0.978959 + 1.34391i
\(657\) 5.19215 5.19215i 0.202565 0.202565i
\(658\) 0.823209 + 2.92916i 0.0320920 + 0.114191i
\(659\) 43.1794 1.68203 0.841015 0.541011i \(-0.181958\pi\)
0.841015 + 0.541011i \(0.181958\pi\)
\(660\) 0 0
\(661\) 8.09021 + 14.0127i 0.314673 + 0.545029i 0.979368 0.202085i \(-0.0647719\pi\)
−0.664695 + 0.747115i \(0.731439\pi\)
\(662\) 8.65484 + 15.9520i 0.336380 + 0.619994i
\(663\) 8.50719 + 31.7493i 0.330392 + 1.23304i
\(664\) −0.590194 0.692334i −0.0229040 0.0268678i
\(665\) 0 0
\(666\) 14.7432 13.9821i 0.571287 0.541794i
\(667\) 15.5407 4.16412i 0.601738 0.161235i
\(668\) −9.78337 + 30.0466i −0.378530 + 1.16254i
\(669\) −34.8142 + 20.1000i −1.34600 + 0.777111i
\(670\) 0 0
\(671\) 22.1443i 0.854870i
\(672\) −24.4992 29.5869i −0.945078 1.14134i
\(673\) 9.53669 + 9.53669i 0.367612 + 0.367612i 0.866606 0.498993i \(-0.166297\pi\)
−0.498993 + 0.866606i \(0.666297\pi\)
\(674\) 48.8319 11.7075i 1.88093 0.450955i
\(675\) 0 0
\(676\) −7.76349 + 3.94962i −0.298596 + 0.151908i
\(677\) −7.92901 29.5915i −0.304737 1.13729i −0.933172 0.359431i \(-0.882971\pi\)
0.628435 0.777862i \(-0.283696\pi\)
\(678\) 1.04753 39.5342i 0.0402302 1.51830i
\(679\) 0.715700 + 0.162403i 0.0274660 + 0.00623245i
\(680\) 0 0
\(681\) 3.36915 5.83554i 0.129106 0.223618i
\(682\) 10.0109 5.43145i 0.383337 0.207981i
\(683\) 20.1250 + 5.39248i 0.770062 + 0.206338i 0.622399 0.782700i \(-0.286158\pi\)
0.147663 + 0.989038i \(0.452825\pi\)
\(684\) 32.0448 + 20.8385i 1.22527 + 0.796779i
\(685\) 0 0
\(686\) −23.7623 11.0160i −0.907249 0.420594i
\(687\) 3.68921 + 3.68921i 0.140752 + 0.140752i
\(688\) 0.898933 + 5.72165i 0.0342715 + 0.218136i
\(689\) −9.75316 + 5.63099i −0.371566 + 0.214524i
\(690\) 0 0
\(691\) −5.07142 2.92798i −0.192926 0.111386i 0.400426 0.916329i \(-0.368862\pi\)
−0.593352 + 0.804943i \(0.702196\pi\)
\(692\) −9.28338 10.3231i −0.352901 0.392427i
\(693\) −9.32815 14.8041i −0.354347 0.562362i
\(694\) −4.36357 + 4.13830i −0.165639 + 0.157088i
\(695\) 0 0
\(696\) −43.4937 15.4475i −1.64862 0.585538i
\(697\) 31.6122 + 8.47047i 1.19740 + 0.320842i
\(698\) 3.02568 4.93402i 0.114524 0.186755i
\(699\) 35.7582 1.35250
\(700\) 0 0
\(701\) 20.0349 0.756706 0.378353 0.925661i \(-0.376491\pi\)
0.378353 + 0.925661i \(0.376491\pi\)
\(702\) 4.64399 7.57302i 0.175276 0.285825i
\(703\) 20.6092 + 5.52223i 0.777292 + 0.208275i
\(704\) −13.7784 + 5.25958i −0.519292 + 0.198228i
\(705\) 0 0
\(706\) 20.5035 19.4450i 0.771658 0.731821i
\(707\) 9.06364 17.2018i 0.340873 0.646941i
\(708\) 16.1412 14.5154i 0.606622 0.545523i
\(709\) 42.7844 + 24.7016i 1.60680 + 0.927688i 0.990080 + 0.140508i \(0.0448735\pi\)
0.616723 + 0.787180i \(0.288460\pi\)
\(710\) 0 0
\(711\) −24.5937 + 14.1992i −0.922335 + 0.532510i
\(712\) 6.95998 10.1066i 0.260836 0.378763i
\(713\) −7.81688 7.81688i −0.292744 0.292744i
\(714\) −14.4485 + 25.7442i −0.540721 + 0.963452i
\(715\) 0 0
\(716\) −11.0954 + 17.0623i −0.414656 + 0.637646i
\(717\) −24.1198 6.46287i −0.900769 0.241360i
\(718\) −12.0798 + 6.55395i −0.450815 + 0.244591i
\(719\) −12.1477 + 21.0405i −0.453033 + 0.784677i −0.998573 0.0534084i \(-0.982991\pi\)
0.545539 + 0.838085i \(0.316325\pi\)
\(720\) 0 0
\(721\) −24.5127 + 26.4854i −0.912901 + 0.986369i
\(722\) −0.351443 + 13.2636i −0.0130794 + 0.493620i
\(723\) −10.5928 39.5327i −0.393949 1.47024i
\(724\) −9.79922 19.2616i −0.364185 0.715853i
\(725\) 0 0
\(726\) 26.8309 6.43271i 0.995788 0.238740i
\(727\) −15.7313 15.7313i −0.583441 0.583441i 0.352406 0.935847i \(-0.385364\pi\)
−0.935847 + 0.352406i \(0.885364\pi\)
\(728\) −29.7587 9.29054i −1.10293 0.344330i
\(729\) 36.3365i 1.34580i
\(730\) 0 0
\(731\) 3.85480 2.22557i 0.142575 0.0823157i
\(732\) −58.6304 19.0905i −2.16704 0.705604i
\(733\) 27.6619 7.41199i 1.02172 0.273768i 0.291199 0.956663i \(-0.405946\pi\)
0.730517 + 0.682895i \(0.239279\pi\)
\(734\) 15.5895 14.7847i 0.575420 0.545713i
\(735\) 0 0
\(736\) 8.69661 + 11.3702i 0.320561 + 0.419110i
\(737\) 1.57843 + 5.89079i 0.0581423 + 0.216990i
\(738\) −25.7582 47.4759i −0.948172 1.74761i
\(739\) −4.43514 7.68188i −0.163149 0.282583i 0.772847 0.634592i \(-0.218832\pi\)
−0.935996 + 0.352009i \(0.885498\pi\)
\(740\) 0 0
\(741\) 56.9635 2.09261
\(742\) −9.80144 2.49882i −0.359822 0.0917347i
\(743\) 10.5849 10.5849i 0.388323 0.388323i −0.485766 0.874089i \(-0.661459\pi\)
0.874089 + 0.485766i \(0.161459\pi\)
\(744\) 5.75027 + 31.1879i 0.210815 + 1.14340i
\(745\) 0 0
\(746\) −43.7627 12.9779i −1.60227 0.475154i
\(747\) 1.11459 0.298652i 0.0407806 0.0109271i
\(748\) 7.57884 + 8.42768i 0.277110 + 0.308147i
\(749\) 9.06844 + 8.39300i 0.331354 + 0.306673i
\(750\) 0 0
\(751\) 26.2007 + 15.1270i 0.956078 + 0.551992i 0.894964 0.446139i \(-0.147201\pi\)
0.0611139 + 0.998131i \(0.480535\pi\)
\(752\) −1.16944 + 3.03523i −0.0426453 + 0.110683i
\(753\) −3.73521 + 13.9400i −0.136119 + 0.508002i
\(754\) −36.4260 + 8.73315i −1.32656 + 0.318042i
\(755\) 0 0
\(756\) 7.73566 1.95450i 0.281343 0.0710844i
\(757\) 18.0236 18.0236i 0.655078 0.655078i −0.299133 0.954211i \(-0.596698\pi\)
0.954211 + 0.299133i \(0.0966976\pi\)
\(758\) −35.2752 21.6317i −1.28125 0.785700i
\(759\) 5.98667 + 10.3692i 0.217302 + 0.376378i
\(760\) 0 0
\(761\) 12.9621 22.4510i 0.469875 0.813848i −0.529532 0.848290i \(-0.677632\pi\)
0.999407 + 0.0344427i \(0.0109656\pi\)
\(762\) −1.22566 + 46.2569i −0.0444010 + 1.67571i
\(763\) 23.7138 + 12.4948i 0.858497 + 0.452343i
\(764\) −1.46440 + 27.6142i −0.0529803 + 0.999046i
\(765\) 0 0
\(766\) −4.53952 + 15.3077i −0.164020 + 0.553090i
\(767\) 4.55974 17.0172i 0.164643 0.614455i
\(768\) −2.04728 41.0147i −0.0738749 1.47999i
\(769\) 43.7662i 1.57825i −0.614232 0.789125i \(-0.710534\pi\)
0.614232 0.789125i \(-0.289466\pi\)
\(770\) 0 0
\(771\) 13.1540i 0.473731i
\(772\) −13.4949 + 2.85967i −0.485693 + 0.102922i
\(773\) 2.58809 9.65890i 0.0930873 0.347406i −0.903635 0.428303i \(-0.859112\pi\)
0.996723 + 0.0808964i \(0.0257783\pi\)
\(774\) −7.04301 2.08861i −0.253156 0.0750737i
\(775\) 0 0
\(776\) 0.508979 + 0.597063i 0.0182713 + 0.0214333i
\(777\) 23.0092 14.4982i 0.825451 0.520121i
\(778\) −54.6132 1.44708i −1.95798 0.0518802i
\(779\) 28.3588 49.1189i 1.01606 1.75987i
\(780\) 0 0
\(781\) −9.70762 16.8141i −0.347366 0.601655i
\(782\) 5.75101 9.37825i 0.205656 0.335366i
\(783\) 6.77890 6.77890i 0.242258 0.242258i
\(784\) −13.3000 24.6396i −0.474999 0.879987i
\(785\) 0 0
\(786\) 15.8682 + 66.1864i 0.566000 + 2.36079i
\(787\) −3.75602 + 14.0177i −0.133888 + 0.499675i −1.00000 0.000173930i \(-0.999945\pi\)
0.866112 + 0.499849i \(0.166611\pi\)
\(788\) 21.1222 + 6.87753i 0.752447 + 0.245002i
\(789\) −17.5399 10.1267i −0.624439 0.360520i
\(790\) 0 0
\(791\) 6.37911 28.1124i 0.226815 0.999561i
\(792\) 1.48504 18.6470i 0.0527686 0.662592i
\(793\) −48.3363 + 12.9517i −1.71647 + 0.459927i
\(794\) 3.45031 11.6348i 0.122447 0.412903i
\(795\) 0 0
\(796\) 18.8362 28.9658i 0.667632 1.02667i
\(797\) 16.4978 16.4978i 0.584382 0.584382i −0.351723 0.936104i \(-0.614404\pi\)
0.936104 + 0.351723i \(0.114404\pi\)
\(798\) 36.6145 + 35.7338i 1.29614 + 1.26496i
\(799\) 2.49978 0.0884360
\(800\) 0 0
\(801\) 7.78228 + 13.4793i 0.274973 + 0.476268i
\(802\) −2.89206 + 1.56910i −0.102122 + 0.0554067i
\(803\) −0.976597 3.64471i −0.0344633 0.128619i
\(804\) −16.9575 0.899273i −0.598046 0.0317149i
\(805\) 0 0
\(806\) 17.7109 + 18.6750i 0.623839 + 0.657798i
\(807\) −11.3921 + 3.05251i −0.401021 + 0.107453i
\(808\) 18.7695 8.93113i 0.660309 0.314196i
\(809\) 9.19342 5.30782i 0.323223 0.186613i −0.329605 0.944119i \(-0.606916\pi\)
0.652828 + 0.757506i \(0.273582\pi\)
\(810\) 0 0
\(811\) 51.1988i 1.79783i −0.438122 0.898916i \(-0.644356\pi\)
0.438122 0.898916i \(-0.355644\pi\)
\(812\) −28.8920 17.2370i −1.01391 0.604901i
\(813\) 52.0190 + 52.0190i 1.82439 + 1.82439i
\(814\) −2.43434 10.1536i −0.0853235 0.355885i
\(815\) 0 0
\(816\) −28.8473 + 12.8007i −1.00986 + 0.448114i
\(817\) −1.99652 7.45113i −0.0698495 0.260682i
\(818\) 0.265759 + 0.00704177i 0.00929205 + 0.000246210i
\(819\) 26.8585 29.0200i 0.938511 1.01404i
\(820\) 0 0
\(821\) 2.15663 3.73539i 0.0752668 0.130366i −0.825935 0.563765i \(-0.809352\pi\)
0.901202 + 0.433399i \(0.142686\pi\)
\(822\) 31.2367 + 57.5734i 1.08950 + 2.00810i
\(823\) −25.5920 6.85735i −0.892080 0.239032i −0.216468 0.976290i \(-0.569454\pi\)
−0.675612 + 0.737257i \(0.736121\pi\)
\(824\) −37.9403 + 6.99525i −1.32171 + 0.243691i
\(825\) 0 0
\(826\) 13.6059 8.07779i 0.473411 0.281062i
\(827\) 37.0665 + 37.0665i 1.28893 + 1.28893i 0.935438 + 0.353490i \(0.115005\pi\)
0.353490 + 0.935438i \(0.384995\pi\)
\(828\) −17.7619 + 3.76388i −0.617270 + 0.130804i
\(829\) 9.10301 5.25563i 0.316161 0.182535i −0.333519 0.942743i \(-0.608236\pi\)
0.649680 + 0.760208i \(0.274903\pi\)
\(830\) 0 0
\(831\) 11.9461 + 6.89709i 0.414406 + 0.239257i
\(832\) −19.5392 26.9991i −0.677400 0.936026i
\(833\) −13.9950 + 16.3459i −0.484899 + 0.566351i
\(834\) −5.96326 6.28787i −0.206491 0.217731i
\(835\) 0 0
\(836\) 17.5072 8.90667i 0.605500 0.308044i
\(837\) −6.36268 1.70487i −0.219926 0.0589291i
\(838\) 15.7764 + 9.67453i 0.544986 + 0.334201i
\(839\) −32.0936 −1.10799 −0.553996 0.832519i \(-0.686898\pi\)
−0.553996 + 0.832519i \(0.686898\pi\)
\(840\) 0 0
\(841\) −11.4237 −0.393921
\(842\) −4.02105 2.46582i −0.138575 0.0849779i
\(843\) 60.2066 + 16.1323i 2.07363 + 0.555626i
\(844\) −33.2879 + 16.9350i −1.14582 + 0.582926i
\(845\) 0 0
\(846\) −2.83898 2.99352i −0.0976061 0.102919i
\(847\) 20.0965 0.777380i 0.690525 0.0267111i
\(848\) −6.79461 8.41199i −0.233328 0.288869i
\(849\) −22.6371 13.0695i −0.776902 0.448544i
\(850\) 0 0
\(851\) −8.77678 + 5.06728i −0.300864 + 0.173704i
\(852\) 52.8868 11.2071i 1.81187 0.383949i
\(853\) 14.4800 + 14.4800i 0.495785 + 0.495785i 0.910123 0.414338i \(-0.135987\pi\)
−0.414338 + 0.910123i \(0.635987\pi\)
\(854\) −39.1939 21.9969i −1.34119 0.752719i
\(855\) 0 0
\(856\) 2.39513 + 12.9905i 0.0818638 + 0.444007i
\(857\) 4.04846 + 1.08478i 0.138293 + 0.0370554i 0.327301 0.944920i \(-0.393861\pi\)
−0.189009 + 0.981975i \(0.560527\pi\)
\(858\) −13.2938 24.5024i −0.453844 0.836497i
\(859\) −17.7614 + 30.7636i −0.606010 + 1.04964i 0.385881 + 0.922549i \(0.373897\pi\)
−0.991891 + 0.127091i \(0.959436\pi\)
\(860\) 0 0
\(861\) −21.3964 69.0556i −0.729187 2.35341i
\(862\) 3.40814 + 0.0903049i 0.116082 + 0.00307580i
\(863\) −0.907912 3.38837i −0.0309057 0.115342i 0.948750 0.316028i \(-0.102349\pi\)
−0.979656 + 0.200687i \(0.935683\pi\)
\(864\) 7.87529 + 3.27639i 0.267923 + 0.111465i
\(865\) 0 0
\(866\) 0.145955 + 0.608780i 0.00495975 + 0.0206872i
\(867\) −13.7023 13.7023i −0.465354 0.465354i
\(868\) −0.330973 + 23.1140i −0.0112339 + 0.784539i
\(869\) 14.5932i 0.495039i
\(870\) 0 0
\(871\) −11.9352 + 6.89077i −0.404408 + 0.233485i
\(872\) 12.3121 + 25.8750i 0.416941 + 0.876237i
\(873\) −0.961210 + 0.257555i −0.0325320 + 0.00871693i
\(874\) −13.1194 13.8336i −0.443772 0.467929i
\(875\) 0 0
\(876\) 10.4919 + 0.556392i 0.354487 + 0.0187987i
\(877\) 5.75864 + 21.4915i 0.194455 + 0.725718i 0.992407 + 0.122996i \(0.0392503\pi\)
−0.797952 + 0.602721i \(0.794083\pi\)
\(878\) −27.9187 + 15.1474i −0.942212 + 0.511200i
\(879\) −35.5513 61.5767i −1.19912 2.07693i
\(880\) 0 0
\(881\) −35.9299 −1.21051 −0.605254 0.796032i \(-0.706929\pi\)
−0.605254 + 0.796032i \(0.706929\pi\)
\(882\) 35.4684 1.80461i 1.19428 0.0607644i
\(883\) −39.0358 + 39.0358i −1.31366 + 1.31366i −0.394964 + 0.918697i \(0.629243\pi\)
−0.918697 + 0.394964i \(0.870757\pi\)
\(884\) −13.9632 + 21.4722i −0.469632 + 0.722188i
\(885\) 0 0
\(886\) 7.01396 23.6518i 0.235639 0.794596i
\(887\) −28.2871 + 7.57952i −0.949789 + 0.254495i −0.700273 0.713875i \(-0.746938\pi\)
−0.249516 + 0.968371i \(0.580272\pi\)
\(888\) 28.9820 + 2.30811i 0.972571 + 0.0774552i
\(889\) −7.46387 + 32.8928i −0.250330 + 1.10319i
\(890\) 0 0
\(891\) −11.0039 6.35313i −0.368646 0.212838i
\(892\) −29.7862 9.69859i −0.997316 0.324733i
\(893\) 1.12126 4.18459i 0.0375215 0.140032i
\(894\) 9.32493 + 38.8943i 0.311872 + 1.30082i
\(895\) 0 0
\(896\) 4.37759 29.6114i 0.146245 0.989248i
\(897\) −19.1323 + 19.1323i −0.638810 + 0.638810i
\(898\) 18.0038 29.3591i 0.600795 0.979724i
\(899\) 13.8876 + 24.0541i 0.463178 + 0.802248i
\(900\) 0 0
\(901\) −4.15513 + 7.19690i −0.138428 + 0.239764i
\(902\) −27.7463 0.735189i −0.923851 0.0244791i
\(903\) −8.69888 4.58344i −0.289481 0.152527i
\(904\) 23.4524 19.9925i 0.780015 0.664939i
\(905\) 0 0
\(906\) 57.5915 + 17.0788i 1.91335 + 0.567406i
\(907\) −7.81783 + 29.1765i −0.259587 + 0.968791i 0.705894 + 0.708317i \(0.250545\pi\)
−0.965481 + 0.260474i \(0.916121\pi\)
\(908\) 5.13667 1.08850i 0.170467 0.0361231i
\(909\) 26.3643i 0.874449i
\(910\) 0 0
\(911\) 31.4256i 1.04118i −0.853808 0.520588i \(-0.825713\pi\)
0.853808 0.520588i \(-0.174287\pi\)
\(912\) 8.48893 + 54.0315i 0.281097 + 1.78916i
\(913\) 0.153470 0.572757i 0.00507911 0.0189555i
\(914\) 5.60614 18.9044i 0.185435 0.625304i
\(915\) 0 0
\(916\) −0.215297 + 4.05984i −0.00711360 + 0.134141i
\(917\) 1.91764 + 49.5740i 0.0633261 + 1.63708i
\(918\) 0.173631 6.55291i 0.00573068 0.216278i
\(919\) −25.4185 + 44.0262i −0.838480 + 1.45229i 0.0526848 + 0.998611i \(0.483222\pi\)
−0.891165 + 0.453679i \(0.850111\pi\)
\(920\) 0 0
\(921\) 37.6204 + 65.1604i 1.23963 + 2.14711i
\(922\) 19.1445 + 11.7399i 0.630490 + 0.386634i
\(923\) 31.0239 31.0239i 1.02116 1.02116i
\(924\) 6.82570 24.0888i 0.224549 0.792464i
\(925\) 0 0
\(926\) −41.3071 + 9.90338i −1.35744 + 0.325445i
\(927\) 12.6649 47.2660i 0.415969 1.55242i
\(928\) −13.7120 33.2497i −0.450118 1.09147i
\(929\) 35.1105 + 20.2711i 1.15194 + 0.665073i 0.949359 0.314193i \(-0.101734\pi\)
0.202580 + 0.979266i \(0.435067\pi\)
\(930\) 0 0
\(931\) 21.0853 + 30.7592i 0.691043 + 1.00809i
\(932\) 18.6319 + 20.7187i 0.610308 + 0.678663i
\(933\) −10.7673 + 2.88508i −0.352504 + 0.0944532i
\(934\) 32.1010 + 9.51961i 1.05038 + 0.311491i
\(935\) 0 0
\(936\) 41.5710 7.66467i 1.35879 0.250527i
\(937\) −7.47390 + 7.47390i −0.244162 + 0.244162i −0.818569 0.574408i \(-0.805232\pi\)
0.574408 + 0.818569i \(0.305232\pi\)
\(938\) −11.9942 3.05787i −0.391626 0.0998429i
\(939\) −20.1435 −0.657357
\(940\) 0 0
\(941\) 2.77299 + 4.80295i 0.0903968 + 0.156572i 0.907678 0.419667i \(-0.137853\pi\)
−0.817281 + 0.576239i \(0.804520\pi\)
\(942\) 9.81753 + 18.0950i 0.319872 + 0.589568i
\(943\) 6.97270 + 26.0225i 0.227062 + 0.847408i
\(944\) 16.8208 + 1.78907i 0.547470 + 0.0582294i
\(945\) 0 0
\(946\) −2.73910 + 2.59769i −0.0890559 + 0.0844583i
\(947\) −20.8206 + 5.57887i −0.676579 + 0.181289i −0.580717 0.814106i \(-0.697228\pi\)
−0.0958624 + 0.995395i \(0.530561\pi\)
\(948\) −38.6377 12.5807i −1.25489 0.408602i
\(949\) 7.38444 4.26341i 0.239709 0.138396i
\(950\) 0 0
\(951\) 6.22506i 0.201862i
\(952\) −22.4449 + 5.04246i −0.727442 + 0.163427i
\(953\) −32.3871 32.3871i −1.04912 1.04912i −0.998730 0.0503899i \(-0.983954\pi\)
−0.0503899 0.998730i \(-0.516046\pi\)
\(954\) 13.3373 3.19763i 0.431812 0.103527i
\(955\) 0 0
\(956\) −8.82299 17.3427i −0.285356 0.560904i
\(957\) −7.78612 29.0582i −0.251689 0.939318i
\(958\) −0.878920 + 33.1708i −0.0283966 + 1.07170i
\(959\) 14.1306 + 45.6057i 0.456301 + 1.47268i
\(960\) 0 0
\(961\) −5.95777 + 10.3192i −0.192186 + 0.332876i
\(962\) 20.7395 11.2523i 0.668667 0.362788i
\(963\) −16.1836 4.33638i −0.521508 0.139738i
\(964\) 17.3863 26.7362i 0.559975 0.861114i
\(965\) 0 0
\(966\) −24.2997 + 0.295801i −0.781829 + 0.00951723i
\(967\) −10.6422 10.6422i −0.342230 0.342230i 0.514975 0.857205i \(-0.327801\pi\)
−0.857205 + 0.514975i \(0.827801\pi\)
\(968\) 17.7075 + 12.1943i 0.569140 + 0.391941i
\(969\) 36.4022 21.0168i 1.16941 0.675158i
\(970\) 0 0
\(971\) 10.1110 + 5.83760i 0.324478 + 0.187337i 0.653387 0.757024i \(-0.273348\pi\)
−0.328909 + 0.944362i \(0.606681\pi\)
\(972\) 33.0344 29.7071i 1.05958 0.952857i
\(973\) −3.36742 5.34422i −0.107955 0.171328i
\(974\) −8.43886 + 8.00320i −0.270399 + 0.256439i
\(975\) 0 0
\(976\) −19.4883 43.9182i −0.623805 1.40579i
\(977\) −29.7605 7.97429i −0.952121 0.255120i −0.250859 0.968024i \(-0.580713\pi\)
−0.701262 + 0.712903i \(0.747380\pi\)
\(978\) −5.63420 + 9.18777i −0.180162 + 0.293792i
\(979\) 7.99822 0.255624
\(980\) 0 0
\(981\) −36.3449 −1.16040
\(982\) 18.8577 30.7515i 0.601773 0.981319i
\(983\) −45.1780 12.1054i −1.44095 0.386102i −0.548086 0.836422i \(-0.684643\pi\)
−0.892868 + 0.450319i \(0.851310\pi\)
\(984\) 25.8665 72.8289i 0.824594 2.32170i
\(985\) 0 0
\(986\) −20.0557 + 19.0203i −0.638705 + 0.605731i
\(987\) −2.94378 4.67189i −0.0937016 0.148708i
\(988\) 29.6810 + 33.0053i 0.944277 + 1.05004i
\(989\) 3.17318 + 1.83204i 0.100901 + 0.0582554i
\(990\) 0 0
\(991\) −43.4359 + 25.0777i −1.37979 + 0.796620i −0.992133 0.125186i \(-0.960047\pi\)
−0.387652 + 0.921806i \(0.626714\pi\)
\(992\) −15.0744 + 19.5823i −0.478612 + 0.621738i
\(993\) −23.2903 23.2903i −0.739094 0.739094i
\(994\) 39.4029 0.479653i 1.24978 0.0152137i
\(995\) 0 0
\(996\) 1.38416 + 0.900106i 0.0438587 + 0.0285209i
\(997\) 28.0782 + 7.52352i 0.889245 + 0.238272i 0.674391 0.738374i \(-0.264406\pi\)
0.214853 + 0.976646i \(0.431073\pi\)
\(998\) 30.4000 16.4936i 0.962295 0.522097i
\(999\) −3.01941 + 5.22977i −0.0955299 + 0.165463i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 700.2.be.e.443.3 72
4.3 odd 2 inner 700.2.be.e.443.12 72
5.2 odd 4 inner 700.2.be.e.107.14 72
5.3 odd 4 140.2.w.b.107.5 yes 72
5.4 even 2 140.2.w.b.23.16 yes 72
7.4 even 3 inner 700.2.be.e.543.17 72
20.3 even 4 140.2.w.b.107.2 yes 72
20.7 even 4 inner 700.2.be.e.107.17 72
20.19 odd 2 140.2.w.b.23.7 72
28.11 odd 6 inner 700.2.be.e.543.14 72
35.3 even 12 980.2.x.m.67.7 72
35.4 even 6 140.2.w.b.123.2 yes 72
35.9 even 6 980.2.k.k.883.10 36
35.13 even 4 980.2.x.m.667.5 72
35.18 odd 12 140.2.w.b.67.7 yes 72
35.19 odd 6 980.2.k.j.883.10 36
35.23 odd 12 980.2.k.k.687.18 36
35.24 odd 6 980.2.x.m.263.2 72
35.32 odd 12 inner 700.2.be.e.207.12 72
35.33 even 12 980.2.k.j.687.18 36
35.34 odd 2 980.2.x.m.863.16 72
140.3 odd 12 980.2.x.m.67.16 72
140.19 even 6 980.2.k.j.883.18 36
140.23 even 12 980.2.k.k.687.10 36
140.39 odd 6 140.2.w.b.123.5 yes 72
140.59 even 6 980.2.x.m.263.5 72
140.67 even 12 inner 700.2.be.e.207.3 72
140.79 odd 6 980.2.k.k.883.18 36
140.83 odd 4 980.2.x.m.667.2 72
140.103 odd 12 980.2.k.j.687.10 36
140.123 even 12 140.2.w.b.67.16 yes 72
140.139 even 2 980.2.x.m.863.7 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.w.b.23.7 72 20.19 odd 2
140.2.w.b.23.16 yes 72 5.4 even 2
140.2.w.b.67.7 yes 72 35.18 odd 12
140.2.w.b.67.16 yes 72 140.123 even 12
140.2.w.b.107.2 yes 72 20.3 even 4
140.2.w.b.107.5 yes 72 5.3 odd 4
140.2.w.b.123.2 yes 72 35.4 even 6
140.2.w.b.123.5 yes 72 140.39 odd 6
700.2.be.e.107.14 72 5.2 odd 4 inner
700.2.be.e.107.17 72 20.7 even 4 inner
700.2.be.e.207.3 72 140.67 even 12 inner
700.2.be.e.207.12 72 35.32 odd 12 inner
700.2.be.e.443.3 72 1.1 even 1 trivial
700.2.be.e.443.12 72 4.3 odd 2 inner
700.2.be.e.543.14 72 28.11 odd 6 inner
700.2.be.e.543.17 72 7.4 even 3 inner
980.2.k.j.687.10 36 140.103 odd 12
980.2.k.j.687.18 36 35.33 even 12
980.2.k.j.883.10 36 35.19 odd 6
980.2.k.j.883.18 36 140.19 even 6
980.2.k.k.687.10 36 140.23 even 12
980.2.k.k.687.18 36 35.23 odd 12
980.2.k.k.883.10 36 35.9 even 6
980.2.k.k.883.18 36 140.79 odd 6
980.2.x.m.67.7 72 35.3 even 12
980.2.x.m.67.16 72 140.3 odd 12
980.2.x.m.263.2 72 35.24 odd 6
980.2.x.m.263.5 72 140.59 even 6
980.2.x.m.667.2 72 140.83 odd 4
980.2.x.m.667.5 72 35.13 even 4
980.2.x.m.863.7 72 140.139 even 2
980.2.x.m.863.16 72 35.34 odd 2