Properties

Label 980.2.k.k.687.10
Level $980$
Weight $2$
Character 980.687
Analytic conductor $7.825$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [980,2,Mod(687,980)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(980, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("980.687");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 687.10
Character \(\chi\) \(=\) 980.687
Dual form 980.2.k.k.883.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0374590 + 1.41372i) q^{2} +(1.81487 + 1.81487i) q^{3} +(-1.99719 + 0.105913i) q^{4} +(0.00568855 + 2.23606i) q^{5} +(-2.49773 + 2.63369i) q^{6} +(-0.224544 - 2.81950i) q^{8} +3.58748i q^{9} +O(q^{10})\) \(q+(0.0374590 + 1.41372i) q^{2} +(1.81487 + 1.81487i) q^{3} +(-1.99719 + 0.105913i) q^{4} +(0.00568855 + 2.23606i) q^{5} +(-2.49773 + 2.63369i) q^{6} +(-0.224544 - 2.81950i) q^{8} +3.58748i q^{9} +(-3.16094 + 0.0918026i) q^{10} -1.84352i q^{11} +(-3.81686 - 3.43242i) q^{12} +(-2.94578 + 2.94578i) q^{13} +(-4.04783 + 4.06848i) q^{15} +(3.97756 - 0.423057i) q^{16} +(2.17370 + 2.17370i) q^{17} +(-5.07169 + 0.134384i) q^{18} -5.32748 q^{19} +(-0.248189 - 4.46524i) q^{20} +(2.60621 - 0.0690563i) q^{22} +(-1.78934 - 1.78934i) q^{23} +(4.70950 - 5.52453i) q^{24} +(-4.99994 + 0.0254399i) q^{25} +(-4.27484 - 4.05415i) q^{26} +(-1.06621 + 1.06621i) q^{27} +6.35796i q^{29} +(-5.90330 - 5.57008i) q^{30} +4.36858i q^{31} +(0.747079 + 5.60731i) q^{32} +(3.34574 - 3.34574i) q^{33} +(-2.99158 + 3.15443i) q^{34} +(-0.379961 - 7.16490i) q^{36} +(-2.83192 - 2.83192i) q^{37} +(-0.199562 - 7.53156i) q^{38} -10.6924 q^{39} +(6.30330 - 0.518133i) q^{40} +10.6462 q^{41} +(-1.02386 - 1.02386i) q^{43} +(0.195252 + 3.68186i) q^{44} +(-8.02183 + 0.0204076i) q^{45} +(2.46260 - 2.59665i) q^{46} +(0.575006 - 0.575006i) q^{47} +(7.98654 + 6.45096i) q^{48} +(-0.223257 - 7.06754i) q^{50} +7.88996i q^{51} +(5.57129 - 6.19528i) q^{52} +(1.91155 - 1.91155i) q^{53} +(-1.54725 - 1.46737i) q^{54} +(4.12221 - 0.0104869i) q^{55} +(-9.66867 - 9.66867i) q^{57} +(-8.98836 + 0.238163i) q^{58} +4.22891 q^{59} +(7.65339 - 8.55425i) q^{60} +12.0120 q^{61} +(-6.17593 + 0.163643i) q^{62} +(-7.89916 + 1.26620i) q^{64} +(-6.60369 - 6.57018i) q^{65} +(4.85525 + 4.60460i) q^{66} +(2.33920 - 2.33920i) q^{67} +(-4.57153 - 4.11108i) q^{68} -6.49484i q^{69} +10.5316i q^{71} +(10.1149 - 0.805548i) q^{72} +(-1.44730 + 1.44730i) q^{73} +(3.89745 - 4.10962i) q^{74} +(-9.12039 - 9.02805i) q^{75} +(10.6400 - 0.564249i) q^{76} +(-0.400526 - 15.1160i) q^{78} +7.91595 q^{79} +(0.968608 + 8.89167i) q^{80} +6.89241 q^{81} +(0.398798 + 15.0508i) q^{82} +(-0.227439 - 0.227439i) q^{83} +(-4.84817 + 4.87290i) q^{85} +(1.40910 - 1.48580i) q^{86} +(-11.5389 + 11.5389i) q^{87} +(-5.19779 + 0.413950i) q^{88} +4.33857i q^{89} +(-0.329341 - 11.3398i) q^{90} +(3.76318 + 3.38415i) q^{92} +(-7.92838 + 7.92838i) q^{93} +(0.834434 + 0.791356i) q^{94} +(-0.0303056 - 11.9126i) q^{95} +(-8.82066 + 11.5324i) q^{96} +(0.196142 + 0.196142i) q^{97} +6.61358 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 2 q^{2} + 8 q^{5} - 8 q^{6} - 2 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 36 q - 2 q^{2} + 8 q^{5} - 8 q^{6} - 2 q^{8} - 2 q^{10} - 10 q^{12} + 28 q^{16} - 4 q^{17} + 20 q^{18} - 28 q^{20} - 8 q^{22} + 16 q^{25} + 4 q^{26} + 32 q^{30} + 38 q^{32} + 64 q^{33} + 8 q^{36} + 4 q^{37} - 12 q^{38} - 2 q^{40} - 20 q^{41} + 12 q^{45} + 28 q^{46} + 6 q^{48} - 14 q^{50} - 48 q^{52} + 24 q^{53} - 8 q^{57} - 30 q^{58} + 10 q^{60} + 20 q^{61} + 28 q^{62} - 4 q^{65} - 44 q^{66} + 12 q^{68} - 44 q^{72} + 12 q^{73} + 56 q^{76} + 32 q^{78} - 52 q^{80} + 52 q^{81} + 34 q^{82} + 8 q^{85} - 64 q^{86} - 16 q^{88} - 16 q^{90} + 22 q^{92} - 12 q^{93} + 48 q^{96} - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0374590 + 1.41372i 0.0264875 + 0.999649i
\(3\) 1.81487 + 1.81487i 1.04781 + 1.04781i 0.998798 + 0.0490159i \(0.0156085\pi\)
0.0490159 + 0.998798i \(0.484391\pi\)
\(4\) −1.99719 + 0.105913i −0.998597 + 0.0529565i
\(5\) 0.00568855 + 2.23606i 0.00254399 + 0.999997i
\(6\) −2.49773 + 2.63369i −1.01969 + 1.07520i
\(7\) 0 0
\(8\) −0.224544 2.81950i −0.0793882 0.996844i
\(9\) 3.58748i 1.19583i
\(10\) −3.16094 + 0.0918026i −0.999579 + 0.0290305i
\(11\) 1.84352i 0.555841i −0.960604 0.277920i \(-0.910355\pi\)
0.960604 0.277920i \(-0.0896451\pi\)
\(12\) −3.81686 3.43242i −1.10183 0.990855i
\(13\) −2.94578 + 2.94578i −0.817012 + 0.817012i −0.985674 0.168662i \(-0.946055\pi\)
0.168662 + 0.985674i \(0.446055\pi\)
\(14\) 0 0
\(15\) −4.04783 + 4.06848i −1.04514 + 1.05048i
\(16\) 3.97756 0.423057i 0.994391 0.105764i
\(17\) 2.17370 + 2.17370i 0.527200 + 0.527200i 0.919737 0.392536i \(-0.128402\pi\)
−0.392536 + 0.919737i \(0.628402\pi\)
\(18\) −5.07169 + 0.134384i −1.19541 + 0.0316745i
\(19\) −5.32748 −1.22221 −0.611104 0.791550i \(-0.709274\pi\)
−0.611104 + 0.791550i \(0.709274\pi\)
\(20\) −0.248189 4.46524i −0.0554967 0.998459i
\(21\) 0 0
\(22\) 2.60621 0.0690563i 0.555646 0.0147228i
\(23\) −1.78934 1.78934i −0.373104 0.373104i 0.495503 0.868606i \(-0.334984\pi\)
−0.868606 + 0.495503i \(0.834984\pi\)
\(24\) 4.70950 5.52453i 0.961323 1.12769i
\(25\) −4.99994 + 0.0254399i −0.999987 + 0.00508797i
\(26\) −4.27484 4.05415i −0.838365 0.795084i
\(27\) −1.06621 + 1.06621i −0.205191 + 0.205191i
\(28\) 0 0
\(29\) 6.35796i 1.18064i 0.807168 + 0.590322i \(0.200999\pi\)
−0.807168 + 0.590322i \(0.799001\pi\)
\(30\) −5.90330 5.57008i −1.07779 1.01695i
\(31\) 4.36858i 0.784619i 0.919833 + 0.392310i \(0.128324\pi\)
−0.919833 + 0.392310i \(0.871676\pi\)
\(32\) 0.747079 + 5.60731i 0.132066 + 0.991241i
\(33\) 3.34574 3.34574i 0.582418 0.582418i
\(34\) −2.99158 + 3.15443i −0.513051 + 0.540980i
\(35\) 0 0
\(36\) −0.379961 7.16490i −0.0633268 1.19415i
\(37\) −2.83192 2.83192i −0.465565 0.465565i 0.434909 0.900474i \(-0.356780\pi\)
−0.900474 + 0.434909i \(0.856780\pi\)
\(38\) −0.199562 7.53156i −0.0323733 1.22178i
\(39\) −10.6924 −1.71215
\(40\) 6.30330 0.518133i 0.996639 0.0819240i
\(41\) 10.6462 1.66266 0.831331 0.555777i \(-0.187579\pi\)
0.831331 + 0.555777i \(0.187579\pi\)
\(42\) 0 0
\(43\) −1.02386 1.02386i −0.156137 0.156137i 0.624715 0.780853i \(-0.285215\pi\)
−0.780853 + 0.624715i \(0.785215\pi\)
\(44\) 0.195252 + 3.68186i 0.0294354 + 0.555061i
\(45\) −8.02183 + 0.0204076i −1.19582 + 0.00304218i
\(46\) 2.46260 2.59665i 0.363090 0.382855i
\(47\) 0.575006 0.575006i 0.0838732 0.0838732i −0.663926 0.747799i \(-0.731111\pi\)
0.747799 + 0.663926i \(0.231111\pi\)
\(48\) 7.98654 + 6.45096i 1.15276 + 0.931116i
\(49\) 0 0
\(50\) −0.223257 7.06754i −0.0315734 0.999501i
\(51\) 7.88996i 1.10482i
\(52\) 5.57129 6.19528i 0.772599 0.859131i
\(53\) 1.91155 1.91155i 0.262571 0.262571i −0.563527 0.826098i \(-0.690556\pi\)
0.826098 + 0.563527i \(0.190556\pi\)
\(54\) −1.54725 1.46737i −0.210554 0.199684i
\(55\) 4.12221 0.0104869i 0.555839 0.00141406i
\(56\) 0 0
\(57\) −9.66867 9.66867i −1.28065 1.28065i
\(58\) −8.98836 + 0.238163i −1.18023 + 0.0312723i
\(59\) 4.22891 0.550558 0.275279 0.961364i \(-0.411230\pi\)
0.275279 + 0.961364i \(0.411230\pi\)
\(60\) 7.65339 8.55425i 0.988049 1.10435i
\(61\) 12.0120 1.53798 0.768988 0.639263i \(-0.220760\pi\)
0.768988 + 0.639263i \(0.220760\pi\)
\(62\) −6.17593 + 0.163643i −0.784344 + 0.0207826i
\(63\) 0 0
\(64\) −7.89916 + 1.26620i −0.987395 + 0.158275i
\(65\) −6.60369 6.57018i −0.819087 0.814930i
\(66\) 4.85525 + 4.60460i 0.597640 + 0.566787i
\(67\) 2.33920 2.33920i 0.285779 0.285779i −0.549629 0.835409i \(-0.685231\pi\)
0.835409 + 0.549629i \(0.185231\pi\)
\(68\) −4.57153 4.11108i −0.554379 0.498542i
\(69\) 6.49484i 0.781886i
\(70\) 0 0
\(71\) 10.5316i 1.24988i 0.780675 + 0.624938i \(0.214876\pi\)
−0.780675 + 0.624938i \(0.785124\pi\)
\(72\) 10.1149 0.805548i 1.19205 0.0949347i
\(73\) −1.44730 + 1.44730i −0.169393 + 0.169393i −0.786713 0.617319i \(-0.788219\pi\)
0.617319 + 0.786713i \(0.288219\pi\)
\(74\) 3.89745 4.10962i 0.453070 0.477733i
\(75\) −9.12039 9.02805i −1.05313 1.04247i
\(76\) 10.6400 0.564249i 1.22049 0.0647238i
\(77\) 0 0
\(78\) −0.400526 15.1160i −0.0453507 1.71155i
\(79\) 7.91595 0.890613 0.445307 0.895378i \(-0.353095\pi\)
0.445307 + 0.895378i \(0.353095\pi\)
\(80\) 0.968608 + 8.89167i 0.108294 + 0.994119i
\(81\) 6.89241 0.765823
\(82\) 0.398798 + 15.0508i 0.0440398 + 1.66208i
\(83\) −0.227439 0.227439i −0.0249647 0.0249647i 0.694514 0.719479i \(-0.255619\pi\)
−0.719479 + 0.694514i \(0.755619\pi\)
\(84\) 0 0
\(85\) −4.84817 + 4.87290i −0.525858 + 0.528540i
\(86\) 1.40910 1.48580i 0.151947 0.160218i
\(87\) −11.5389 + 11.5389i −1.23710 + 1.23710i
\(88\) −5.19779 + 0.413950i −0.554086 + 0.0441272i
\(89\) 4.33857i 0.459888i 0.973204 + 0.229944i \(0.0738543\pi\)
−0.973204 + 0.229944i \(0.926146\pi\)
\(90\) −0.329341 11.3398i −0.0347155 1.19532i
\(91\) 0 0
\(92\) 3.76318 + 3.38415i 0.392338 + 0.352822i
\(93\) −7.92838 + 7.92838i −0.822135 + 0.822135i
\(94\) 0.834434 + 0.791356i 0.0860653 + 0.0816222i
\(95\) −0.0303056 11.9126i −0.00310929 1.22220i
\(96\) −8.82066 + 11.5324i −0.900255 + 1.17702i
\(97\) 0.196142 + 0.196142i 0.0199152 + 0.0199152i 0.716994 0.697079i \(-0.245517\pi\)
−0.697079 + 0.716994i \(0.745517\pi\)
\(98\) 0 0
\(99\) 6.61358 0.664690
\(100\) 9.98314 0.580366i 0.998314 0.0580366i
\(101\) −7.34897 −0.731250 −0.365625 0.930762i \(-0.619145\pi\)
−0.365625 + 0.930762i \(0.619145\pi\)
\(102\) −11.1542 + 0.295550i −1.10443 + 0.0292638i
\(103\) 9.64495 + 9.64495i 0.950345 + 0.950345i 0.998824 0.0484790i \(-0.0154374\pi\)
−0.0484790 + 0.998824i \(0.515437\pi\)
\(104\) 8.96707 + 7.64416i 0.879294 + 0.749572i
\(105\) 0 0
\(106\) 2.77399 + 2.63078i 0.269434 + 0.255524i
\(107\) −3.30237 + 3.30237i −0.319252 + 0.319252i −0.848480 0.529228i \(-0.822482\pi\)
0.529228 + 0.848480i \(0.322482\pi\)
\(108\) 2.01649 2.24234i 0.194037 0.215770i
\(109\) 10.1310i 0.970377i 0.874410 + 0.485188i \(0.161249\pi\)
−0.874410 + 0.485188i \(0.838751\pi\)
\(110\) 0.169240 + 5.82725i 0.0161364 + 0.555607i
\(111\) 10.2791i 0.975651i
\(112\) 0 0
\(113\) −7.70435 + 7.70435i −0.724764 + 0.724764i −0.969572 0.244807i \(-0.921275\pi\)
0.244807 + 0.969572i \(0.421275\pi\)
\(114\) 13.3066 14.0310i 1.24628 1.31412i
\(115\) 3.99090 4.01126i 0.372153 0.374052i
\(116\) −0.673391 12.6981i −0.0625227 1.17899i
\(117\) −10.5679 10.5679i −0.977005 0.977005i
\(118\) 0.158411 + 5.97849i 0.0145829 + 0.550365i
\(119\) 0 0
\(120\) 12.3800 + 10.4993i 1.13013 + 0.958451i
\(121\) 7.60145 0.691041
\(122\) 0.449957 + 16.9815i 0.0407372 + 1.53744i
\(123\) 19.3215 + 19.3215i 1.74216 + 1.74216i
\(124\) −0.462689 8.72489i −0.0415507 0.783518i
\(125\) −0.0853274 11.1800i −0.00763192 0.999971i
\(126\) 0 0
\(127\) 9.01446 9.01446i 0.799904 0.799904i −0.183176 0.983080i \(-0.558638\pi\)
0.983080 + 0.183176i \(0.0586380\pi\)
\(128\) −2.08595 11.1197i −0.184373 0.982856i
\(129\) 3.71634i 0.327206i
\(130\) 9.04101 9.58187i 0.792949 0.840385i
\(131\) 18.7512i 1.63830i −0.573577 0.819152i \(-0.694445\pi\)
0.573577 0.819152i \(-0.305555\pi\)
\(132\) −6.32772 + 7.03644i −0.550758 + 0.612443i
\(133\) 0 0
\(134\) 3.39460 + 3.21935i 0.293248 + 0.278109i
\(135\) −2.39017 2.37804i −0.205713 0.204669i
\(136\) 5.64066 6.61685i 0.483683 0.567390i
\(137\) −12.7603 12.7603i −1.09019 1.09019i −0.995508 0.0946771i \(-0.969818\pi\)
−0.0946771 0.995508i \(-0.530182\pi\)
\(138\) 9.18186 0.243290i 0.781612 0.0207102i
\(139\) 2.38747 0.202503 0.101251 0.994861i \(-0.467715\pi\)
0.101251 + 0.994861i \(0.467715\pi\)
\(140\) 0 0
\(141\) 2.08712 0.175767
\(142\) −14.8888 + 0.394505i −1.24944 + 0.0331061i
\(143\) 5.43058 + 5.43058i 0.454128 + 0.454128i
\(144\) 1.51771 + 14.2695i 0.126476 + 1.18912i
\(145\) −14.2168 + 0.0361676i −1.18064 + 0.00300355i
\(146\) −2.10028 1.99185i −0.173821 0.164847i
\(147\) 0 0
\(148\) 5.95583 + 5.35596i 0.489566 + 0.440257i
\(149\) 11.0191i 0.902723i −0.892341 0.451362i \(-0.850938\pi\)
0.892341 0.451362i \(-0.149062\pi\)
\(150\) 12.4215 13.2318i 1.01421 1.08037i
\(151\) 16.5496i 1.34678i 0.739285 + 0.673392i \(0.235163\pi\)
−0.739285 + 0.673392i \(0.764837\pi\)
\(152\) 1.19625 + 15.0208i 0.0970290 + 1.21835i
\(153\) −7.79813 + 7.79813i −0.630441 + 0.630441i
\(154\) 0 0
\(155\) −9.76840 + 0.0248508i −0.784617 + 0.00199607i
\(156\) 21.3548 1.13246i 1.70975 0.0906695i
\(157\) −4.01049 4.01049i −0.320072 0.320072i 0.528722 0.848795i \(-0.322671\pi\)
−0.848795 + 0.528722i \(0.822671\pi\)
\(158\) 0.296524 + 11.1909i 0.0235901 + 0.890301i
\(159\) 6.93840 0.550251
\(160\) −12.5340 + 1.70241i −0.990902 + 0.134587i
\(161\) 0 0
\(162\) 0.258183 + 9.74392i 0.0202848 + 0.765555i
\(163\) 2.09960 + 2.09960i 0.164454 + 0.164454i 0.784536 0.620083i \(-0.212901\pi\)
−0.620083 + 0.784536i \(0.712901\pi\)
\(164\) −21.2626 + 1.12757i −1.66033 + 0.0880487i
\(165\) 7.50030 + 7.46223i 0.583897 + 0.580934i
\(166\) 0.313015 0.330054i 0.0242947 0.0256172i
\(167\) −11.1720 + 11.1720i −0.864517 + 0.864517i −0.991859 0.127342i \(-0.959355\pi\)
0.127342 + 0.991859i \(0.459355\pi\)
\(168\) 0 0
\(169\) 4.35520i 0.335016i
\(170\) −7.07051 6.67140i −0.542283 0.511673i
\(171\) 19.1123i 1.46155i
\(172\) 2.15329 + 1.93641i 0.164187 + 0.147650i
\(173\) −4.90852 + 4.90852i −0.373188 + 0.373188i −0.868637 0.495449i \(-0.835003\pi\)
0.495449 + 0.868637i \(0.335003\pi\)
\(174\) −16.7449 15.8805i −1.26943 1.20389i
\(175\) 0 0
\(176\) −0.779913 7.33270i −0.0587881 0.552723i
\(177\) 7.67492 + 7.67492i 0.576882 + 0.576882i
\(178\) −6.13352 + 0.162519i −0.459726 + 0.0121813i
\(179\) −10.1763 −0.760613 −0.380307 0.924860i \(-0.624182\pi\)
−0.380307 + 0.924860i \(0.624182\pi\)
\(180\) 16.0190 0.890374i 1.19399 0.0663645i
\(181\) −10.8055 −0.803166 −0.401583 0.915823i \(-0.631540\pi\)
−0.401583 + 0.915823i \(0.631540\pi\)
\(182\) 0 0
\(183\) 21.8002 + 21.8002i 1.61151 + 1.61151i
\(184\) −4.64327 + 5.44684i −0.342306 + 0.401546i
\(185\) 6.31624 6.34846i 0.464379 0.466748i
\(186\) −11.5055 10.9115i −0.843623 0.800070i
\(187\) 4.00726 4.00726i 0.293040 0.293040i
\(188\) −1.08750 + 1.20930i −0.0793139 + 0.0881971i
\(189\) 0 0
\(190\) 16.8399 0.489077i 1.22169 0.0354814i
\(191\) 13.8265i 1.00045i 0.865896 + 0.500225i \(0.166749\pi\)
−0.865896 + 0.500225i \(0.833251\pi\)
\(192\) −16.6339 12.0379i −1.20045 0.868763i
\(193\) 4.87713 4.87713i 0.351063 0.351063i −0.509442 0.860505i \(-0.670148\pi\)
0.860505 + 0.509442i \(0.170148\pi\)
\(194\) −0.269941 + 0.284636i −0.0193807 + 0.0204357i
\(195\) −0.0608241 23.9088i −0.00435571 1.71215i
\(196\) 0 0
\(197\) −7.85372 7.85372i −0.559554 0.559554i 0.369626 0.929181i \(-0.379486\pi\)
−0.929181 + 0.369626i \(0.879486\pi\)
\(198\) 0.247738 + 9.34974i 0.0176060 + 0.664457i
\(199\) 17.2759 1.22465 0.612327 0.790605i \(-0.290234\pi\)
0.612327 + 0.790605i \(0.290234\pi\)
\(200\) 1.19443 + 14.0916i 0.0844591 + 0.996427i
\(201\) 8.49068 0.598887
\(202\) −0.275285 10.3894i −0.0193690 0.730994i
\(203\) 0 0
\(204\) −0.835649 15.7578i −0.0585071 1.10327i
\(205\) 0.0605616 + 23.8056i 0.00422980 + 1.66266i
\(206\) −13.2739 + 13.9965i −0.924839 + 0.975184i
\(207\) 6.41924 6.41924i 0.446168 0.446168i
\(208\) −10.4708 + 12.9633i −0.726018 + 0.898840i
\(209\) 9.82130i 0.679353i
\(210\) 0 0
\(211\) 18.6740i 1.28557i −0.766045 0.642787i \(-0.777778\pi\)
0.766045 0.642787i \(-0.222222\pi\)
\(212\) −3.61527 + 4.02019i −0.248298 + 0.276107i
\(213\) −19.1135 + 19.1135i −1.30964 + 1.30964i
\(214\) −4.79232 4.54491i −0.327596 0.310684i
\(215\) 2.28359 2.29524i 0.155740 0.156534i
\(216\) 3.24558 + 2.76676i 0.220834 + 0.188254i
\(217\) 0 0
\(218\) −14.3224 + 0.379499i −0.970036 + 0.0257029i
\(219\) −5.25330 −0.354985
\(220\) −8.23175 + 0.457540i −0.554984 + 0.0308473i
\(221\) −12.8065 −0.861458
\(222\) 14.5318 0.385046i 0.975308 0.0258426i
\(223\) 11.0752 + 11.0752i 0.741650 + 0.741650i 0.972895 0.231245i \(-0.0742800\pi\)
−0.231245 + 0.972895i \(0.574280\pi\)
\(224\) 0 0
\(225\) −0.0912651 17.9372i −0.00608434 1.19581i
\(226\) −11.1804 10.6032i −0.743707 0.705313i
\(227\) −1.85642 + 1.85642i −0.123215 + 0.123215i −0.766025 0.642811i \(-0.777768\pi\)
0.642811 + 0.766025i \(0.277768\pi\)
\(228\) 20.3343 + 18.2862i 1.34667 + 1.21103i
\(229\) 2.03277i 0.134329i 0.997742 + 0.0671646i \(0.0213953\pi\)
−0.997742 + 0.0671646i \(0.978605\pi\)
\(230\) 5.82028 + 5.49175i 0.383778 + 0.362115i
\(231\) 0 0
\(232\) 17.9263 1.42764i 1.17692 0.0937293i
\(233\) 9.85147 9.85147i 0.645391 0.645391i −0.306485 0.951876i \(-0.599153\pi\)
0.951876 + 0.306485i \(0.0991528\pi\)
\(234\) 14.5442 15.3359i 0.950784 1.00254i
\(235\) 1.28902 + 1.28248i 0.0840863 + 0.0836595i
\(236\) −8.44596 + 0.447897i −0.549785 + 0.0291556i
\(237\) 14.3664 + 14.3664i 0.933197 + 0.933197i
\(238\) 0 0
\(239\) −9.72902 −0.629318 −0.314659 0.949205i \(-0.601890\pi\)
−0.314659 + 0.949205i \(0.601890\pi\)
\(240\) −14.3793 + 17.8951i −0.928180 + 1.15512i
\(241\) 15.9461 1.02718 0.513588 0.858037i \(-0.328316\pi\)
0.513588 + 0.858037i \(0.328316\pi\)
\(242\) 0.284743 + 10.7463i 0.0183040 + 0.690799i
\(243\) 15.7074 + 15.7074i 1.00763 + 1.00763i
\(244\) −23.9903 + 1.27222i −1.53582 + 0.0814458i
\(245\) 0 0
\(246\) −26.5914 + 28.0389i −1.69540 + 1.78770i
\(247\) 15.6936 15.6936i 0.998558 0.998558i
\(248\) 12.3172 0.980937i 0.782143 0.0622896i
\(249\) 0.825543i 0.0523167i
\(250\) 15.8022 0.539421i 0.999418 0.0341160i
\(251\) 5.62289i 0.354913i −0.984129 0.177457i \(-0.943213\pi\)
0.984129 0.177457i \(-0.0567870\pi\)
\(252\) 0 0
\(253\) −3.29868 + 3.29868i −0.207386 + 0.207386i
\(254\) 13.0816 + 12.4062i 0.820810 + 0.778435i
\(255\) −17.6424 + 0.0448824i −1.10481 + 0.00281065i
\(256\) 15.6420 3.36548i 0.977628 0.210342i
\(257\) 3.62397 + 3.62397i 0.226057 + 0.226057i 0.811043 0.584986i \(-0.198900\pi\)
−0.584986 + 0.811043i \(0.698900\pi\)
\(258\) 5.25386 0.139211i 0.327091 0.00866687i
\(259\) 0 0
\(260\) 13.8847 + 12.4225i 0.861094 + 0.770411i
\(261\) −22.8091 −1.41185
\(262\) 26.5090 0.702403i 1.63773 0.0433946i
\(263\) −5.57985 5.57985i −0.344069 0.344069i 0.513826 0.857894i \(-0.328228\pi\)
−0.857894 + 0.513826i \(0.828228\pi\)
\(264\) −10.1846 8.68204i −0.626817 0.534342i
\(265\) 4.28521 + 4.26346i 0.263238 + 0.261902i
\(266\) 0 0
\(267\) −7.87393 + 7.87393i −0.481877 + 0.481877i
\(268\) −4.42409 + 4.91959i −0.270244 + 0.300512i
\(269\) 4.59516i 0.280172i 0.990139 + 0.140086i \(0.0447379\pi\)
−0.990139 + 0.140086i \(0.955262\pi\)
\(270\) 3.27234 3.46810i 0.199148 0.211062i
\(271\) 28.6627i 1.74114i 0.492049 + 0.870568i \(0.336248\pi\)
−0.492049 + 0.870568i \(0.663752\pi\)
\(272\) 9.56565 + 7.72644i 0.580002 + 0.468485i
\(273\) 0 0
\(274\) 17.5615 18.5174i 1.06093 1.11868i
\(275\) 0.0468988 + 9.21746i 0.00282810 + 0.555834i
\(276\) 0.687887 + 12.9714i 0.0414059 + 0.780789i
\(277\) 3.80033 + 3.80033i 0.228339 + 0.228339i 0.811999 0.583659i \(-0.198380\pi\)
−0.583659 + 0.811999i \(0.698380\pi\)
\(278\) 0.0894324 + 3.37521i 0.00536380 + 0.202432i
\(279\) −15.6722 −0.938270
\(280\) 0 0
\(281\) 24.2851 1.44873 0.724365 0.689417i \(-0.242133\pi\)
0.724365 + 0.689417i \(0.242133\pi\)
\(282\) 0.0781814 + 2.95059i 0.00465563 + 0.175705i
\(283\) −7.20136 7.20136i −0.428076 0.428076i 0.459896 0.887973i \(-0.347887\pi\)
−0.887973 + 0.459896i \(0.847887\pi\)
\(284\) −1.11544 21.0337i −0.0661890 1.24812i
\(285\) 21.5647 21.6747i 1.27738 1.28390i
\(286\) −7.47389 + 7.88074i −0.441940 + 0.465998i
\(287\) 0 0
\(288\) −20.1161 + 2.68013i −1.18535 + 0.157928i
\(289\) 7.55003i 0.444119i
\(290\) −0.583678 20.0972i −0.0342747 1.18015i
\(291\) 0.711942i 0.0417348i
\(292\) 2.73724 3.04382i 0.160185 0.178126i
\(293\) 19.5889 19.5889i 1.14440 1.14440i 0.156762 0.987636i \(-0.449894\pi\)
0.987636 0.156762i \(-0.0501056\pi\)
\(294\) 0 0
\(295\) 0.0240564 + 9.45611i 0.00140062 + 0.550556i
\(296\) −7.34871 + 8.62049i −0.427135 + 0.501056i
\(297\) 1.96557 + 1.96557i 0.114054 + 0.114054i
\(298\) 15.5780 0.412766i 0.902406 0.0239109i
\(299\) 10.5420 0.609660
\(300\) 19.1714 + 17.0648i 1.10686 + 0.985236i
\(301\) 0 0
\(302\) −23.3964 + 0.619930i −1.34631 + 0.0356730i
\(303\) −13.3374 13.3374i −0.766214 0.766214i
\(304\) −21.1904 + 2.25383i −1.21535 + 0.129266i
\(305\) 0.0683307 + 26.8595i 0.00391261 + 1.53797i
\(306\) −11.3165 10.7322i −0.646919 0.613521i
\(307\) −20.7290 + 20.7290i −1.18307 + 1.18307i −0.204121 + 0.978946i \(0.565433\pi\)
−0.978946 + 0.204121i \(0.934567\pi\)
\(308\) 0 0
\(309\) 35.0086i 1.99157i
\(310\) −0.401047 13.8088i −0.0227779 0.784289i
\(311\) 4.34312i 0.246276i 0.992390 + 0.123138i \(0.0392957\pi\)
−0.992390 + 0.123138i \(0.960704\pi\)
\(312\) 2.40091 + 30.1472i 0.135925 + 1.70675i
\(313\) −5.54957 + 5.54957i −0.313680 + 0.313680i −0.846334 0.532653i \(-0.821195\pi\)
0.532653 + 0.846334i \(0.321195\pi\)
\(314\) 5.51948 5.81993i 0.311482 0.328438i
\(315\) 0 0
\(316\) −15.8097 + 0.838401i −0.889364 + 0.0471637i
\(317\) −1.71502 1.71502i −0.0963251 0.0963251i 0.657302 0.753627i \(-0.271698\pi\)
−0.753627 + 0.657302i \(0.771698\pi\)
\(318\) 0.259906 + 9.80894i 0.0145748 + 0.550058i
\(319\) 11.7210 0.656250
\(320\) −2.87624 17.6558i −0.160787 0.986989i
\(321\) −11.9867 −0.669034
\(322\) 0 0
\(323\) −11.5804 11.5804i −0.644349 0.644349i
\(324\) −13.7655 + 0.729995i −0.764749 + 0.0405553i
\(325\) 14.6538 14.8036i 0.812844 0.821158i
\(326\) −2.88960 + 3.04689i −0.160040 + 0.168752i
\(327\) −18.3865 + 18.3865i −1.01677 + 1.01677i
\(328\) −2.39055 30.0171i −0.131996 1.65741i
\(329\) 0 0
\(330\) −10.2685 + 10.8828i −0.565264 + 0.599080i
\(331\) 12.8330i 0.705368i −0.935743 0.352684i \(-0.885269\pi\)
0.935743 0.352684i \(-0.114731\pi\)
\(332\) 0.478328 + 0.430151i 0.0262517 + 0.0236076i
\(333\) 10.1595 10.1595i 0.556736 0.556736i
\(334\) −16.2126 15.3756i −0.887112 0.841314i
\(335\) 5.24391 + 5.21729i 0.286505 + 0.285051i
\(336\) 0 0
\(337\) 25.1079 + 25.1079i 1.36771 + 1.36771i 0.863691 + 0.504022i \(0.168147\pi\)
0.504022 + 0.863691i \(0.331853\pi\)
\(338\) 6.15703 0.163142i 0.334898 0.00887374i
\(339\) −27.9647 −1.51884
\(340\) 9.16663 10.2456i 0.497130 0.555646i
\(341\) 8.05354 0.436123
\(342\) 27.0193 0.715927i 1.46104 0.0387129i
\(343\) 0 0
\(344\) −2.65688 + 3.11668i −0.143249 + 0.168040i
\(345\) 14.5229 0.0369462i 0.781884 0.00198912i
\(346\) −7.12312 6.75539i −0.382941 0.363172i
\(347\) −3.00692 + 3.00692i −0.161420 + 0.161420i −0.783195 0.621776i \(-0.786412\pi\)
0.621776 + 0.783195i \(0.286412\pi\)
\(348\) 21.8232 24.2675i 1.16985 1.30087i
\(349\) 4.09263i 0.219074i −0.993983 0.109537i \(-0.965063\pi\)
0.993983 0.109537i \(-0.0349368\pi\)
\(350\) 0 0
\(351\) 6.28161i 0.335288i
\(352\) 10.3372 1.37725i 0.550972 0.0734078i
\(353\) 14.1289 14.1289i 0.752003 0.752003i −0.222849 0.974853i \(-0.571536\pi\)
0.974853 + 0.222849i \(0.0715358\pi\)
\(354\) −10.5627 + 11.1377i −0.561400 + 0.591960i
\(355\) −23.5494 + 0.0599097i −1.24987 + 0.00317968i
\(356\) −0.459511 8.66497i −0.0243540 0.459242i
\(357\) 0 0
\(358\) −0.381195 14.3864i −0.0201468 0.760346i
\(359\) −9.71793 −0.512893 −0.256446 0.966558i \(-0.582552\pi\)
−0.256446 + 0.966558i \(0.582552\pi\)
\(360\) 1.85879 + 22.6130i 0.0979670 + 1.19181i
\(361\) 9.38208 0.493794
\(362\) −0.404763 15.2759i −0.0212739 0.802885i
\(363\) 13.7956 + 13.7956i 0.724082 + 0.724082i
\(364\) 0 0
\(365\) −3.24447 3.22801i −0.169824 0.168962i
\(366\) −30.0026 + 31.6359i −1.56826 + 1.65363i
\(367\) 10.7427 10.7427i 0.560763 0.560763i −0.368761 0.929524i \(-0.620218\pi\)
0.929524 + 0.368761i \(0.120218\pi\)
\(368\) −7.87422 6.36023i −0.410472 0.331550i
\(369\) 38.1932i 1.98826i
\(370\) 9.21152 + 8.69157i 0.478884 + 0.451853i
\(371\) 0 0
\(372\) 14.9948 16.6742i 0.777444 0.864519i
\(373\) 22.8232 22.8232i 1.18174 1.18174i 0.202449 0.979293i \(-0.435110\pi\)
0.979293 0.202449i \(-0.0648900\pi\)
\(374\) 5.81523 + 5.51502i 0.300699 + 0.285175i
\(375\) 20.1354 20.4451i 1.03979 1.05578i
\(376\) −1.75034 1.49211i −0.0902670 0.0769499i
\(377\) −18.7291 18.7291i −0.964600 0.964600i
\(378\) 0 0
\(379\) 29.2598 1.50297 0.751487 0.659747i \(-0.229337\pi\)
0.751487 + 0.659747i \(0.229337\pi\)
\(380\) 1.32222 + 23.7885i 0.0678286 + 1.22032i
\(381\) 32.7201 1.67630
\(382\) −19.5467 + 0.517927i −1.00010 + 0.0264994i
\(383\) 7.98331 + 7.98331i 0.407928 + 0.407928i 0.881016 0.473087i \(-0.156861\pi\)
−0.473087 + 0.881016i \(0.656861\pi\)
\(384\) 16.3951 23.9666i 0.836661 1.22304i
\(385\) 0 0
\(386\) 7.07757 + 6.71218i 0.360239 + 0.341641i
\(387\) 3.67309 3.67309i 0.186713 0.186713i
\(388\) −0.412507 0.370959i −0.0209418 0.0188326i
\(389\) 38.6309i 1.95867i −0.202255 0.979333i \(-0.564827\pi\)
0.202255 0.979333i \(-0.435173\pi\)
\(390\) 33.7980 0.981589i 1.71143 0.0497047i
\(391\) 7.77900i 0.393401i
\(392\) 0 0
\(393\) 34.0310 34.0310i 1.71664 1.71664i
\(394\) 10.8087 11.3971i 0.544537 0.574179i
\(395\) 0.0450302 + 17.7005i 0.00226572 + 0.890611i
\(396\) −13.2086 + 0.700464i −0.663757 + 0.0351996i
\(397\) −6.06780 6.06780i −0.304534 0.304534i 0.538251 0.842785i \(-0.319085\pi\)
−0.842785 + 0.538251i \(0.819085\pi\)
\(398\) 0.647137 + 24.4232i 0.0324381 + 1.22422i
\(399\) 0 0
\(400\) −19.8768 + 2.21645i −0.993840 + 0.110822i
\(401\) −2.32659 −0.116184 −0.0580922 0.998311i \(-0.518502\pi\)
−0.0580922 + 0.998311i \(0.518502\pi\)
\(402\) 0.318053 + 12.0034i 0.0158630 + 0.598677i
\(403\) −12.8689 12.8689i −0.641043 0.641043i
\(404\) 14.6773 0.778351i 0.730224 0.0387244i
\(405\) 0.0392078 + 15.4118i 0.00194825 + 0.765821i
\(406\) 0 0
\(407\) −5.22069 + 5.22069i −0.258780 + 0.258780i
\(408\) 22.2458 1.77164i 1.10133 0.0877094i
\(409\) 0.187986i 0.00929531i 0.999989 + 0.00464765i \(0.00147940\pi\)
−0.999989 + 0.00464765i \(0.998521\pi\)
\(410\) −33.6522 + 0.977352i −1.66196 + 0.0482680i
\(411\) 46.3165i 2.28462i
\(412\) −20.2844 18.2413i −0.999339 0.898685i
\(413\) 0 0
\(414\) 9.31545 + 8.83453i 0.457829 + 0.434193i
\(415\) 0.507273 0.509861i 0.0249011 0.0250281i
\(416\) −18.7186 14.3171i −0.917755 0.701956i
\(417\) 4.33295 + 4.33295i 0.212185 + 0.212185i
\(418\) −13.8845 + 0.367896i −0.679115 + 0.0179944i
\(419\) −13.0861 −0.639297 −0.319648 0.947536i \(-0.603565\pi\)
−0.319648 + 0.947536i \(0.603565\pi\)
\(420\) 0 0
\(421\) 3.33535 0.162555 0.0812776 0.996692i \(-0.474100\pi\)
0.0812776 + 0.996692i \(0.474100\pi\)
\(422\) 26.3998 0.699511i 1.28512 0.0340517i
\(423\) 2.06282 + 2.06282i 0.100298 + 0.100298i
\(424\) −5.81883 4.96038i −0.282587 0.240897i
\(425\) −10.9237 10.8131i −0.529876 0.524511i
\(426\) −27.7371 26.3051i −1.34387 1.27449i
\(427\) 0 0
\(428\) 6.24571 6.94524i 0.301898 0.335711i
\(429\) 19.7116i 0.951684i
\(430\) 3.33036 + 3.14238i 0.160604 + 0.151539i
\(431\) 2.41077i 0.116122i 0.998313 + 0.0580612i \(0.0184919\pi\)
−0.998313 + 0.0580612i \(0.981508\pi\)
\(432\) −3.78984 + 4.69197i −0.182339 + 0.225742i
\(433\) 0.313016 0.313016i 0.0150426 0.0150426i −0.699545 0.714588i \(-0.746614\pi\)
0.714588 + 0.699545i \(0.246614\pi\)
\(434\) 0 0
\(435\) −25.8672 25.7360i −1.24024 1.23394i
\(436\) −1.07301 20.2336i −0.0513877 0.969015i
\(437\) 9.53269 + 9.53269i 0.456010 + 0.456010i
\(438\) −0.196783 7.42668i −0.00940267 0.354860i
\(439\) −22.4600 −1.07196 −0.535978 0.844232i \(-0.680057\pi\)
−0.535978 + 0.844232i \(0.680057\pi\)
\(440\) −0.955185 11.6202i −0.0455367 0.553972i
\(441\) 0 0
\(442\) −0.479719 18.1048i −0.0228179 0.861155i
\(443\) −12.3349 12.3349i −0.586050 0.586050i 0.350509 0.936559i \(-0.386008\pi\)
−0.936559 + 0.350509i \(0.886008\pi\)
\(444\) 1.08869 + 20.5294i 0.0516670 + 0.974282i
\(445\) −9.70131 + 0.0246802i −0.459886 + 0.00116995i
\(446\) −15.2423 + 16.0721i −0.721745 + 0.761034i
\(447\) 19.9983 19.9983i 0.945886 0.945886i
\(448\) 0 0
\(449\) 24.3525i 1.14927i −0.818411 0.574633i \(-0.805145\pi\)
0.818411 0.574633i \(-0.194855\pi\)
\(450\) 25.3547 0.800933i 1.19523 0.0377563i
\(451\) 19.6265i 0.924176i
\(452\) 14.5711 16.2031i 0.685366 0.762128i
\(453\) −30.0353 + 30.0353i −1.41118 + 1.41118i
\(454\) −2.69399 2.55491i −0.126435 0.119908i
\(455\) 0 0
\(456\) −25.0898 + 29.4319i −1.17494 + 1.37827i
\(457\) −9.85909 9.85909i −0.461189 0.461189i 0.437856 0.899045i \(-0.355738\pi\)
−0.899045 + 0.437856i \(0.855738\pi\)
\(458\) −2.87376 + 0.0761456i −0.134282 + 0.00355805i
\(459\) −4.63523 −0.216354
\(460\) −7.54576 + 8.43395i −0.351823 + 0.393235i
\(461\) −15.8798 −0.739597 −0.369799 0.929112i \(-0.620573\pi\)
−0.369799 + 0.929112i \(0.620573\pi\)
\(462\) 0 0
\(463\) −21.2388 21.2388i −0.987052 0.987052i 0.0128649 0.999917i \(-0.495905\pi\)
−0.999917 + 0.0128649i \(0.995905\pi\)
\(464\) 2.68978 + 25.2892i 0.124870 + 1.17402i
\(465\) −17.7734 17.6832i −0.824224 0.820041i
\(466\) 14.2962 + 13.5582i 0.662259 + 0.628070i
\(467\) −16.7414 + 16.7414i −0.774700 + 0.774700i −0.978924 0.204224i \(-0.934533\pi\)
0.204224 + 0.978924i \(0.434533\pi\)
\(468\) 22.2255 + 19.9869i 1.02737 + 0.923896i
\(469\) 0 0
\(470\) −1.76477 + 1.87035i −0.0814029 + 0.0862727i
\(471\) 14.5570i 0.670752i
\(472\) −0.949577 11.9234i −0.0437078 0.548820i
\(473\) −1.88750 + 1.88750i −0.0867875 + 0.0867875i
\(474\) −19.7719 + 20.8482i −0.908152 + 0.957588i
\(475\) 26.6371 0.135530i 1.22219 0.00621856i
\(476\) 0 0
\(477\) 6.85764 + 6.85764i 0.313990 + 0.313990i
\(478\) −0.364440 13.7541i −0.0166691 0.629097i
\(479\) 23.4635 1.07208 0.536038 0.844194i \(-0.319920\pi\)
0.536038 + 0.844194i \(0.319920\pi\)
\(480\) −25.8372 19.6579i −1.17930 0.897258i
\(481\) 16.6844 0.760744
\(482\) 0.597324 + 22.5432i 0.0272073 + 1.02682i
\(483\) 0 0
\(484\) −15.1816 + 0.805092i −0.690071 + 0.0365951i
\(485\) −0.437469 + 0.439700i −0.0198644 + 0.0199658i
\(486\) −21.6175 + 22.7942i −0.980588 + 1.03397i
\(487\) −5.81519 + 5.81519i −0.263511 + 0.263511i −0.826479 0.562968i \(-0.809660\pi\)
0.562968 + 0.826479i \(0.309660\pi\)
\(488\) −2.69722 33.8678i −0.122097 1.53312i
\(489\) 7.62100i 0.344633i
\(490\) 0 0
\(491\) 25.5075i 1.15114i −0.817753 0.575569i \(-0.804781\pi\)
0.817753 0.575569i \(-0.195219\pi\)
\(492\) −40.6352 36.5424i −1.83198 1.64746i
\(493\) −13.8203 + 13.8203i −0.622436 + 0.622436i
\(494\) 22.7741 + 21.5984i 1.02466 + 0.971759i
\(495\) 0.0376217 + 14.7884i 0.00169097 + 0.664688i
\(496\) 1.84816 + 17.3763i 0.0829847 + 0.780219i
\(497\) 0 0
\(498\) 1.16708 0.0309240i 0.0522983 0.00138574i
\(499\) 24.4561 1.09480 0.547402 0.836870i \(-0.315617\pi\)
0.547402 + 0.836870i \(0.315617\pi\)
\(500\) 1.35452 + 22.3196i 0.0605761 + 0.998164i
\(501\) −40.5515 −1.81171
\(502\) 7.94917 0.210628i 0.354789 0.00940078i
\(503\) 18.7502 + 18.7502i 0.836032 + 0.836032i 0.988334 0.152302i \(-0.0486687\pi\)
−0.152302 + 0.988334i \(0.548669\pi\)
\(504\) 0 0
\(505\) −0.0418050 16.4327i −0.00186030 0.731248i
\(506\) −4.78697 4.53984i −0.212807 0.201820i
\(507\) 7.90412 7.90412i 0.351034 0.351034i
\(508\) −17.0489 + 18.9584i −0.756421 + 0.841141i
\(509\) 19.1037i 0.846756i −0.905953 0.423378i \(-0.860844\pi\)
0.905953 0.423378i \(-0.139156\pi\)
\(510\) −0.724319 24.9397i −0.0320734 1.10435i
\(511\) 0 0
\(512\) 5.34377 + 21.9874i 0.236163 + 0.971713i
\(513\) 5.68019 5.68019i 0.250787 0.250787i
\(514\) −4.98752 + 5.25902i −0.219990 + 0.231965i
\(515\) −21.5118 + 21.6216i −0.947924 + 0.952760i
\(516\) 0.393609 + 7.42226i 0.0173277 + 0.326747i
\(517\) −1.06003 1.06003i −0.0466201 0.0466201i
\(518\) 0 0
\(519\) −17.8166 −0.782062
\(520\) −17.0418 + 20.0944i −0.747332 + 0.881198i
\(521\) 10.4003 0.455646 0.227823 0.973703i \(-0.426839\pi\)
0.227823 + 0.973703i \(0.426839\pi\)
\(522\) −0.854406 32.2456i −0.0373964 1.41135i
\(523\) 2.98601 + 2.98601i 0.130569 + 0.130569i 0.769371 0.638802i \(-0.220570\pi\)
−0.638802 + 0.769371i \(0.720570\pi\)
\(524\) 1.98600 + 37.4499i 0.0867588 + 1.63600i
\(525\) 0 0
\(526\) 7.67932 8.09735i 0.334834 0.353061i
\(527\) −9.49599 + 9.49599i −0.413652 + 0.413652i
\(528\) 11.8924 14.7233i 0.517552 0.640750i
\(529\) 16.5965i 0.721587i
\(530\) −5.86681 + 6.21778i −0.254838 + 0.270083i
\(531\) 15.1712i 0.658372i
\(532\) 0 0
\(533\) −31.3614 + 31.3614i −1.35841 + 1.35841i
\(534\) −11.4265 10.8366i −0.494471 0.468944i
\(535\) −7.40309 7.36551i −0.320063 0.318439i
\(536\) −7.12064 6.07013i −0.307565 0.262190i
\(537\) −18.4686 18.4686i −0.796981 0.796981i
\(538\) −6.49626 + 0.172130i −0.280074 + 0.00742106i
\(539\) 0 0
\(540\) 5.02549 + 4.49625i 0.216263 + 0.193488i
\(541\) −0.383853 −0.0165031 −0.00825157 0.999966i \(-0.502627\pi\)
−0.00825157 + 0.999966i \(0.502627\pi\)
\(542\) −40.5210 + 1.07368i −1.74052 + 0.0461184i
\(543\) −19.6105 19.6105i −0.841569 0.841569i
\(544\) −10.5647 + 13.8125i −0.452957 + 0.592208i
\(545\) −22.6536 + 0.0576308i −0.970374 + 0.00246863i
\(546\) 0 0
\(547\) 0.879876 0.879876i 0.0376208 0.0376208i −0.688046 0.725667i \(-0.741531\pi\)
0.725667 + 0.688046i \(0.241531\pi\)
\(548\) 26.8363 + 24.1333i 1.14639 + 1.03092i
\(549\) 43.0928i 1.83916i
\(550\) −13.0291 + 0.411579i −0.555564 + 0.0175498i
\(551\) 33.8719i 1.44299i
\(552\) −18.3122 + 1.45838i −0.779419 + 0.0620726i
\(553\) 0 0
\(554\) −5.23023 + 5.51494i −0.222211 + 0.234308i
\(555\) 22.9847 0.0584732i 0.975648 0.00248205i
\(556\) −4.76825 + 0.252864i −0.202219 + 0.0107238i
\(557\) 27.4948 + 27.4948i 1.16499 + 1.16499i 0.983368 + 0.181623i \(0.0581352\pi\)
0.181623 + 0.983368i \(0.441865\pi\)
\(558\) −0.587065 22.1561i −0.0248524 0.937941i
\(559\) 6.03213 0.255132
\(560\) 0 0
\(561\) 14.5453 0.614102
\(562\) 0.909698 + 34.3323i 0.0383733 + 1.44822i
\(563\) 6.69099 + 6.69099i 0.281992 + 0.281992i 0.833903 0.551911i \(-0.186101\pi\)
−0.551911 + 0.833903i \(0.686101\pi\)
\(564\) −4.16838 + 0.221053i −0.175520 + 0.00930800i
\(565\) −17.2712 17.1836i −0.726606 0.722918i
\(566\) 9.91093 10.4504i 0.416587 0.439265i
\(567\) 0 0
\(568\) 29.6940 2.36481i 1.24593 0.0992254i
\(569\) 36.2606i 1.52012i −0.649850 0.760062i \(-0.725168\pi\)
0.649850 0.760062i \(-0.274832\pi\)
\(570\) 31.4498 + 29.6745i 1.31729 + 1.24293i
\(571\) 47.6335i 1.99340i −0.0811838 0.996699i \(-0.525870\pi\)
0.0811838 0.996699i \(-0.474130\pi\)
\(572\) −11.4211 10.2708i −0.477540 0.429442i
\(573\) −25.0932 + 25.0932i −1.04828 + 1.04828i
\(574\) 0 0
\(575\) 8.99212 + 8.90108i 0.374997 + 0.371201i
\(576\) −4.54248 28.3381i −0.189270 1.18075i
\(577\) −32.2110 32.2110i −1.34096 1.34096i −0.895102 0.445861i \(-0.852898\pi\)
−0.445861 0.895102i \(-0.647102\pi\)
\(578\) 10.6736 0.282817i 0.443964 0.0117636i
\(579\) 17.7027 0.735698
\(580\) 28.3899 1.57798i 1.17882 0.0655219i
\(581\) 0 0
\(582\) −1.00648 + 0.0266686i −0.0417201 + 0.00110545i
\(583\) −3.52396 3.52396i −0.145948 0.145948i
\(584\) 4.40563 + 3.75567i 0.182306 + 0.155411i
\(585\) 23.5704 23.6906i 0.974517 0.979488i
\(586\) 28.4270 + 26.9595i 1.17431 + 1.11368i
\(587\) 15.9943 15.9943i 0.660155 0.660155i −0.295261 0.955417i \(-0.595407\pi\)
0.955417 + 0.295261i \(0.0954067\pi\)
\(588\) 0 0
\(589\) 23.2735i 0.958968i
\(590\) −13.3674 + 0.388225i −0.550326 + 0.0159830i
\(591\) 28.5069i 1.17262i
\(592\) −12.4622 10.0661i −0.512194 0.413713i
\(593\) −4.71970 + 4.71970i −0.193815 + 0.193815i −0.797342 0.603527i \(-0.793761\pi\)
0.603527 + 0.797342i \(0.293761\pi\)
\(594\) −2.70513 + 2.85238i −0.110993 + 0.117035i
\(595\) 0 0
\(596\) 1.16707 + 22.0074i 0.0478050 + 0.901457i
\(597\) 31.3534 + 31.3534i 1.28321 + 1.28321i
\(598\) 0.394893 + 14.9034i 0.0161484 + 0.609446i
\(599\) −33.9895 −1.38877 −0.694387 0.719602i \(-0.744324\pi\)
−0.694387 + 0.719602i \(0.744324\pi\)
\(600\) −23.4067 + 27.7421i −0.955573 + 1.13257i
\(601\) 32.7782 1.33705 0.668526 0.743689i \(-0.266926\pi\)
0.668526 + 0.743689i \(0.266926\pi\)
\(602\) 0 0
\(603\) 8.39185 + 8.39185i 0.341743 + 0.341743i
\(604\) −1.75281 33.0527i −0.0713209 1.34489i
\(605\) 0.0432412 + 16.9973i 0.00175800 + 0.691039i
\(606\) 18.3557 19.3549i 0.745650 0.786240i
\(607\) 14.8465 14.8465i 0.602600 0.602600i −0.338402 0.941002i \(-0.609886\pi\)
0.941002 + 0.338402i \(0.109886\pi\)
\(608\) −3.98005 29.8728i −0.161412 1.21150i
\(609\) 0 0
\(610\) −37.9692 + 1.10273i −1.53733 + 0.0446483i
\(611\) 3.38768i 0.137051i
\(612\) 14.7484 16.4003i 0.596171 0.662942i
\(613\) −20.7100 + 20.7100i −0.836470 + 0.836470i −0.988392 0.151922i \(-0.951454\pi\)
0.151922 + 0.988392i \(0.451454\pi\)
\(614\) −30.0814 28.5285i −1.21399 1.15131i
\(615\) −43.0941 + 43.3140i −1.73772 + 1.74659i
\(616\) 0 0
\(617\) −27.0214 27.0214i −1.08784 1.08784i −0.995751 0.0920892i \(-0.970646\pi\)
−0.0920892 0.995751i \(-0.529354\pi\)
\(618\) −49.4923 + 1.31139i −1.99087 + 0.0527518i
\(619\) −12.8877 −0.518000 −0.259000 0.965877i \(-0.583393\pi\)
−0.259000 + 0.965877i \(0.583393\pi\)
\(620\) 19.5068 1.08423i 0.783410 0.0435438i
\(621\) 3.81562 0.153115
\(622\) −6.13994 + 0.162689i −0.246189 + 0.00652323i
\(623\) 0 0
\(624\) −42.5297 + 4.52349i −1.70255 + 0.181085i
\(625\) 24.9987 0.254395i 0.999948 0.0101758i
\(626\) −8.05340 7.63764i −0.321879 0.305262i
\(627\) −17.8243 + 17.8243i −0.711836 + 0.711836i
\(628\) 8.43450 + 7.58497i 0.336573 + 0.302673i
\(629\) 12.3115i 0.490892i
\(630\) 0 0
\(631\) 35.1539i 1.39945i −0.714410 0.699727i \(-0.753305\pi\)
0.714410 0.699727i \(-0.246695\pi\)
\(632\) −1.77748 22.3190i −0.0707042 0.887802i
\(633\) 33.8909 33.8909i 1.34704 1.34704i
\(634\) 2.36031 2.48880i 0.0937399 0.0988427i
\(635\) 20.2081 + 20.1056i 0.801936 + 0.797866i
\(636\) −13.8573 + 0.734867i −0.549479 + 0.0291394i
\(637\) 0 0
\(638\) 0.439057 + 16.5702i 0.0173824 + 0.656020i
\(639\) −37.7821 −1.49464
\(640\) 24.8526 4.72756i 0.982384 0.186873i
\(641\) 9.97368 0.393937 0.196968 0.980410i \(-0.436890\pi\)
0.196968 + 0.980410i \(0.436890\pi\)
\(642\) −0.449011 16.9458i −0.0177210 0.668799i
\(643\) −25.3846 25.3846i −1.00107 1.00107i −0.999999 0.00107009i \(-0.999659\pi\)
−0.00107009 0.999999i \(-0.500341\pi\)
\(644\) 0 0
\(645\) 8.30997 0.0211406i 0.327205 0.000832410i
\(646\) 15.9376 16.8052i 0.627056 0.661190i
\(647\) 1.42612 1.42612i 0.0560667 0.0560667i −0.678518 0.734584i \(-0.737377\pi\)
0.734584 + 0.678518i \(0.237377\pi\)
\(648\) −1.54765 19.4331i −0.0607974 0.763406i
\(649\) 7.79607i 0.306022i
\(650\) 21.4771 + 20.1617i 0.842400 + 0.790808i
\(651\) 0 0
\(652\) −4.41569 3.97094i −0.172932 0.155514i
\(653\) −9.34898 + 9.34898i −0.365854 + 0.365854i −0.865963 0.500109i \(-0.833293\pi\)
0.500109 + 0.865963i \(0.333293\pi\)
\(654\) −26.6820 25.3045i −1.04335 0.989486i
\(655\) 41.9289 0.106667i 1.63830 0.00416784i
\(656\) 42.3461 4.50397i 1.65334 0.175850i
\(657\) −5.19215 5.19215i −0.202565 0.202565i
\(658\) 0 0
\(659\) 43.1794 1.68203 0.841015 0.541011i \(-0.181958\pi\)
0.841015 + 0.541011i \(0.181958\pi\)
\(660\) −15.7699 14.1091i −0.613842 0.549198i
\(661\) −16.1804 −0.629346 −0.314673 0.949200i \(-0.601895\pi\)
−0.314673 + 0.949200i \(0.601895\pi\)
\(662\) 18.1423 0.480713i 0.705120 0.0186834i
\(663\) −23.2421 23.2421i −0.902647 0.902647i
\(664\) −0.590194 + 0.692334i −0.0229040 + 0.0268678i
\(665\) 0 0
\(666\) 14.7432 + 13.9821i 0.571287 + 0.541794i
\(667\) 11.3766 11.3766i 0.440503 0.440503i
\(668\) 21.1294 23.4959i 0.817522 0.909085i
\(669\) 40.2000i 1.55422i
\(670\) −7.17935 + 7.60884i −0.277362 + 0.293955i
\(671\) 22.1443i 0.854870i
\(672\) 0 0
\(673\) −9.53669 + 9.53669i −0.367612 + 0.367612i −0.866606 0.498993i \(-0.833703\pi\)
0.498993 + 0.866606i \(0.333703\pi\)
\(674\) −34.5549 + 36.4359i −1.33101 + 1.40346i
\(675\) 5.30384 5.35808i 0.204145 0.206233i
\(676\) 0.461272 + 8.69819i 0.0177412 + 0.334546i
\(677\) 21.6625 + 21.6625i 0.832556 + 0.832556i 0.987866 0.155310i \(-0.0496375\pi\)
−0.155310 + 0.987866i \(0.549638\pi\)
\(678\) −1.04753 39.5342i −0.0402302 1.51830i
\(679\) 0 0
\(680\) 14.8278 + 12.5752i 0.568619 + 0.482238i
\(681\) −6.73830 −0.258212
\(682\) 0.301678 + 11.3854i 0.0115518 + 0.435970i
\(683\) 14.7325 + 14.7325i 0.563725 + 0.563725i 0.930363 0.366639i \(-0.119491\pi\)
−0.366639 + 0.930363i \(0.619491\pi\)
\(684\) 2.02424 + 38.1709i 0.0773986 + 1.45950i
\(685\) 28.4602 28.6054i 1.08741 1.09296i
\(686\) 0 0
\(687\) −3.68921 + 3.68921i −0.140752 + 0.140752i
\(688\) −4.50563 3.63932i −0.171775 0.138748i
\(689\) 11.2620i 0.429047i
\(690\) 0.596243 + 20.5298i 0.0226986 + 0.781557i
\(691\) 5.85597i 0.222772i −0.993777 0.111386i \(-0.964471\pi\)
0.993777 0.111386i \(-0.0355289\pi\)
\(692\) 9.28338 10.3231i 0.352901 0.392427i
\(693\) 0 0
\(694\) −4.36357 4.13830i −0.165639 0.157088i
\(695\) 0.0135813 + 5.33854i 0.000515166 + 0.202502i
\(696\) 35.1248 + 29.9428i 1.33140 + 1.13498i
\(697\) 23.1418 + 23.1418i 0.876556 + 0.876556i
\(698\) 5.78583 0.153306i 0.218997 0.00580272i
\(699\) 35.7582 1.35250
\(700\) 0 0
\(701\) 20.0349 0.756706 0.378353 0.925661i \(-0.376491\pi\)
0.378353 + 0.925661i \(0.376491\pi\)
\(702\) 8.88042 0.235303i 0.335170 0.00888094i
\(703\) 15.0870 + 15.0870i 0.569017 + 0.569017i
\(704\) 2.33426 + 14.5622i 0.0879759 + 0.548834i
\(705\) 0.0118727 + 4.66692i 0.000447150 + 0.175766i
\(706\) 20.5035 + 19.4450i 0.771658 + 0.731821i
\(707\) 0 0
\(708\) −16.1412 14.5154i −0.606622 0.545523i
\(709\) 49.4032i 1.85538i 0.373356 + 0.927688i \(0.378207\pi\)
−0.373356 + 0.927688i \(0.621793\pi\)
\(710\) −0.966832 33.2899i −0.0362846 1.24935i
\(711\) 28.3983i 1.06502i
\(712\) 12.2326 0.974200i 0.458436 0.0365097i
\(713\) 7.81688 7.81688i 0.292744 0.292744i
\(714\) 0 0
\(715\) −12.1122 + 12.1740i −0.452972 + 0.455282i
\(716\) 20.3241 1.07780i 0.759546 0.0402794i
\(717\) −17.6569 17.6569i −0.659408 0.659408i
\(718\) −0.364024 13.7384i −0.0135853 0.512713i
\(719\) 24.2954 0.906067 0.453033 0.891494i \(-0.350342\pi\)
0.453033 + 0.891494i \(0.350342\pi\)
\(720\) −31.8987 + 3.47487i −1.18880 + 0.129501i
\(721\) 0 0
\(722\) 0.351443 + 13.2636i 0.0130794 + 0.493620i
\(723\) 28.9400 + 28.9400i 1.07629 + 1.07629i
\(724\) 21.5807 1.14444i 0.802039 0.0425328i
\(725\) −0.161746 31.7894i −0.00600709 1.18063i
\(726\) −18.9863 + 20.0199i −0.704649 + 0.743008i
\(727\) 15.7313 15.7313i 0.583441 0.583441i −0.352406 0.935847i \(-0.614636\pi\)
0.935847 + 0.352406i \(0.114636\pi\)
\(728\) 0 0
\(729\) 36.3365i 1.34580i
\(730\) 4.44196 4.70769i 0.164404 0.174239i
\(731\) 4.45114i 0.164631i
\(732\) −45.8480 41.2302i −1.69459 1.52391i
\(733\) 20.2499 20.2499i 0.747948 0.747948i −0.226146 0.974094i \(-0.572613\pi\)
0.974094 + 0.226146i \(0.0726125\pi\)
\(734\) 15.5895 + 14.7847i 0.575420 + 0.545713i
\(735\) 0 0
\(736\) 8.69661 11.3702i 0.320561 0.419110i
\(737\) −4.31236 4.31236i −0.158848 0.158848i
\(738\) −53.9944 + 1.43068i −1.98756 + 0.0526641i
\(739\) 8.87027 0.326298 0.163149 0.986601i \(-0.447835\pi\)
0.163149 + 0.986601i \(0.447835\pi\)
\(740\) −11.9424 + 13.3481i −0.439010 + 0.490685i
\(741\) 56.9635 2.09261
\(742\) 0 0
\(743\) −10.5849 10.5849i −0.388323 0.388323i 0.485766 0.874089i \(-0.338541\pi\)
−0.874089 + 0.485766i \(0.838541\pi\)
\(744\) 24.1343 + 20.5738i 0.884808 + 0.754272i
\(745\) 24.6395 0.0626829i 0.902720 0.00229652i
\(746\) 33.1205 + 31.4107i 1.21263 + 1.15003i
\(747\) 0.815934 0.815934i 0.0298535 0.0298535i
\(748\) −7.57884 + 8.42768i −0.277110 + 0.308147i
\(749\) 0 0
\(750\) 29.6578 + 27.6999i 1.08295 + 1.01146i
\(751\) 30.2540i 1.10398i 0.833850 + 0.551992i \(0.186132\pi\)
−0.833850 + 0.551992i \(0.813868\pi\)
\(752\) 2.04386 2.53038i 0.0745320 0.0922735i
\(753\) 10.2048 10.2048i 0.371883 0.371883i
\(754\) 25.7761 27.1793i 0.938712 0.989811i
\(755\) −37.0058 + 0.0941429i −1.34678 + 0.00342621i
\(756\) 0 0
\(757\) −18.0236 18.0236i −0.655078 0.655078i 0.299133 0.954211i \(-0.403302\pi\)
−0.954211 + 0.299133i \(0.903302\pi\)
\(758\) 1.09604 + 41.3651i 0.0398101 + 1.50245i
\(759\) −11.9733 −0.434604
\(760\) −33.5807 + 2.76034i −1.21810 + 0.100128i
\(761\) −25.9242 −0.939750 −0.469875 0.882733i \(-0.655701\pi\)
−0.469875 + 0.882733i \(0.655701\pi\)
\(762\) 1.22566 + 46.2569i 0.0444010 + 1.67571i
\(763\) 0 0
\(764\) −1.46440 27.6142i −0.0529803 0.999046i
\(765\) −17.4814 17.3927i −0.632043 0.628835i
\(766\) −10.9871 + 11.5852i −0.396980 + 0.418590i
\(767\) −12.4574 + 12.4574i −0.449812 + 0.449812i
\(768\) 34.4961 + 22.2803i 1.24477 + 0.803973i
\(769\) 43.7662i 1.57825i 0.614232 + 0.789125i \(0.289466\pi\)
−0.614232 + 0.789125i \(0.710534\pi\)
\(770\) 0 0
\(771\) 13.1540i 0.473731i
\(772\) −9.22401 + 10.2571i −0.331979 + 0.369162i
\(773\) −7.07081 + 7.07081i −0.254319 + 0.254319i −0.822739 0.568420i \(-0.807555\pi\)
0.568420 + 0.822739i \(0.307555\pi\)
\(774\) 5.33030 + 5.05512i 0.191594 + 0.181702i
\(775\) −0.111136 21.8426i −0.00399212 0.784609i
\(776\) 0.508979 0.597063i 0.0182713 0.0214333i
\(777\) 0 0
\(778\) 54.6132 1.44708i 1.95798 0.0518802i
\(779\) −56.7176 −2.03212
\(780\) 2.65373 + 47.7441i 0.0950188 + 1.70951i
\(781\) 19.4152 0.694732
\(782\) 10.9973 0.291394i 0.393263 0.0104202i
\(783\) −6.77890 6.77890i −0.242258 0.242258i
\(784\) 0 0
\(785\) 8.94490 8.99052i 0.319257 0.320886i
\(786\) 49.3850 + 46.8355i 1.76150 + 1.67057i
\(787\) 10.2616 10.2616i 0.365788 0.365788i −0.500151 0.865938i \(-0.666722\pi\)
0.865938 + 0.500151i \(0.166722\pi\)
\(788\) 16.5172 + 14.8536i 0.588401 + 0.529137i
\(789\) 20.2534i 0.721040i
\(790\) −25.0219 + 0.726705i −0.890238 + 0.0258550i
\(791\) 0 0
\(792\) −1.48504 18.6470i −0.0527686 0.662592i
\(793\) −35.3846 + 35.3846i −1.25654 + 1.25654i
\(794\) 8.35087 8.80545i 0.296361 0.312494i
\(795\) 0.0394694 + 15.5147i 0.00139984 + 0.550249i
\(796\) −34.5033 + 1.82974i −1.22294 + 0.0648533i
\(797\) −16.4978 16.4978i −0.584382 0.584382i 0.351723 0.936104i \(-0.385596\pi\)
−0.936104 + 0.351723i \(0.885596\pi\)
\(798\) 0 0
\(799\) 2.49978 0.0884360
\(800\) −3.87800 28.0172i −0.137108 0.990556i
\(801\) −15.5646 −0.549947
\(802\) −0.0871518 3.28914i −0.00307744 0.116144i
\(803\) 2.66811 + 2.66811i 0.0941556 + 0.0941556i
\(804\) −16.9575 + 0.899273i −0.598046 + 0.0317149i
\(805\) 0 0
\(806\) 17.7109 18.6750i 0.623839 0.657798i
\(807\) −8.33961 + 8.33961i −0.293568 + 0.293568i
\(808\) 1.65017 + 20.7204i 0.0580527 + 0.728942i
\(809\) 10.6156i 0.373226i −0.982433 0.186613i \(-0.940249\pi\)
0.982433 0.186613i \(-0.0597511\pi\)
\(810\) −21.7865 + 0.632741i −0.765500 + 0.0222323i
\(811\) 51.1988i 1.79783i 0.438122 + 0.898916i \(0.355644\pi\)
−0.438122 + 0.898916i \(0.644356\pi\)
\(812\) 0 0
\(813\) −52.0190 + 52.0190i −1.82439 + 1.82439i
\(814\) −7.57614 7.18502i −0.265544 0.251835i
\(815\) −4.68290 + 4.70678i −0.164035 + 0.164871i
\(816\) 3.33791 + 31.3828i 0.116850 + 1.09862i
\(817\) 5.45460 + 5.45460i 0.190832 + 0.190832i
\(818\) −0.265759 + 0.00704177i −0.00929205 + 0.000246210i
\(819\) 0 0
\(820\) −2.64228 47.5380i −0.0922723 1.66010i
\(821\) −4.31325 −0.150534 −0.0752668 0.997163i \(-0.523981\pi\)
−0.0752668 + 0.997163i \(0.523981\pi\)
\(822\) 65.4784 1.73497i 2.28382 0.0605140i
\(823\) −18.7346 18.7346i −0.653048 0.653048i 0.300678 0.953726i \(-0.402787\pi\)
−0.953726 + 0.300678i \(0.902787\pi\)
\(824\) 25.0282 29.3597i 0.871899 1.02279i
\(825\) −16.6433 + 16.8136i −0.579447 + 0.585374i
\(826\) 0 0
\(827\) −37.0665 + 37.0665i −1.28893 + 1.28893i −0.353490 + 0.935438i \(0.615005\pi\)
−0.935438 + 0.353490i \(0.884995\pi\)
\(828\) −12.1406 + 13.5003i −0.421914 + 0.469169i
\(829\) 10.5113i 0.365071i −0.983199 0.182535i \(-0.941570\pi\)
0.983199 0.182535i \(-0.0584304\pi\)
\(830\) 0.739801 + 0.698042i 0.0256789 + 0.0242294i
\(831\) 13.7942i 0.478515i
\(832\) 19.5392 26.9991i 0.677400 0.936026i
\(833\) 0 0
\(834\) −5.96326 + 6.28787i −0.206491 + 0.217731i
\(835\) −25.0449 24.9178i −0.866713 0.862315i
\(836\) −1.04020 19.6150i −0.0359761 0.678400i
\(837\) −4.65780 4.65780i −0.160997 0.160997i
\(838\) −0.490192 18.5000i −0.0169334 0.639072i
\(839\) −32.0936 −1.10799 −0.553996 0.832519i \(-0.686898\pi\)
−0.553996 + 0.832519i \(0.686898\pi\)
\(840\) 0 0
\(841\) −11.4237 −0.393921
\(842\) 0.124939 + 4.71525i 0.00430568 + 0.162498i
\(843\) 44.0743 + 44.0743i 1.51800 + 1.51800i
\(844\) 1.97782 + 37.2957i 0.0680794 + 1.28377i
\(845\) 9.73850 0.0247748i 0.335015 0.000852278i
\(846\) −2.83898 + 2.99352i −0.0976061 + 0.102919i
\(847\) 0 0
\(848\) 6.79461 8.41199i 0.233328 0.288869i
\(849\) 26.1390i 0.897089i
\(850\) 14.8774 15.8480i 0.510292 0.543583i
\(851\) 10.1346i 0.347408i
\(852\) 36.1490 40.1978i 1.23845 1.37715i
\(853\) −14.4800 + 14.4800i −0.495785 + 0.495785i −0.910123 0.414338i \(-0.864013\pi\)
0.414338 + 0.910123i \(0.364013\pi\)
\(854\) 0 0
\(855\) 42.7362 0.108721i 1.46155 0.00371818i
\(856\) 10.0526 + 8.56951i 0.343589 + 0.292900i
\(857\) 2.96368 + 2.96368i 0.101237 + 0.101237i 0.755911 0.654674i \(-0.227194\pi\)
−0.654674 + 0.755911i \(0.727194\pi\)
\(858\) −27.8666 + 0.738376i −0.951350 + 0.0252078i
\(859\) 35.5227 1.21202 0.606010 0.795457i \(-0.292769\pi\)
0.606010 + 0.795457i \(0.292769\pi\)
\(860\) −4.31768 + 4.82590i −0.147232 + 0.164562i
\(861\) 0 0
\(862\) −3.40814 + 0.0903049i −0.116082 + 0.00307580i
\(863\) 2.48046 + 2.48046i 0.0844359 + 0.0844359i 0.748063 0.663627i \(-0.230984\pi\)
−0.663627 + 0.748063i \(0.730984\pi\)
\(864\) −6.77508 5.18200i −0.230493 0.176295i
\(865\) −11.0037 10.9478i −0.374136 0.372237i
\(866\) 0.454241 + 0.430791i 0.0154357 + 0.0146389i
\(867\) 13.7023 13.7023i 0.465354 0.465354i
\(868\) 0 0
\(869\) 14.5932i 0.495039i
\(870\) 35.4144 37.5330i 1.20066 1.27249i
\(871\) 13.7815i 0.466970i
\(872\) 28.5644 2.27486i 0.967314 0.0770365i
\(873\) −0.703655 + 0.703655i −0.0238151 + 0.0238151i
\(874\) −13.1194 + 13.8336i −0.443772 + 0.467929i
\(875\) 0 0
\(876\) 10.4919 0.556392i 0.354487 0.0187987i
\(877\) −15.7329 15.7329i −0.531262 0.531262i 0.389686 0.920948i \(-0.372584\pi\)
−0.920948 + 0.389686i \(0.872584\pi\)
\(878\) −0.841328 31.7520i −0.0283934 1.07158i
\(879\) 71.1027 2.39823
\(880\) 16.3919 1.78564i 0.552572 0.0601941i
\(881\) −35.9299 −1.21051 −0.605254 0.796032i \(-0.706929\pi\)
−0.605254 + 0.796032i \(0.706929\pi\)
\(882\) 0 0
\(883\) 39.0358 + 39.0358i 1.31366 + 1.31366i 0.918697 + 0.394964i \(0.129243\pi\)
0.394964 + 0.918697i \(0.370757\pi\)
\(884\) 25.5770 1.35637i 0.860249 0.0456198i
\(885\) −17.1179 + 17.2052i −0.575413 + 0.578348i
\(886\) 16.9760 17.9001i 0.570321 0.601367i
\(887\) −20.7076 + 20.7076i −0.695294 + 0.695294i −0.963392 0.268098i \(-0.913605\pi\)
0.268098 + 0.963392i \(0.413605\pi\)
\(888\) −28.9820 + 2.30811i −0.972571 + 0.0774552i
\(889\) 0 0
\(890\) −0.398292 13.7140i −0.0133508 0.459694i
\(891\) 12.7063i 0.425676i
\(892\) −23.2923 20.9463i −0.779885 0.701334i
\(893\) −3.06333 + 3.06333i −0.102511 + 0.102511i
\(894\) 29.0210 + 27.5228i 0.970608 + 0.920500i
\(895\) −0.0578884 22.7548i −0.00193500 0.760611i
\(896\) 0 0
\(897\) 19.1323 + 19.1323i 0.638810 + 0.638810i
\(898\) 34.4276 0.912222i 1.14886 0.0304412i
\(899\) −27.7752 −0.926356
\(900\) 2.08205 + 35.8144i 0.0694018 + 1.19381i
\(901\) 8.31027 0.276855
\(902\) 27.7463 0.735189i 0.923851 0.0244791i
\(903\) 0 0
\(904\) 23.4524 + 19.9925i 0.780015 + 0.664939i
\(905\) −0.0614676 24.1617i −0.00204325 0.803164i
\(906\) −43.5865 41.3363i −1.44806 1.37331i
\(907\) 21.3587 21.3587i 0.709204 0.709204i −0.257164 0.966368i \(-0.582788\pi\)
0.966368 + 0.257164i \(0.0827879\pi\)
\(908\) 3.51100 3.90424i 0.116517 0.129567i
\(909\) 26.3643i 0.874449i
\(910\) 0 0
\(911\) 31.4256i 1.04118i 0.853808 + 0.520588i \(0.174287\pi\)
−0.853808 + 0.520588i \(0.825713\pi\)
\(912\) −42.5482 34.3674i −1.40891 1.13802i
\(913\) −0.419287 + 0.419287i −0.0138764 + 0.0138764i
\(914\) 13.5687 14.3073i 0.448811 0.473243i
\(915\) −48.6225 + 48.8705i −1.60741 + 1.61561i
\(916\) −0.215297 4.05984i −0.00711360 0.134141i
\(917\) 0 0
\(918\) −0.173631 6.55291i −0.00573068 0.216278i
\(919\) 50.8371 1.67696 0.838480 0.544932i \(-0.183445\pi\)
0.838480 + 0.544932i \(0.183445\pi\)
\(920\) −12.2059 10.3516i −0.402416 0.341283i
\(921\) −75.2407 −2.47927
\(922\) −0.594843 22.4496i −0.0195901 0.739338i
\(923\) −31.0239 31.0239i −1.02116 1.02116i
\(924\) 0 0
\(925\) 14.2315 + 14.0874i 0.467928 + 0.463190i
\(926\) 29.2301 30.8213i 0.960561 1.01285i
\(927\) −34.6011 + 34.6011i −1.13645 + 1.13645i
\(928\) −35.6510 + 4.74990i −1.17030 + 0.155923i
\(929\) 40.5422i 1.33015i 0.746779 + 0.665073i \(0.231599\pi\)
−0.746779 + 0.665073i \(0.768401\pi\)
\(930\) 24.3333 25.7890i 0.797922 0.845656i
\(931\) 0 0
\(932\) −18.6319 + 20.7187i −0.610308 + 0.678663i
\(933\) −7.88218 + 7.88218i −0.258051 + 0.258051i
\(934\) −24.2948 23.0405i −0.794949 0.753909i
\(935\) 8.98326 + 8.93767i 0.293784 + 0.292293i
\(936\) −27.4233 + 32.1692i −0.896359 + 1.05148i
\(937\) 7.47390 + 7.47390i 0.244162 + 0.244162i 0.818569 0.574408i \(-0.194768\pi\)
−0.574408 + 0.818569i \(0.694768\pi\)
\(938\) 0 0
\(939\) −20.1435 −0.657357
\(940\) −2.71025 2.42483i −0.0883986 0.0790892i
\(941\) −5.54597 −0.180794 −0.0903968 0.995906i \(-0.528814\pi\)
−0.0903968 + 0.995906i \(0.528814\pi\)
\(942\) 20.5795 0.545292i 0.670517 0.0177666i
\(943\) −19.0498 19.0498i −0.620346 0.620346i
\(944\) 16.8208 1.78907i 0.547470 0.0582294i
\(945\) 0 0
\(946\) −2.73910 2.59769i −0.0890559 0.0844583i
\(947\) −15.2417 + 15.2417i −0.495290 + 0.495290i −0.909968 0.414678i \(-0.863894\pi\)
0.414678 + 0.909968i \(0.363894\pi\)
\(948\) −30.2140 27.1709i −0.981307 0.882469i
\(949\) 8.52682i 0.276792i
\(950\) 1.18940 + 37.6522i 0.0385892 + 1.22160i
\(951\) 6.22506i 0.201862i
\(952\) 0 0
\(953\) 32.3871 32.3871i 1.04912 1.04912i 0.0503899 0.998730i \(-0.483954\pi\)
0.998730 0.0503899i \(-0.0160464\pi\)
\(954\) −9.43789 + 9.95165i −0.305563 + 0.322197i
\(955\) −30.9169 + 0.0786526i −1.00045 + 0.00254514i
\(956\) 19.4307 1.03043i 0.628435 0.0333265i
\(957\) 21.2721 + 21.2721i 0.687628 + 0.687628i
\(958\) 0.878920 + 33.1708i 0.0283966 + 1.07170i
\(959\) 0 0
\(960\) 26.8229 37.2629i 0.865706 1.20266i
\(961\) 11.9155 0.384372
\(962\) 0.624982 + 23.5870i 0.0201502 + 0.760477i
\(963\) −11.8472 11.8472i −0.381771 0.381771i
\(964\) −31.8474 + 1.68889i −1.02573 + 0.0543956i
\(965\) 10.9333 + 10.8778i 0.351955 + 0.350169i
\(966\) 0 0
\(967\) 10.6422 10.6422i 0.342230 0.342230i −0.514975 0.857205i \(-0.672199\pi\)
0.857205 + 0.514975i \(0.172199\pi\)
\(968\) −1.70686 21.4323i −0.0548605 0.688860i
\(969\) 42.0337i 1.35032i
\(970\) −0.637999 0.601986i −0.0204849 0.0193286i
\(971\) 11.6752i 0.374675i 0.982296 + 0.187337i \(0.0599858\pi\)
−0.982296 + 0.187337i \(0.940014\pi\)
\(972\) −33.0344 29.7071i −1.05958 0.952857i
\(973\) 0 0
\(974\) −8.43886 8.00320i −0.270399 0.256439i
\(975\) 53.4612 0.272013i 1.71213 0.00871138i
\(976\) 47.7784 5.08176i 1.52935 0.162663i
\(977\) −21.7862 21.7862i −0.697001 0.697001i 0.266761 0.963763i \(-0.414046\pi\)
−0.963763 + 0.266761i \(0.914046\pi\)
\(978\) −10.7739 + 0.285475i −0.344513 + 0.00912849i
\(979\) 7.99822 0.255624
\(980\) 0 0
\(981\) −36.3449 −1.16040
\(982\) 36.0604 0.955486i 1.15073 0.0304908i
\(983\) −33.0726 33.0726i −1.05485 1.05485i −0.998406 0.0564457i \(-0.982023\pi\)
−0.0564457 0.998406i \(-0.517977\pi\)
\(984\) 50.1384 58.8155i 1.59836 1.87497i
\(985\) 17.5167 17.6061i 0.558129 0.560976i
\(986\) −20.0557 19.0203i −0.638705 0.605731i
\(987\) 0 0
\(988\) −29.6810 + 33.0053i −0.944277 + 1.05004i
\(989\) 3.66408i 0.116511i
\(990\) −20.9052 + 0.607144i −0.664410 + 0.0192963i
\(991\) 50.1554i 1.59324i 0.604481 + 0.796620i \(0.293381\pi\)
−0.604481 + 0.796620i \(0.706619\pi\)
\(992\) −24.4959 + 3.26367i −0.777747 + 0.103622i
\(993\) 23.2903 23.2903i 0.739094 0.739094i
\(994\) 0 0
\(995\) 0.0982746 + 38.6299i 0.00311551 + 1.22465i
\(996\) 0.0874357 + 1.64877i 0.00277050 + 0.0522432i
\(997\) 20.5546 + 20.5546i 0.650972 + 0.650972i 0.953227 0.302255i \(-0.0977394\pi\)
−0.302255 + 0.953227i \(0.597739\pi\)
\(998\) 0.916101 + 34.5740i 0.0289987 + 1.09442i
\(999\) 6.03882 0.191060
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 980.2.k.k.687.10 36
4.3 odd 2 inner 980.2.k.k.687.18 36
5.3 odd 4 inner 980.2.k.k.883.18 36
7.2 even 3 140.2.w.b.67.16 yes 72
7.3 odd 6 980.2.x.m.667.2 72
7.4 even 3 140.2.w.b.107.2 yes 72
7.5 odd 6 980.2.x.m.67.16 72
7.6 odd 2 980.2.k.j.687.10 36
20.3 even 4 inner 980.2.k.k.883.10 36
28.3 even 6 980.2.x.m.667.5 72
28.11 odd 6 140.2.w.b.107.5 yes 72
28.19 even 6 980.2.x.m.67.7 72
28.23 odd 6 140.2.w.b.67.7 yes 72
28.27 even 2 980.2.k.j.687.18 36
35.2 odd 12 700.2.be.e.543.14 72
35.3 even 12 980.2.x.m.863.7 72
35.4 even 6 700.2.be.e.107.17 72
35.9 even 6 700.2.be.e.207.3 72
35.13 even 4 980.2.k.j.883.18 36
35.18 odd 12 140.2.w.b.23.7 72
35.23 odd 12 140.2.w.b.123.5 yes 72
35.32 odd 12 700.2.be.e.443.12 72
35.33 even 12 980.2.x.m.263.5 72
140.3 odd 12 980.2.x.m.863.16 72
140.23 even 12 140.2.w.b.123.2 yes 72
140.39 odd 6 700.2.be.e.107.14 72
140.67 even 12 700.2.be.e.443.3 72
140.79 odd 6 700.2.be.e.207.12 72
140.83 odd 4 980.2.k.j.883.10 36
140.103 odd 12 980.2.x.m.263.2 72
140.107 even 12 700.2.be.e.543.17 72
140.123 even 12 140.2.w.b.23.16 yes 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.w.b.23.7 72 35.18 odd 12
140.2.w.b.23.16 yes 72 140.123 even 12
140.2.w.b.67.7 yes 72 28.23 odd 6
140.2.w.b.67.16 yes 72 7.2 even 3
140.2.w.b.107.2 yes 72 7.4 even 3
140.2.w.b.107.5 yes 72 28.11 odd 6
140.2.w.b.123.2 yes 72 140.23 even 12
140.2.w.b.123.5 yes 72 35.23 odd 12
700.2.be.e.107.14 72 140.39 odd 6
700.2.be.e.107.17 72 35.4 even 6
700.2.be.e.207.3 72 35.9 even 6
700.2.be.e.207.12 72 140.79 odd 6
700.2.be.e.443.3 72 140.67 even 12
700.2.be.e.443.12 72 35.32 odd 12
700.2.be.e.543.14 72 35.2 odd 12
700.2.be.e.543.17 72 140.107 even 12
980.2.k.j.687.10 36 7.6 odd 2
980.2.k.j.687.18 36 28.27 even 2
980.2.k.j.883.10 36 140.83 odd 4
980.2.k.j.883.18 36 35.13 even 4
980.2.k.k.687.10 36 1.1 even 1 trivial
980.2.k.k.687.18 36 4.3 odd 2 inner
980.2.k.k.883.10 36 20.3 even 4 inner
980.2.k.k.883.18 36 5.3 odd 4 inner
980.2.x.m.67.7 72 28.19 even 6
980.2.x.m.67.16 72 7.5 odd 6
980.2.x.m.263.2 72 140.103 odd 12
980.2.x.m.263.5 72 35.33 even 12
980.2.x.m.667.2 72 7.3 odd 6
980.2.x.m.667.5 72 28.3 even 6
980.2.x.m.863.7 72 35.3 even 12
980.2.x.m.863.16 72 140.3 odd 12