L(s) = 1 | + (0.0374 + 1.41i)2-s + (1.81 + 1.81i)3-s + (−1.99 + 0.105i)4-s + (0.00568 + 2.23i)5-s + (−2.49 + 2.63i)6-s + (−0.224 − 2.81i)8-s + 3.58i·9-s + (−3.16 + 0.0918i)10-s − 1.84i·11-s + (−3.81 − 3.43i)12-s + (−2.94 + 2.94i)13-s + (−4.04 + 4.06i)15-s + (3.97 − 0.423i)16-s + (2.17 + 2.17i)17-s + (−5.07 + 0.134i)18-s − 5.32·19-s + ⋯ |
L(s) = 1 | + (0.0264 + 0.999i)2-s + (1.04 + 1.04i)3-s + (−0.998 + 0.0529i)4-s + (0.00254 + 0.999i)5-s + (−1.01 + 1.07i)6-s + (−0.0793 − 0.996i)8-s + 1.19i·9-s + (−0.999 + 0.0290i)10-s − 0.555i·11-s + (−1.10 − 0.990i)12-s + (−0.817 + 0.817i)13-s + (−1.04 + 1.05i)15-s + (0.994 − 0.105i)16-s + (0.527 + 0.527i)17-s + (−1.19 + 0.0316i)18-s − 1.22·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.820 + 0.572i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.820 + 0.572i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.496608 - 1.57990i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.496608 - 1.57990i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.0374 - 1.41i)T \) |
| 5 | \( 1 + (-0.00568 - 2.23i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (-1.81 - 1.81i)T + 3iT^{2} \) |
| 11 | \( 1 + 1.84iT - 11T^{2} \) |
| 13 | \( 1 + (2.94 - 2.94i)T - 13iT^{2} \) |
| 17 | \( 1 + (-2.17 - 2.17i)T + 17iT^{2} \) |
| 19 | \( 1 + 5.32T + 19T^{2} \) |
| 23 | \( 1 + (1.78 + 1.78i)T + 23iT^{2} \) |
| 29 | \( 1 - 6.35iT - 29T^{2} \) |
| 31 | \( 1 - 4.36iT - 31T^{2} \) |
| 37 | \( 1 + (2.83 + 2.83i)T + 37iT^{2} \) |
| 41 | \( 1 - 10.6T + 41T^{2} \) |
| 43 | \( 1 + (1.02 + 1.02i)T + 43iT^{2} \) |
| 47 | \( 1 + (-0.575 + 0.575i)T - 47iT^{2} \) |
| 53 | \( 1 + (-1.91 + 1.91i)T - 53iT^{2} \) |
| 59 | \( 1 - 4.22T + 59T^{2} \) |
| 61 | \( 1 - 12.0T + 61T^{2} \) |
| 67 | \( 1 + (-2.33 + 2.33i)T - 67iT^{2} \) |
| 71 | \( 1 - 10.5iT - 71T^{2} \) |
| 73 | \( 1 + (1.44 - 1.44i)T - 73iT^{2} \) |
| 79 | \( 1 - 7.91T + 79T^{2} \) |
| 83 | \( 1 + (0.227 + 0.227i)T + 83iT^{2} \) |
| 89 | \( 1 - 4.33iT - 89T^{2} \) |
| 97 | \( 1 + (-0.196 - 0.196i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.26719560565761311638203636183, −9.509173633578253771924101475935, −8.757059448296399674606023934878, −8.127456000976996508571427438732, −7.13418897905256960784185635297, −6.39683276684405933250015357582, −5.27759557744425971421281603736, −4.16271606537459724445544372331, −3.59154350019333902669988870313, −2.43953473967114103357766431439,
0.65980515141689291726300593345, 1.95150083537447275492871559011, 2.62828229851296085410554369720, 3.91500724524919642931833967974, 4.86253973006192713386032566173, 5.92638187272052374688738944652, 7.43254514559711203263500019244, 8.002047055798072080339912316859, 8.654757214720575452825255589366, 9.550427930653425930717539072373