Properties

Label 140.2.w.b.23.16
Level $140$
Weight $2$
Character 140.23
Analytic conductor $1.118$
Analytic rank $0$
Dimension $72$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [140,2,Mod(23,140)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(140, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 9, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("140.23");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 140 = 2^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 140.w (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.11790562830\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(18\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 23.16
Character \(\chi\) \(=\) 140.23
Dual form 140.2.w.b.67.16

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.20559 + 0.739299i) q^{2} +(-2.47915 - 0.664287i) q^{3} +(0.906874 + 1.78258i) q^{4} +(1.93364 + 1.12296i) q^{5} +(-2.49773 - 2.63369i) q^{6} +(1.41045 + 2.23844i) q^{7} +(-0.224544 + 2.81950i) q^{8} +(3.10685 + 1.79374i) q^{9} +O(q^{10})\) \(q+(1.20559 + 0.739299i) q^{2} +(-2.47915 - 0.664287i) q^{3} +(0.906874 + 1.78258i) q^{4} +(1.93364 + 1.12296i) q^{5} +(-2.49773 - 2.63369i) q^{6} +(1.41045 + 2.23844i) q^{7} +(-0.224544 + 2.81950i) q^{8} +(3.10685 + 1.79374i) q^{9} +(1.50097 + 2.78336i) q^{10} +(1.59653 - 0.921758i) q^{11} +(-1.06414 - 5.02171i) q^{12} +(-2.94578 - 2.94578i) q^{13} +(0.0455440 + 3.74138i) q^{14} +(-4.04783 - 4.06848i) q^{15} +(-2.35516 + 3.23314i) q^{16} +(-2.96933 - 0.795631i) q^{17} +(2.41946 + 4.45940i) q^{18} +(2.66374 - 4.61374i) q^{19} +(-0.248189 + 4.46524i) q^{20} +(-2.00976 - 6.48639i) q^{21} +(2.60621 + 0.0690563i) q^{22} +(-0.654945 - 2.44429i) q^{23} +(2.42964 - 6.84081i) q^{24} +(2.47794 + 4.34279i) q^{25} +(-1.37358 - 5.72920i) q^{26} +(-1.06621 - 1.06621i) q^{27} +(-2.71109 + 4.54422i) q^{28} -6.35796i q^{29} +(-1.87218 - 7.89745i) q^{30} +(-3.78330 + 2.18429i) q^{31} +(-5.22961 + 2.15666i) q^{32} +(-4.57036 + 1.22462i) q^{33} +(-2.99158 - 3.15443i) q^{34} +(0.213637 + 5.91222i) q^{35} +(-0.379961 + 7.16490i) q^{36} +(-1.03655 - 3.86848i) q^{37} +(6.62230 - 3.59295i) q^{38} +(5.34619 + 9.25988i) q^{39} +(-3.60036 + 5.19975i) q^{40} +10.6462 q^{41} +(2.37244 - 9.30571i) q^{42} +(-1.02386 + 1.02386i) q^{43} +(3.09096 + 2.01002i) q^{44} +(3.99324 + 6.95731i) q^{45} +(1.01747 - 3.43100i) q^{46} +(-0.785472 + 0.210467i) q^{47} +(7.98654 - 6.45096i) q^{48} +(-3.02124 + 6.31443i) q^{49} +(-0.223257 + 7.06754i) q^{50} +(6.83291 + 3.94498i) q^{51} +(2.57963 - 7.92252i) q^{52} +(0.699675 - 2.61122i) q^{53} +(-0.497157 - 2.07365i) q^{54} +(4.12221 + 0.0104869i) q^{55} +(-6.62800 + 3.47414i) q^{56} +(-9.66867 + 9.66867i) q^{57} +(4.70044 - 7.66507i) q^{58} +(-2.11446 - 3.66235i) q^{59} +(3.58150 - 10.9052i) q^{60} +(-6.00599 + 10.4027i) q^{61} +(-6.17593 - 0.163643i) q^{62} +(0.366883 + 9.48450i) q^{63} +(-7.89916 - 1.26620i) q^{64} +(-2.38810 - 9.00406i) q^{65} +(-6.41532 - 1.90247i) q^{66} +(0.856208 - 3.19541i) q^{67} +(-1.27454 - 6.01460i) q^{68} +6.49484i q^{69} +(-4.11334 + 7.28563i) q^{70} -10.5316i q^{71} +(-5.75508 + 8.35700i) q^{72} +(-0.529747 + 1.97704i) q^{73} +(1.61030 - 5.43010i) q^{74} +(-3.25832 - 12.4125i) q^{75} +(10.6400 + 0.564249i) q^{76} +(4.31513 + 2.27365i) q^{77} +(-0.400526 + 15.1160i) q^{78} +(-3.95797 + 6.85541i) q^{79} +(-8.18472 + 3.60700i) q^{80} +(-3.44620 - 5.96900i) q^{81} +(12.8349 + 7.87075i) q^{82} +(-0.227439 + 0.227439i) q^{83} +(9.73989 - 9.46489i) q^{84} +(-4.84817 - 4.87290i) q^{85} +(-1.99129 + 0.477413i) q^{86} +(-4.22352 + 15.7624i) q^{87} +(2.24040 + 4.70839i) q^{88} +(3.75731 + 2.16929i) q^{89} +(-0.329341 + 11.3398i) q^{90} +(2.43907 - 10.7488i) q^{91} +(3.76318 - 3.38415i) q^{92} +(10.8304 - 2.90199i) q^{93} +(-1.10255 - 0.326963i) q^{94} +(10.3317 - 5.93004i) q^{95} +(14.3977 - 1.87274i) q^{96} +(0.196142 - 0.196142i) q^{97} +(-8.31062 + 5.37899i) q^{98} +6.61358 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + 2 q^{2} - 8 q^{5} - 16 q^{6} - 4 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 72 q + 2 q^{2} - 8 q^{5} - 16 q^{6} - 4 q^{8} + 2 q^{10} + 10 q^{12} - 28 q^{16} + 4 q^{17} - 20 q^{18} - 56 q^{20} + 4 q^{21} - 16 q^{22} - 16 q^{25} - 4 q^{26} + 42 q^{28} - 32 q^{30} - 38 q^{32} - 64 q^{33} + 16 q^{36} - 4 q^{37} + 12 q^{38} + 2 q^{40} - 40 q^{41} + 78 q^{42} - 12 q^{45} - 28 q^{46} + 12 q^{48} - 28 q^{50} + 48 q^{52} - 24 q^{53} + 36 q^{56} - 16 q^{57} + 30 q^{58} - 10 q^{60} - 20 q^{61} + 56 q^{62} + 4 q^{65} + 44 q^{66} - 12 q^{68} + 84 q^{70} + 44 q^{72} - 12 q^{73} + 112 q^{76} + 16 q^{77} + 64 q^{78} + 52 q^{80} - 52 q^{81} - 34 q^{82} + 16 q^{85} + 64 q^{86} + 16 q^{88} - 32 q^{90} + 44 q^{92} + 12 q^{93} - 48 q^{96} - 24 q^{97} - 90 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/140\mathbb{Z}\right)^\times\).

\(n\) \(57\) \(71\) \(101\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.20559 + 0.739299i 0.852478 + 0.522763i
\(3\) −2.47915 0.664287i −1.43134 0.383527i −0.541848 0.840476i \(-0.682275\pi\)
−0.889492 + 0.456950i \(0.848942\pi\)
\(4\) 0.906874 + 1.78258i 0.453437 + 0.891288i
\(5\) 1.93364 + 1.12296i 0.864751 + 0.502202i
\(6\) −2.49773 2.63369i −1.01969 1.07520i
\(7\) 1.41045 + 2.23844i 0.533101 + 0.846051i
\(8\) −0.224544 + 2.81950i −0.0793882 + 0.996844i
\(9\) 3.10685 + 1.79374i 1.03562 + 0.597914i
\(10\) 1.50097 + 2.78336i 0.474648 + 0.880176i
\(11\) 1.59653 0.921758i 0.481372 0.277920i −0.239616 0.970868i \(-0.577022\pi\)
0.720988 + 0.692947i \(0.243688\pi\)
\(12\) −1.06414 5.02171i −0.307190 1.44964i
\(13\) −2.94578 2.94578i −0.817012 0.817012i 0.168662 0.985674i \(-0.446055\pi\)
−0.985674 + 0.168662i \(0.946055\pi\)
\(14\) 0.0455440 + 3.74138i 0.0121721 + 0.999926i
\(15\) −4.04783 4.06848i −1.04514 1.05048i
\(16\) −2.35516 + 3.23314i −0.588790 + 0.808286i
\(17\) −2.96933 0.795631i −0.720169 0.192969i −0.119922 0.992783i \(-0.538264\pi\)
−0.600247 + 0.799815i \(0.704931\pi\)
\(18\) 2.41946 + 4.45940i 0.570273 + 1.05109i
\(19\) 2.66374 4.61374i 0.611104 1.05846i −0.379950 0.925007i \(-0.624059\pi\)
0.991055 0.133457i \(-0.0426077\pi\)
\(20\) −0.248189 + 4.46524i −0.0554967 + 0.998459i
\(21\) −2.00976 6.48639i −0.438566 1.41545i
\(22\) 2.60621 + 0.0690563i 0.555646 + 0.0147228i
\(23\) −0.654945 2.44429i −0.136565 0.509669i −0.999987 0.00518527i \(-0.998349\pi\)
0.863421 0.504484i \(-0.168317\pi\)
\(24\) 2.42964 6.84081i 0.495948 1.39638i
\(25\) 2.47794 + 4.34279i 0.495587 + 0.868558i
\(26\) −1.37358 5.72920i −0.269380 1.12359i
\(27\) −1.06621 1.06621i −0.205191 0.205191i
\(28\) −2.71109 + 4.54422i −0.512348 + 0.858778i
\(29\) 6.35796i 1.18064i −0.807168 0.590322i \(-0.799001\pi\)
0.807168 0.590322i \(-0.200999\pi\)
\(30\) −1.87218 7.89745i −0.341812 1.44187i
\(31\) −3.78330 + 2.18429i −0.679500 + 0.392310i −0.799667 0.600444i \(-0.794991\pi\)
0.120166 + 0.992754i \(0.461657\pi\)
\(32\) −5.22961 + 2.15666i −0.924473 + 0.381248i
\(33\) −4.57036 + 1.22462i −0.795597 + 0.213180i
\(34\) −2.99158 3.15443i −0.513051 0.540980i
\(35\) 0.213637 + 5.91222i 0.0361112 + 0.999348i
\(36\) −0.379961 + 7.16490i −0.0633268 + 1.19415i
\(37\) −1.03655 3.86848i −0.170409 0.635973i −0.997288 0.0735946i \(-0.976553\pi\)
0.826880 0.562379i \(-0.190114\pi\)
\(38\) 6.62230 3.59295i 1.07428 0.582854i
\(39\) 5.34619 + 9.25988i 0.856076 + 1.48277i
\(40\) −3.60036 + 5.19975i −0.569268 + 0.822152i
\(41\) 10.6462 1.66266 0.831331 0.555777i \(-0.187579\pi\)
0.831331 + 0.555777i \(0.187579\pi\)
\(42\) 2.37244 9.30571i 0.366076 1.43590i
\(43\) −1.02386 + 1.02386i −0.156137 + 0.156137i −0.780853 0.624715i \(-0.785215\pi\)
0.624715 + 0.780853i \(0.285215\pi\)
\(44\) 3.09096 + 2.01002i 0.465979 + 0.303022i
\(45\) 3.99324 + 6.95731i 0.595278 + 1.03714i
\(46\) 1.01747 3.43100i 0.150017 0.505873i
\(47\) −0.785472 + 0.210467i −0.114573 + 0.0306997i −0.315650 0.948876i \(-0.602223\pi\)
0.201077 + 0.979575i \(0.435556\pi\)
\(48\) 7.98654 6.45096i 1.15276 0.931116i
\(49\) −3.02124 + 6.31443i −0.431606 + 0.902062i
\(50\) −0.223257 + 7.06754i −0.0315734 + 0.999501i
\(51\) 6.83291 + 3.94498i 0.956799 + 0.552408i
\(52\) 2.57963 7.92252i 0.357730 1.09866i
\(53\) 0.699675 2.61122i 0.0961077 0.358679i −0.901077 0.433658i \(-0.857222\pi\)
0.997185 + 0.0749796i \(0.0238892\pi\)
\(54\) −0.497157 2.07365i −0.0676546 0.282188i
\(55\) 4.12221 + 0.0104869i 0.555839 + 0.00141406i
\(56\) −6.62800 + 3.47414i −0.885703 + 0.464252i
\(57\) −9.66867 + 9.66867i −1.28065 + 1.28065i
\(58\) 4.70044 7.66507i 0.617198 1.00647i
\(59\) −2.11446 3.66235i −0.275279 0.476797i 0.694927 0.719081i \(-0.255437\pi\)
−0.970205 + 0.242284i \(0.922104\pi\)
\(60\) 3.58150 10.9052i 0.462370 1.40785i
\(61\) −6.00599 + 10.4027i −0.768988 + 1.33193i 0.169124 + 0.985595i \(0.445906\pi\)
−0.938112 + 0.346332i \(0.887427\pi\)
\(62\) −6.17593 0.163643i −0.784344 0.0207826i
\(63\) 0.366883 + 9.48450i 0.0462229 + 1.19493i
\(64\) −7.89916 1.26620i −0.987395 0.158275i
\(65\) −2.38810 9.00406i −0.296207 1.11682i
\(66\) −6.41532 1.90247i −0.789672 0.234178i
\(67\) 0.856208 3.19541i 0.104602 0.390382i −0.893697 0.448670i \(-0.851898\pi\)
0.998300 + 0.0582888i \(0.0185644\pi\)
\(68\) −1.27454 6.01460i −0.154560 0.729378i
\(69\) 6.49484i 0.781886i
\(70\) −4.11334 + 7.28563i −0.491638 + 0.870799i
\(71\) 10.5316i 1.24988i −0.780675 0.624938i \(-0.785124\pi\)
0.780675 0.624938i \(-0.214876\pi\)
\(72\) −5.75508 + 8.35700i −0.678243 + 0.984882i
\(73\) −0.529747 + 1.97704i −0.0620022 + 0.231395i −0.989973 0.141258i \(-0.954885\pi\)
0.927971 + 0.372653i \(0.121552\pi\)
\(74\) 1.61030 5.43010i 0.187194 0.631237i
\(75\) −3.25832 12.4125i −0.376239 1.43327i
\(76\) 10.6400 + 0.564249i 1.22049 + 0.0647238i
\(77\) 4.31513 + 2.27365i 0.491755 + 0.259106i
\(78\) −0.400526 + 15.1160i −0.0453507 + 1.71155i
\(79\) −3.95797 + 6.85541i −0.445307 + 0.771294i −0.998074 0.0620421i \(-0.980239\pi\)
0.552767 + 0.833336i \(0.313572\pi\)
\(80\) −8.18472 + 3.60700i −0.915079 + 0.403274i
\(81\) −3.44620 5.96900i −0.382912 0.663222i
\(82\) 12.8349 + 7.87075i 1.41738 + 0.869179i
\(83\) −0.227439 + 0.227439i −0.0249647 + 0.0249647i −0.719479 0.694514i \(-0.755619\pi\)
0.694514 + 0.719479i \(0.255619\pi\)
\(84\) 9.73989 9.46489i 1.06271 1.03270i
\(85\) −4.84817 4.87290i −0.525858 0.528540i
\(86\) −1.99129 + 0.477413i −0.214727 + 0.0514807i
\(87\) −4.22352 + 15.7624i −0.452808 + 1.68990i
\(88\) 2.24040 + 4.70839i 0.238828 + 0.501917i
\(89\) 3.75731 + 2.16929i 0.398274 + 0.229944i 0.685739 0.727847i \(-0.259479\pi\)
−0.287465 + 0.957791i \(0.592812\pi\)
\(90\) −0.329341 + 11.3398i −0.0347155 + 1.19532i
\(91\) 2.43907 10.7488i 0.255684 1.12678i
\(92\) 3.76318 3.38415i 0.392338 0.352822i
\(93\) 10.8304 2.90199i 1.12306 0.300922i
\(94\) −1.10255 0.326963i −0.113720 0.0337237i
\(95\) 10.3317 5.93004i 1.06001 0.608410i
\(96\) 14.3977 1.87274i 1.46945 0.191136i
\(97\) 0.196142 0.196142i 0.0199152 0.0199152i −0.697079 0.716994i \(-0.745517\pi\)
0.716994 + 0.697079i \(0.245517\pi\)
\(98\) −8.31062 + 5.37899i −0.839500 + 0.543360i
\(99\) 6.61358 0.664690
\(100\) −5.49418 + 8.35547i −0.549418 + 0.835547i
\(101\) 3.67449 + 6.36440i 0.365625 + 0.633281i 0.988876 0.148741i \(-0.0475219\pi\)
−0.623251 + 0.782022i \(0.714189\pi\)
\(102\) 5.32114 + 9.80758i 0.526871 + 0.971095i
\(103\) 3.53030 + 13.1752i 0.347850 + 1.29820i 0.889247 + 0.457428i \(0.151229\pi\)
−0.541396 + 0.840768i \(0.682104\pi\)
\(104\) 8.96707 7.64416i 0.879294 0.749572i
\(105\) 3.39778 14.7992i 0.331589 1.44426i
\(106\) 2.77399 2.63078i 0.269434 0.255524i
\(107\) 4.51112 1.20875i 0.436107 0.116854i −0.0340847 0.999419i \(-0.510852\pi\)
0.470191 + 0.882565i \(0.344185\pi\)
\(108\) 0.933680 2.86751i 0.0898434 0.275926i
\(109\) −8.77373 + 5.06552i −0.840371 + 0.485188i −0.857390 0.514667i \(-0.827916\pi\)
0.0170193 + 0.999855i \(0.494582\pi\)
\(110\) 4.96193 + 3.06019i 0.473101 + 0.291778i
\(111\) 10.2791i 0.975651i
\(112\) −10.5590 0.711693i −0.997736 0.0672486i
\(113\) −7.70435 7.70435i −0.724764 0.724764i 0.244807 0.969572i \(-0.421275\pi\)
−0.969572 + 0.244807i \(0.921275\pi\)
\(114\) −18.8045 + 4.50837i −1.76120 + 0.422248i
\(115\) 1.47840 5.46185i 0.137862 0.509320i
\(116\) 11.3336 5.76587i 1.05229 0.535348i
\(117\) −3.86813 14.4361i −0.357609 1.33461i
\(118\) 0.158411 5.97849i 0.0145829 0.550365i
\(119\) −2.40713 7.76888i −0.220662 0.712172i
\(120\) 12.3800 10.4993i 1.13013 0.958451i
\(121\) −3.80073 + 6.58305i −0.345521 + 0.598459i
\(122\) −14.9314 + 8.10110i −1.35183 + 0.733439i
\(123\) −26.3937 7.07216i −2.37984 0.637675i
\(124\) −7.32463 4.76315i −0.657772 0.427743i
\(125\) −0.0853274 + 11.1800i −0.00763192 + 0.999971i
\(126\) −6.56957 + 11.7056i −0.585264 + 1.04282i
\(127\) 9.01446 + 9.01446i 0.799904 + 0.799904i 0.983080 0.183176i \(-0.0586380\pi\)
−0.183176 + 0.983080i \(0.558638\pi\)
\(128\) −8.58701 7.36636i −0.758992 0.651100i
\(129\) 3.21845 1.85817i 0.283369 0.163603i
\(130\) 3.77764 12.6207i 0.331321 1.10691i
\(131\) −16.2391 9.37562i −1.41881 0.819152i −0.422618 0.906308i \(-0.638889\pi\)
−0.996195 + 0.0871562i \(0.972222\pi\)
\(132\) −6.32772 7.03644i −0.550758 0.612443i
\(133\) 14.0847 0.544828i 1.22130 0.0472426i
\(134\) 3.39460 3.21935i 0.293248 0.278109i
\(135\) −0.864356 3.25896i −0.0743920 0.280487i
\(136\) 2.91003 8.19338i 0.249533 0.702577i
\(137\) 17.4309 + 4.67059i 1.48922 + 0.399035i 0.909474 0.415761i \(-0.136485\pi\)
0.579747 + 0.814797i \(0.303151\pi\)
\(138\) −4.80163 + 7.83008i −0.408742 + 0.666541i
\(139\) 2.38747 0.202503 0.101251 0.994861i \(-0.467715\pi\)
0.101251 + 0.994861i \(0.467715\pi\)
\(140\) −10.3452 + 5.74246i −0.874333 + 0.485327i
\(141\) 2.08712 0.175767
\(142\) 7.78603 12.6968i 0.653389 1.06549i
\(143\) −7.41832 1.98773i −0.620351 0.166223i
\(144\) −13.1166 + 5.82035i −1.09305 + 0.485029i
\(145\) 7.13972 12.2940i 0.592921 1.02096i
\(146\) −2.10028 + 1.99185i −0.173821 + 0.164847i
\(147\) 11.6847 13.6475i 0.963740 1.12563i
\(148\) 5.95583 5.35596i 0.489566 0.440257i
\(149\) −9.54286 5.50957i −0.781781 0.451362i 0.0552800 0.998471i \(-0.482395\pi\)
−0.837061 + 0.547109i \(0.815728\pi\)
\(150\) 5.24837 17.3732i 0.428528 1.41852i
\(151\) −14.3323 + 8.27478i −1.16635 + 0.673392i −0.952817 0.303544i \(-0.901830\pi\)
−0.213532 + 0.976936i \(0.568497\pi\)
\(152\) 12.4103 + 8.54641i 1.00661 + 0.693205i
\(153\) −7.79813 7.79813i −0.630441 0.630441i
\(154\) 3.52136 + 5.93125i 0.283759 + 0.477954i
\(155\) −9.76840 0.0248508i −0.784617 0.00199607i
\(156\) −11.6581 + 17.9275i −0.933397 + 1.43535i
\(157\) 5.47844 + 1.46794i 0.437227 + 0.117155i 0.470717 0.882284i \(-0.343995\pi\)
−0.0334897 + 0.999439i \(0.510662\pi\)
\(158\) −9.83987 + 5.33866i −0.782818 + 0.424721i
\(159\) −3.46920 + 6.00883i −0.275126 + 0.476532i
\(160\) −12.5340 1.70241i −0.990902 0.134587i
\(161\) 4.54763 4.91361i 0.358403 0.387247i
\(162\) 0.258183 9.74392i 0.0202848 0.765555i
\(163\) 0.768508 + 2.86811i 0.0601942 + 0.224648i 0.989470 0.144739i \(-0.0462343\pi\)
−0.929276 + 0.369387i \(0.879568\pi\)
\(164\) 9.65479 + 18.9777i 0.753912 + 1.48191i
\(165\) −10.2126 2.76433i −0.795052 0.215203i
\(166\) −0.442343 + 0.106052i −0.0343324 + 0.00823121i
\(167\) −11.1720 11.1720i −0.864517 0.864517i 0.127342 0.991859i \(-0.459355\pi\)
−0.991859 + 0.127342i \(0.959355\pi\)
\(168\) 18.7397 4.21005i 1.44580 0.324812i
\(169\) 4.35520i 0.335016i
\(170\) −2.24235 9.45894i −0.171981 0.725468i
\(171\) 16.5517 9.55613i 1.26574 0.730776i
\(172\) −2.75362 0.896599i −0.209962 0.0683650i
\(173\) 6.70516 1.79664i 0.509784 0.136596i 0.00524677 0.999986i \(-0.498330\pi\)
0.504537 + 0.863390i \(0.331663\pi\)
\(174\) −16.7449 + 15.8805i −1.26943 + 1.20389i
\(175\) −6.22607 + 11.6720i −0.470647 + 0.882322i
\(176\) −0.779913 + 7.33270i −0.0587881 + 0.552723i
\(177\) 2.80921 + 10.4841i 0.211154 + 0.788036i
\(178\) 2.92601 + 5.39304i 0.219314 + 0.404225i
\(179\) 5.08815 + 8.81294i 0.380307 + 0.658710i 0.991106 0.133075i \(-0.0424852\pi\)
−0.610799 + 0.791785i \(0.709152\pi\)
\(180\) −8.78058 + 13.4277i −0.654466 + 1.00084i
\(181\) −10.8055 −0.803166 −0.401583 0.915823i \(-0.631540\pi\)
−0.401583 + 0.915823i \(0.631540\pi\)
\(182\) 10.8871 11.1554i 0.807006 0.826896i
\(183\) 21.8002 21.8002i 1.61151 1.61151i
\(184\) 7.03873 1.29777i 0.518902 0.0956727i
\(185\) 2.33981 8.64425i 0.172026 0.635538i
\(186\) 15.2024 + 4.50829i 1.11469 + 0.330564i
\(187\) −5.47401 + 1.46676i −0.400299 + 0.107260i
\(188\) −1.08750 1.20930i −0.0793139 0.0881971i
\(189\) 0.882806 3.89047i 0.0642147 0.282990i
\(190\) 16.8399 + 0.489077i 1.22169 + 0.0354814i
\(191\) 11.9741 + 6.91324i 0.866415 + 0.500225i 0.866155 0.499775i \(-0.166584\pi\)
0.000259570 1.00000i \(0.499917\pi\)
\(192\) 18.7421 + 8.38642i 1.35260 + 0.605238i
\(193\) 1.78515 6.66228i 0.128498 0.479561i −0.871442 0.490498i \(-0.836815\pi\)
0.999940 + 0.0109371i \(0.00348146\pi\)
\(194\) 0.381473 0.0914581i 0.0273881 0.00656631i
\(195\) −0.0608241 + 23.9088i −0.00435571 + 1.71215i
\(196\) −13.9959 + 0.340795i −0.999704 + 0.0243425i
\(197\) −7.85372 + 7.85372i −0.559554 + 0.559554i −0.929181 0.369626i \(-0.879486\pi\)
0.369626 + 0.929181i \(0.379486\pi\)
\(198\) 7.97324 + 4.88942i 0.566633 + 0.347476i
\(199\) −8.63793 14.9613i −0.612327 1.06058i −0.990847 0.134988i \(-0.956900\pi\)
0.378520 0.925593i \(-0.376433\pi\)
\(200\) −12.8009 + 6.01139i −0.905161 + 0.425070i
\(201\) −4.24534 + 7.35315i −0.299443 + 0.518651i
\(202\) −0.275285 + 10.3894i −0.0193690 + 0.730994i
\(203\) 14.2319 8.96761i 0.998886 0.629403i
\(204\) −0.835649 + 15.7578i −0.0585071 + 1.10327i
\(205\) 20.5860 + 11.9553i 1.43779 + 0.834992i
\(206\) −5.48437 + 18.4938i −0.382114 + 1.28853i
\(207\) 2.34960 8.76884i 0.163309 0.609477i
\(208\) 16.4619 2.58634i 1.14143 0.179331i
\(209\) 9.82130i 0.679353i
\(210\) 15.0374 15.3298i 1.03768 1.05785i
\(211\) 18.6740i 1.28557i 0.766045 + 0.642787i \(0.222222\pi\)
−0.766045 + 0.642787i \(0.777778\pi\)
\(212\) 5.28922 1.12082i 0.363265 0.0769785i
\(213\) −6.99603 + 26.1096i −0.479360 + 1.78900i
\(214\) 6.33217 + 1.87781i 0.432858 + 0.128365i
\(215\) −3.12953 + 0.830028i −0.213432 + 0.0566075i
\(216\) 3.24558 2.76676i 0.220834 0.188254i
\(217\) −10.2256 5.38786i −0.694157 0.365751i
\(218\) −14.3224 0.379499i −0.970036 0.0257029i
\(219\) 2.62665 4.54949i 0.177492 0.307426i
\(220\) 3.71963 + 7.35767i 0.250777 + 0.496054i
\(221\) 6.40324 + 11.0907i 0.430729 + 0.746044i
\(222\) −7.59934 + 12.3924i −0.510035 + 0.831721i
\(223\) 11.0752 11.0752i 0.741650 0.741650i −0.231245 0.972895i \(-0.574280\pi\)
0.972895 + 0.231245i \(0.0742800\pi\)
\(224\) −12.2037 8.66430i −0.815393 0.578908i
\(225\) −0.0912651 + 17.9372i −0.00608434 + 1.19581i
\(226\) −3.59243 14.9841i −0.238965 0.996726i
\(227\) −0.679495 + 2.53591i −0.0450997 + 0.168314i −0.984803 0.173678i \(-0.944435\pi\)
0.939703 + 0.341992i \(0.111102\pi\)
\(228\) −26.0034 8.46689i −1.72212 0.560733i
\(229\) 1.76043 + 1.01639i 0.116333 + 0.0671646i 0.557037 0.830488i \(-0.311938\pi\)
−0.440705 + 0.897652i \(0.645271\pi\)
\(230\) 5.82028 5.49175i 0.383778 0.362115i
\(231\) −9.18753 8.50321i −0.604495 0.559470i
\(232\) 17.9263 + 1.42764i 1.17692 + 0.0937293i
\(233\) −13.4574 + 3.60589i −0.881621 + 0.236230i −0.671106 0.741361i \(-0.734181\pi\)
−0.210514 + 0.977591i \(0.567514\pi\)
\(234\) 6.00920 20.2636i 0.392834 1.32467i
\(235\) −1.75517 0.475084i −0.114494 0.0309911i
\(236\) 4.61087 7.09047i 0.300142 0.461550i
\(237\) 14.3664 14.3664i 0.933197 0.933197i
\(238\) 2.84152 11.1456i 0.184188 0.722465i
\(239\) −9.72902 −0.629318 −0.314659 0.949205i \(-0.601890\pi\)
−0.314659 + 0.949205i \(0.601890\pi\)
\(240\) 22.6873 3.50530i 1.46446 0.226266i
\(241\) −7.97303 13.8097i −0.513588 0.889560i −0.999876 0.0157617i \(-0.994983\pi\)
0.486288 0.873799i \(-0.338351\pi\)
\(242\) −9.44894 + 5.12656i −0.607401 + 0.329548i
\(243\) 5.74932 + 21.4567i 0.368819 + 1.37645i
\(244\) −23.9903 1.27222i −1.53582 0.0814458i
\(245\) −12.9328 + 8.81712i −0.826249 + 0.563305i
\(246\) −26.5914 28.0389i −1.69540 1.78770i
\(247\) −21.4378 + 5.74425i −1.36406 + 0.365498i
\(248\) −5.30908 11.1575i −0.337127 0.708500i
\(249\) 0.714941 0.412771i 0.0453075 0.0261583i
\(250\) −8.36824 + 13.4154i −0.529254 + 0.848463i
\(251\) 5.62289i 0.354913i 0.984129 + 0.177457i \(0.0567870\pi\)
−0.984129 + 0.177457i \(0.943213\pi\)
\(252\) −16.5741 + 9.25524i −1.04407 + 0.583025i
\(253\) −3.29868 3.29868i −0.207386 0.207386i
\(254\) 4.20332 + 17.5321i 0.263740 + 1.10006i
\(255\) 8.78235 + 15.3012i 0.549972 + 0.958201i
\(256\) −4.90644 15.2291i −0.306652 0.951822i
\(257\) 1.32646 + 4.95043i 0.0827426 + 0.308799i 0.994877 0.101091i \(-0.0322335\pi\)
−0.912135 + 0.409891i \(0.865567\pi\)
\(258\) 5.25386 + 0.139211i 0.327091 + 0.00866687i
\(259\) 7.19735 7.77657i 0.447221 0.483213i
\(260\) 13.8847 12.4225i 0.861094 0.770411i
\(261\) 11.4045 19.7533i 0.705924 1.22270i
\(262\) −12.6462 23.3086i −0.781284 1.44001i
\(263\) 7.62222 + 2.04237i 0.470006 + 0.125938i 0.486045 0.873934i \(-0.338439\pi\)
−0.0160390 + 0.999871i \(0.505106\pi\)
\(264\) −2.42658 13.1611i −0.149346 0.810010i
\(265\) 4.28521 4.26346i 0.263238 0.261902i
\(266\) 17.3831 + 9.75594i 1.06582 + 0.598175i
\(267\) −7.87393 7.87393i −0.481877 0.481877i
\(268\) 6.47254 1.37158i 0.395373 0.0837824i
\(269\) −3.97953 + 2.29758i −0.242636 + 0.140086i −0.616388 0.787443i \(-0.711405\pi\)
0.373752 + 0.927529i \(0.378071\pi\)
\(270\) 1.36729 4.56798i 0.0832108 0.277998i
\(271\) 24.8226 + 14.3314i 1.50787 + 0.870568i 0.999958 + 0.00915707i \(0.00291483\pi\)
0.507909 + 0.861411i \(0.330419\pi\)
\(272\) 9.56565 7.72644i 0.580002 0.468485i
\(273\) −13.1871 + 25.0278i −0.798122 + 1.51475i
\(274\) 17.5615 + 18.5174i 1.06093 + 1.11868i
\(275\) 7.95910 + 4.64934i 0.479952 + 0.280366i
\(276\) −11.5775 + 5.89000i −0.696886 + 0.354536i
\(277\) −5.19134 1.39102i −0.311918 0.0835781i 0.0994644 0.995041i \(-0.468287\pi\)
−0.411382 + 0.911463i \(0.634954\pi\)
\(278\) 2.87830 + 1.76506i 0.172629 + 0.105861i
\(279\) −15.6722 −0.938270
\(280\) −16.7175 0.725204i −0.999060 0.0433392i
\(281\) 24.2851 1.44873 0.724365 0.689417i \(-0.242133\pi\)
0.724365 + 0.689417i \(0.242133\pi\)
\(282\) 2.51620 + 1.54300i 0.149837 + 0.0918846i
\(283\) 9.83724 + 2.63588i 0.584763 + 0.156687i 0.539059 0.842268i \(-0.318780\pi\)
0.0457044 + 0.998955i \(0.485447\pi\)
\(284\) 18.7735 9.55086i 1.11400 0.566739i
\(285\) −29.5532 + 7.83824i −1.75058 + 0.464297i
\(286\) −7.47389 7.88074i −0.441940 0.465998i
\(287\) 15.0160 + 23.8310i 0.886367 + 1.40670i
\(288\) −20.1161 2.68013i −1.18535 0.157928i
\(289\) −6.53852 3.77501i −0.384619 0.222060i
\(290\) 17.6965 9.54311i 1.03917 0.560391i
\(291\) −0.616559 + 0.355971i −0.0361434 + 0.0208674i
\(292\) −4.00464 + 0.848613i −0.234354 + 0.0496613i
\(293\) 19.5889 + 19.5889i 1.14440 + 1.14440i 0.987636 + 0.156762i \(0.0501056\pi\)
0.156762 + 0.987636i \(0.449894\pi\)
\(294\) 24.1765 7.81470i 1.41000 0.455763i
\(295\) 0.0240564 9.45611i 0.00140062 0.550556i
\(296\) 11.1399 2.05392i 0.647495 0.119382i
\(297\) −2.68501 0.719447i −0.155800 0.0417466i
\(298\) −7.43151 13.6973i −0.430496 0.793462i
\(299\) −5.27100 + 9.12965i −0.304830 + 0.527981i
\(300\) 19.1714 17.0648i 1.10686 0.985236i
\(301\) −3.73596 0.847746i −0.215337 0.0488632i
\(302\) −23.3964 0.619930i −1.34631 0.0356730i
\(303\) −4.88183 18.2192i −0.280454 1.04667i
\(304\) 8.64333 + 19.4783i 0.495729 + 1.11716i
\(305\) −23.2952 + 13.3706i −1.33388 + 0.765598i
\(306\) −3.63616 15.1665i −0.207865 0.867009i
\(307\) −20.7290 20.7290i −1.18307 1.18307i −0.978946 0.204121i \(-0.934567\pi\)
−0.204121 0.978946i \(-0.565433\pi\)
\(308\) −0.139669 + 9.75397i −0.00795836 + 0.555784i
\(309\) 35.0086i 1.99157i
\(310\) −11.7583 7.25173i −0.667825 0.411871i
\(311\) −3.76125 + 2.17156i −0.213281 + 0.123138i −0.602835 0.797866i \(-0.705962\pi\)
0.389554 + 0.921003i \(0.372629\pi\)
\(312\) −27.3087 + 12.9943i −1.54605 + 0.735660i
\(313\) 7.58085 2.03128i 0.428495 0.114815i −0.0381246 0.999273i \(-0.512138\pi\)
0.466620 + 0.884458i \(0.345472\pi\)
\(314\) 5.51948 + 5.81993i 0.311482 + 0.328438i
\(315\) −9.94126 + 18.7516i −0.560127 + 1.05653i
\(316\) −15.8097 0.838401i −0.889364 0.0471637i
\(317\) −0.627741 2.34276i −0.0352574 0.131583i 0.946054 0.324009i \(-0.105031\pi\)
−0.981311 + 0.192427i \(0.938364\pi\)
\(318\) −8.62475 + 4.67939i −0.483652 + 0.262407i
\(319\) −5.86050 10.1507i −0.328125 0.568329i
\(320\) −13.8522 11.3188i −0.774364 0.632740i
\(321\) −11.9867 −0.669034
\(322\) 9.11518 2.56172i 0.507969 0.142759i
\(323\) −11.5804 + 11.5804i −0.644349 + 0.644349i
\(324\) 7.51493 11.5563i 0.417496 0.642014i
\(325\) 5.49345 20.0923i 0.304722 1.11452i
\(326\) −1.19389 + 4.02591i −0.0661234 + 0.222975i
\(327\) 25.1164 6.72992i 1.38894 0.372165i
\(328\) −2.39055 + 30.0171i −0.131996 + 1.65741i
\(329\) −1.57899 1.46138i −0.0870525 0.0805685i
\(330\) −10.2685 10.8828i −0.565264 0.599080i
\(331\) −11.1137 6.41652i −0.610866 0.352684i 0.162438 0.986719i \(-0.448064\pi\)
−0.773304 + 0.634035i \(0.781398\pi\)
\(332\) −0.611686 0.199169i −0.0335706 0.0109308i
\(333\) 3.71862 13.8781i 0.203779 0.760515i
\(334\) −5.20936 21.7283i −0.285044 1.18892i
\(335\) 5.24391 5.21729i 0.286505 0.285051i
\(336\) 25.7047 + 8.77864i 1.40231 + 0.478914i
\(337\) 25.1079 25.1079i 1.36771 1.36771i 0.504022 0.863691i \(-0.331853\pi\)
0.863691 0.504022i \(-0.168147\pi\)
\(338\) −3.21980 + 5.25057i −0.175134 + 0.285593i
\(339\) 13.9824 + 24.2182i 0.759418 + 1.31535i
\(340\) 4.28964 13.0613i 0.232638 0.708350i
\(341\) −4.02677 + 6.97457i −0.218062 + 0.377694i
\(342\) 27.0193 + 0.715927i 1.46104 + 0.0387129i
\(343\) −18.3958 + 2.14334i −0.993281 + 0.115729i
\(344\) −2.65688 3.11668i −0.143249 0.168040i
\(345\) −7.29342 + 12.5587i −0.392665 + 0.676137i
\(346\) 9.41190 + 2.79111i 0.505987 + 0.150051i
\(347\) −1.10061 + 4.10753i −0.0590838 + 0.220504i −0.989155 0.146876i \(-0.953078\pi\)
0.930071 + 0.367379i \(0.119745\pi\)
\(348\) −31.9278 + 6.76574i −1.71151 + 0.362682i
\(349\) 4.09263i 0.219074i 0.993983 + 0.109537i \(0.0349368\pi\)
−0.993983 + 0.109537i \(0.965063\pi\)
\(350\) −16.1352 + 9.46869i −0.862461 + 0.506123i
\(351\) 6.28161i 0.335288i
\(352\) −6.36131 + 8.26361i −0.339059 + 0.440452i
\(353\) 5.17152 19.3004i 0.275252 1.02726i −0.680420 0.732823i \(-0.738202\pi\)
0.955672 0.294433i \(-0.0951308\pi\)
\(354\) −4.36416 + 14.7164i −0.231953 + 0.782166i
\(355\) 11.8266 20.3644i 0.627689 1.08083i
\(356\) −0.459511 + 8.66497i −0.0243540 + 0.459242i
\(357\) 0.806886 + 20.8593i 0.0427049 + 1.10399i
\(358\) −0.381195 + 14.3864i −0.0201468 + 0.760346i
\(359\) 4.85897 8.41598i 0.256446 0.444178i −0.708841 0.705368i \(-0.750782\pi\)
0.965287 + 0.261190i \(0.0841150\pi\)
\(360\) −20.5128 + 9.69673i −1.08112 + 0.511062i
\(361\) −4.69104 8.12512i −0.246897 0.427638i
\(362\) −13.0270 7.98850i −0.684681 0.419866i
\(363\) 13.7956 13.7956i 0.724082 0.724082i
\(364\) 21.3725 5.40000i 1.12023 0.283037i
\(365\) −3.24447 + 3.22801i −0.169824 + 0.168962i
\(366\) 42.3988 10.1651i 2.21622 0.531339i
\(367\) 3.93209 14.6748i 0.205254 0.766017i −0.784119 0.620611i \(-0.786885\pi\)
0.989372 0.145406i \(-0.0464488\pi\)
\(368\) 9.44523 + 3.63916i 0.492367 + 0.189704i
\(369\) 33.0763 + 19.0966i 1.72188 + 0.994129i
\(370\) 9.21152 8.69157i 0.478884 0.451853i
\(371\) 6.83192 2.11682i 0.354696 0.109900i
\(372\) 14.9948 + 16.6742i 0.777444 + 0.864519i
\(373\) −31.1771 + 8.35388i −1.61429 + 0.432548i −0.949317 0.314320i \(-0.898223\pi\)
−0.664972 + 0.746868i \(0.731557\pi\)
\(374\) −7.68376 2.27863i −0.397318 0.117825i
\(375\) 7.63828 27.6603i 0.394439 1.42837i
\(376\) −0.417038 2.26190i −0.0215071 0.116648i
\(377\) −18.7291 + 18.7291i −0.964600 + 0.964600i
\(378\) 3.94052 4.03764i 0.202679 0.207674i
\(379\) 29.2598 1.50297 0.751487 0.659747i \(-0.229337\pi\)
0.751487 + 0.659747i \(0.229337\pi\)
\(380\) 19.9403 + 13.0393i 1.02292 + 0.668904i
\(381\) −16.3600 28.3364i −0.838150 1.45172i
\(382\) 9.32484 + 17.1869i 0.477100 + 0.879360i
\(383\) 2.92209 + 10.9054i 0.149312 + 0.557240i 0.999526 + 0.0308021i \(0.00980617\pi\)
−0.850213 + 0.526438i \(0.823527\pi\)
\(384\) 16.3951 + 23.9666i 0.836661 + 1.22304i
\(385\) 5.79071 + 9.24212i 0.295122 + 0.471022i
\(386\) 7.07757 6.71218i 0.360239 0.341641i
\(387\) −5.01753 + 1.34444i −0.255055 + 0.0683419i
\(388\) 0.527513 + 0.171762i 0.0267804 + 0.00871988i
\(389\) 33.4554 19.3155i 1.69625 0.979333i 0.747000 0.664824i \(-0.231494\pi\)
0.949255 0.314508i \(-0.101840\pi\)
\(390\) −17.7491 + 28.7792i −0.898761 + 1.45729i
\(391\) 7.77900i 0.393401i
\(392\) −17.1251 9.93626i −0.864951 0.501857i
\(393\) 34.0310 + 34.0310i 1.71664 + 1.71664i
\(394\) −15.2746 + 3.66208i −0.769522 + 0.184493i
\(395\) −15.3516 + 8.81127i −0.772424 + 0.443343i
\(396\) 5.99768 + 11.7892i 0.301395 + 0.592431i
\(397\) −2.22097 8.28877i −0.111467 0.416002i 0.887531 0.460748i \(-0.152419\pi\)
−0.998998 + 0.0447462i \(0.985752\pi\)
\(398\) 0.647137 24.4232i 0.0324381 1.22422i
\(399\) −35.2800 8.00555i −1.76621 0.400779i
\(400\) −19.8768 2.21645i −0.993840 0.110822i
\(401\) 1.16330 2.01489i 0.0580922 0.100619i −0.835517 0.549465i \(-0.814832\pi\)
0.893609 + 0.448846i \(0.148165\pi\)
\(402\) −10.5543 + 5.72627i −0.526401 + 0.285600i
\(403\) 17.5792 + 4.71033i 0.875681 + 0.234638i
\(404\) −8.01273 + 12.3218i −0.398648 + 0.613030i
\(405\) 0.0392078 15.4118i 0.00194825 0.765821i
\(406\) 23.7876 0.289567i 1.18056 0.0143710i
\(407\) −5.22069 5.22069i −0.258780 0.258780i
\(408\) −12.6572 + 18.3796i −0.626623 + 0.909924i
\(409\) −0.162801 + 0.0939930i −0.00804997 + 0.00464765i −0.504020 0.863692i \(-0.668146\pi\)
0.495970 + 0.868340i \(0.334813\pi\)
\(410\) 15.9797 + 29.6323i 0.789180 + 1.46344i
\(411\) −40.1112 23.1582i −1.97854 1.14231i
\(412\) −20.2844 + 18.2413i −0.999339 + 0.898685i
\(413\) 5.21561 9.89866i 0.256643 0.487081i
\(414\) 9.31545 8.83453i 0.457829 0.434193i
\(415\) −0.695189 + 0.184381i −0.0341255 + 0.00905092i
\(416\) 21.7583 + 9.05221i 1.06679 + 0.443821i
\(417\) −5.91892 1.58597i −0.289851 0.0776652i
\(418\) 7.26088 11.8404i 0.355141 0.579134i
\(419\) −13.0861 −0.639297 −0.319648 0.947536i \(-0.603565\pi\)
−0.319648 + 0.947536i \(0.603565\pi\)
\(420\) 29.4621 7.36423i 1.43760 0.359338i
\(421\) 3.33535 0.162555 0.0812776 0.996692i \(-0.474100\pi\)
0.0812776 + 0.996692i \(0.474100\pi\)
\(422\) −13.8057 + 22.5131i −0.672051 + 1.09592i
\(423\) −2.81787 0.755046i −0.137009 0.0367116i
\(424\) 7.20523 + 2.55907i 0.349917 + 0.124279i
\(425\) −3.90256 14.8667i −0.189302 0.721142i
\(426\) −27.7371 + 26.3051i −1.34387 + 1.27449i
\(427\) −31.7570 + 1.22843i −1.53683 + 0.0594481i
\(428\) 6.24571 + 6.94524i 0.301898 + 0.335711i
\(429\) 17.0707 + 9.85579i 0.824183 + 0.475842i
\(430\) −4.38656 1.31299i −0.211539 0.0633180i
\(431\) −2.08778 + 1.20538i −0.100565 + 0.0580612i −0.549439 0.835534i \(-0.685159\pi\)
0.448874 + 0.893595i \(0.351825\pi\)
\(432\) 5.95828 0.936111i 0.286668 0.0450386i
\(433\) 0.313016 + 0.313016i 0.0150426 + 0.0150426i 0.714588 0.699545i \(-0.246614\pi\)
−0.699545 + 0.714588i \(0.746614\pi\)
\(434\) −8.34456 14.0553i −0.400552 0.674675i
\(435\) −25.8672 + 25.7360i −1.24024 + 1.23394i
\(436\) −16.9863 11.0461i −0.813498 0.529011i
\(437\) −13.0219 3.48921i −0.622922 0.166911i
\(438\) 6.53008 3.54292i 0.312019 0.169287i
\(439\) 11.2300 19.4509i 0.535978 0.928341i −0.463138 0.886286i \(-0.653276\pi\)
0.999115 0.0420543i \(-0.0133902\pi\)
\(440\) −0.955185 + 11.6202i −0.0455367 + 0.553972i
\(441\) −20.7130 + 14.1987i −0.986335 + 0.676128i
\(442\) −0.479719 + 18.1048i −0.0228179 + 0.861155i
\(443\) −4.51489 16.8498i −0.214509 0.800559i −0.986339 0.164730i \(-0.947325\pi\)
0.771830 0.635829i \(-0.219342\pi\)
\(444\) −18.3233 + 9.32186i −0.869586 + 0.442396i
\(445\) 4.82928 + 8.41392i 0.228930 + 0.398858i
\(446\) 21.5400 5.16422i 1.01995 0.244533i
\(447\) 19.9983 + 19.9983i 0.945886 + 0.945886i
\(448\) −8.30707 19.4677i −0.392472 0.919764i
\(449\) 24.3525i 1.14927i 0.818411 + 0.574633i \(0.194855\pi\)
−0.818411 + 0.574633i \(0.805145\pi\)
\(450\) −13.3710 + 21.5573i −0.630314 + 1.01622i
\(451\) 16.9970 9.81325i 0.800360 0.462088i
\(452\) 6.74673 20.7205i 0.317339 0.974609i
\(453\) 41.0289 10.9937i 1.92771 0.516528i
\(454\) −2.69399 + 2.55491i −0.126435 + 0.119908i
\(455\) 16.7868 18.0454i 0.786975 0.845982i
\(456\) −25.0898 29.4319i −1.17494 1.37827i
\(457\) −3.60868 13.4678i −0.168807 0.629996i −0.997524 0.0703280i \(-0.977595\pi\)
0.828717 0.559668i \(-0.189071\pi\)
\(458\) 1.37094 + 2.52682i 0.0640597 + 0.118071i
\(459\) 2.31762 + 4.01423i 0.108177 + 0.187368i
\(460\) 11.0769 2.31784i 0.516463 0.108070i
\(461\) −15.8798 −0.739597 −0.369799 0.929112i \(-0.620573\pi\)
−0.369799 + 0.929112i \(0.620573\pi\)
\(462\) −4.78994 17.0437i −0.222848 0.792944i
\(463\) −21.2388 + 21.2388i −0.987052 + 0.987052i −0.999917 0.0128649i \(-0.995905\pi\)
0.0128649 + 0.999917i \(0.495905\pi\)
\(464\) 20.5562 + 14.9740i 0.954298 + 0.695152i
\(465\) 24.2009 + 6.55064i 1.12229 + 0.303778i
\(466\) −18.8898 5.60180i −0.875054 0.259499i
\(467\) 22.8692 6.12778i 1.05826 0.283560i 0.312599 0.949885i \(-0.398800\pi\)
0.745661 + 0.666325i \(0.232134\pi\)
\(468\) 22.2255 19.9869i 1.02737 0.923896i
\(469\) 8.36038 2.59041i 0.386047 0.119614i
\(470\) −1.76477 1.87035i −0.0814029 0.0862727i
\(471\) −12.6068 7.27851i −0.580889 0.335376i
\(472\) 10.8008 5.13935i 0.497146 0.236558i
\(473\) −0.690874 + 2.57838i −0.0317664 + 0.118554i
\(474\) 27.9410 6.69885i 1.28337 0.307688i
\(475\) 26.6371 + 0.135530i 1.22219 + 0.00621856i
\(476\) 11.6657 11.3363i 0.534695 0.519598i
\(477\) 6.85764 6.85764i 0.313990 0.313990i
\(478\) −11.7292 7.19266i −0.536480 0.328985i
\(479\) −11.7318 20.3200i −0.536038 0.928445i −0.999112 0.0421254i \(-0.986587\pi\)
0.463074 0.886319i \(-0.346746\pi\)
\(480\) 29.9429 + 12.5467i 1.36670 + 0.572678i
\(481\) −8.34221 + 14.4491i −0.380372 + 0.658823i
\(482\) 0.597324 22.5432i 0.0272073 1.02682i
\(483\) −14.5383 + 9.16066i −0.661516 + 0.416825i
\(484\) −15.1816 0.805092i −0.690071 0.0365951i
\(485\) 0.599526 0.159009i 0.0272231 0.00722022i
\(486\) −8.93166 + 30.1184i −0.405148 + 1.36620i
\(487\) −2.12851 + 7.94369i −0.0964518 + 0.359963i −0.997236 0.0743048i \(-0.976326\pi\)
0.900784 + 0.434268i \(0.142993\pi\)
\(488\) −27.9818 19.2698i −1.26667 0.872301i
\(489\) 7.62100i 0.344633i
\(490\) −22.1101 + 1.06856i −0.998834 + 0.0482727i
\(491\) 25.5075i 1.15114i 0.817753 + 0.575569i \(0.195219\pi\)
−0.817753 + 0.575569i \(0.804781\pi\)
\(492\) −11.3290 53.4623i −0.510753 2.41027i
\(493\) −5.05859 + 18.8789i −0.227827 + 0.850264i
\(494\) −30.0919 8.92378i −1.35390 0.401500i
\(495\) 12.7883 + 7.42677i 0.574791 + 0.333808i
\(496\) 1.84816 17.3763i 0.0829847 0.780219i
\(497\) 23.5745 14.8544i 1.05746 0.666310i
\(498\) 1.16708 + 0.0309240i 0.0522983 + 0.00138574i
\(499\) −12.2280 + 21.1796i −0.547402 + 0.948128i 0.451049 + 0.892499i \(0.351050\pi\)
−0.998451 + 0.0556294i \(0.982283\pi\)
\(500\) −20.0066 + 9.98676i −0.894723 + 0.446621i
\(501\) 20.2757 + 35.1186i 0.905853 + 1.56898i
\(502\) −4.15700 + 6.77887i −0.185536 + 0.302556i
\(503\) 18.7502 18.7502i 0.836032 0.836032i −0.152302 0.988334i \(-0.548669\pi\)
0.988334 + 0.152302i \(0.0486687\pi\)
\(504\) −26.8239 1.09526i −1.19483 0.0487868i
\(505\) −0.0418050 + 16.4327i −0.00186030 + 0.731248i
\(506\) −1.53813 6.41555i −0.0683782 0.285206i
\(507\) 2.89311 10.7972i 0.128487 0.479522i
\(508\) −7.89399 + 24.2439i −0.350239 + 1.07565i
\(509\) −16.5443 9.55184i −0.733312 0.423378i 0.0863205 0.996267i \(-0.472489\pi\)
−0.819633 + 0.572889i \(0.805822\pi\)
\(510\) −0.724319 + 24.9397i −0.0320734 + 1.10435i
\(511\) −5.17268 + 1.60272i −0.228826 + 0.0709001i
\(512\) 5.34377 21.9874i 0.236163 0.971713i
\(513\) −7.75929 + 2.07910i −0.342581 + 0.0917943i
\(514\) −2.06068 + 6.94882i −0.0908929 + 0.306499i
\(515\) −7.96891 + 29.4406i −0.351152 + 1.29731i
\(516\) 6.23106 + 4.05200i 0.274307 + 0.178380i
\(517\) −1.06003 + 1.06003i −0.0466201 + 0.0466201i
\(518\) 14.4262 4.05433i 0.633852 0.178137i
\(519\) −17.8166 −0.782062
\(520\) 25.9232 4.71143i 1.13681 0.206610i
\(521\) −5.20016 9.00694i −0.227823 0.394601i 0.729340 0.684152i \(-0.239827\pi\)
−0.957163 + 0.289551i \(0.906494\pi\)
\(522\) 28.3527 15.3829i 1.24097 0.673290i
\(523\) 1.09296 + 4.07897i 0.0477917 + 0.178361i 0.985696 0.168533i \(-0.0539030\pi\)
−0.937904 + 0.346894i \(0.887236\pi\)
\(524\) 1.98600 37.4499i 0.0867588 1.63600i
\(525\) 23.1890 24.8008i 1.01205 1.08240i
\(526\) 7.67932 + 8.09735i 0.334834 + 0.353061i
\(527\) 12.9718 3.47577i 0.565059 0.151407i
\(528\) 6.80455 17.6608i 0.296130 0.768588i
\(529\) 14.3730 8.29825i 0.624913 0.360794i
\(530\) 8.31816 1.97192i 0.361318 0.0856545i
\(531\) 15.1712i 0.658372i
\(532\) 13.7442 + 24.6129i 0.595887 + 1.06710i
\(533\) −31.3614 31.3614i −1.35841 1.35841i
\(534\) −3.67151 15.3139i −0.158882 0.662697i
\(535\) 10.0803 + 2.72850i 0.435808 + 0.117963i
\(536\) 8.81720 + 3.13159i 0.380845 + 0.135264i
\(537\) −6.75999 25.2286i −0.291715 1.08870i
\(538\) −6.49626 0.172130i −0.280074 0.00742106i
\(539\) 0.996869 + 12.8660i 0.0429382 + 0.554180i
\(540\) 5.02549 4.49625i 0.216263 0.193488i
\(541\) 0.191927 0.332427i 0.00825157 0.0142921i −0.861870 0.507129i \(-0.830707\pi\)
0.870122 + 0.492837i \(0.164040\pi\)
\(542\) 19.3306 + 35.6290i 0.830323 + 1.53040i
\(543\) 26.7885 + 7.17796i 1.14960 + 0.308036i
\(544\) 17.2444 2.24302i 0.739346 0.0961685i
\(545\) −22.6536 0.0576308i −0.970374 0.00246863i
\(546\) −34.4012 + 20.4239i −1.47224 + 0.874061i
\(547\) 0.879876 + 0.879876i 0.0376208 + 0.0376208i 0.725667 0.688046i \(-0.241531\pi\)
−0.688046 + 0.725667i \(0.741531\pi\)
\(548\) 7.48192 + 35.3075i 0.319612 + 1.50826i
\(549\) −37.3195 + 21.5464i −1.59276 + 0.919578i
\(550\) 6.15812 + 11.4893i 0.262583 + 0.489907i
\(551\) −29.3340 16.9360i −1.24967 0.721497i
\(552\) −18.3122 1.45838i −0.779419 0.0620726i
\(553\) −20.9280 + 0.809543i −0.889948 + 0.0344253i
\(554\) −5.23023 5.51494i −0.222211 0.234308i
\(555\) −11.5430 + 19.8761i −0.489973 + 0.843695i
\(556\) 2.16514 + 4.25586i 0.0918223 + 0.180488i
\(557\) −37.5586 10.0638i −1.59141 0.426417i −0.648975 0.760810i \(-0.724802\pi\)
−0.942434 + 0.334394i \(0.891469\pi\)
\(558\) −18.8942 11.5864i −0.799854 0.490493i
\(559\) 6.03213 0.255132
\(560\) −19.6182 13.2335i −0.829021 0.559218i
\(561\) 14.5453 0.614102
\(562\) 29.2778 + 17.9540i 1.23501 + 0.757343i
\(563\) −9.14007 2.44907i −0.385208 0.103216i 0.0610177 0.998137i \(-0.480565\pi\)
−0.446225 + 0.894921i \(0.647232\pi\)
\(564\) 1.89275 + 3.72045i 0.0796992 + 0.156659i
\(565\) −6.24580 23.5491i −0.262763 0.990718i
\(566\) 9.91093 + 10.4504i 0.416587 + 0.439265i
\(567\) 8.50055 16.1331i 0.356990 0.677528i
\(568\) 29.6940 + 2.36481i 1.24593 + 0.0992254i
\(569\) −31.4026 18.1303i −1.31647 0.760062i −0.333308 0.942818i \(-0.608165\pi\)
−0.983158 + 0.182756i \(0.941498\pi\)
\(570\) −41.4238 12.3990i −1.73505 0.519338i
\(571\) 41.2518 23.8167i 1.72633 0.996699i 0.822575 0.568657i \(-0.192537\pi\)
0.903759 0.428042i \(-0.140797\pi\)
\(572\) −3.18419 15.0263i −0.133138 0.628283i
\(573\) −25.0932 25.0932i −1.04828 1.04828i
\(574\) 0.484872 + 39.8316i 0.0202382 + 1.66254i
\(575\) 8.99212 8.90108i 0.374997 0.371201i
\(576\) −22.2703 18.1030i −0.927929 0.754290i
\(577\) 44.0011 + 11.7901i 1.83179 + 0.490827i 0.998112 0.0614241i \(-0.0195642\pi\)
0.833678 + 0.552251i \(0.186231\pi\)
\(578\) −5.09188 9.38502i −0.211794 0.390366i
\(579\) −8.85133 + 15.3310i −0.367849 + 0.637133i
\(580\) 28.3899 + 1.57798i 1.17882 + 0.0655219i
\(581\) −0.829901 0.188317i −0.0344301 0.00781270i
\(582\) −1.00648 0.0266686i −0.0417201 0.00110545i
\(583\) −1.28986 4.81383i −0.0534206 0.199368i
\(584\) −5.45532 1.93755i −0.225743 0.0801766i
\(585\) 8.73149 32.2579i 0.361003 1.33370i
\(586\) 9.13406 + 38.0982i 0.377325 + 1.57382i
\(587\) 15.9943 + 15.9943i 0.660155 + 0.660155i 0.955417 0.295261i \(-0.0954067\pi\)
−0.295261 + 0.955417i \(0.595407\pi\)
\(588\) 34.9243 + 8.45239i 1.44025 + 0.348570i
\(589\) 23.2735i 0.958968i
\(590\) 7.01990 11.3824i 0.289005 0.468605i
\(591\) 24.6877 14.2535i 1.01552 0.586309i
\(592\) 14.9486 + 5.75955i 0.614383 + 0.236716i
\(593\) 6.44723 1.72753i 0.264756 0.0709412i −0.123999 0.992282i \(-0.539572\pi\)
0.388755 + 0.921341i \(0.372905\pi\)
\(594\) −2.70513 2.85238i −0.110993 0.117035i
\(595\) 4.06958 17.7253i 0.166837 0.726668i
\(596\) 1.16707 22.0074i 0.0478050 0.901457i
\(597\) 11.4761 + 42.8295i 0.469687 + 1.75290i
\(598\) −13.1042 + 7.10972i −0.535870 + 0.290738i
\(599\) 16.9948 + 29.4358i 0.694387 + 1.20271i 0.970387 + 0.241555i \(0.0776576\pi\)
−0.276000 + 0.961158i \(0.589009\pi\)
\(600\) 35.7287 6.39969i 1.45862 0.261266i
\(601\) 32.7782 1.33705 0.668526 0.743689i \(-0.266926\pi\)
0.668526 + 0.743689i \(0.266926\pi\)
\(602\) −3.87729 3.78402i −0.158026 0.154225i
\(603\) 8.39185 8.39185i 0.341743 0.341743i
\(604\) −27.7481 18.0443i −1.12905 0.734213i
\(605\) −14.7417 + 8.46121i −0.599336 + 0.343997i
\(606\) 7.58400 25.5740i 0.308079 1.03887i
\(607\) −20.2807 + 5.43419i −0.823167 + 0.220567i −0.645731 0.763565i \(-0.723447\pi\)
−0.177436 + 0.984132i \(0.556780\pi\)
\(608\) −3.98005 + 29.8728i −0.161412 + 1.21150i
\(609\) −41.2402 + 12.7780i −1.67114 + 0.517791i
\(610\) −37.9692 1.10273i −1.53733 0.0446483i
\(611\) 2.93381 + 1.69384i 0.118689 + 0.0685254i
\(612\) 6.82885 20.9727i 0.276040 0.847770i
\(613\) −7.58040 + 28.2904i −0.306169 + 1.14264i 0.625765 + 0.780012i \(0.284787\pi\)
−0.931934 + 0.362628i \(0.881880\pi\)
\(614\) −9.66565 40.3155i −0.390074 1.62700i
\(615\) −43.0941 43.3140i −1.73772 1.74659i
\(616\) −7.37948 + 11.6560i −0.297328 + 0.469633i
\(617\) −27.0214 + 27.0214i −1.08784 + 1.08784i −0.0920892 + 0.995751i \(0.529354\pi\)
−0.995751 + 0.0920892i \(0.970646\pi\)
\(618\) 25.8818 42.2059i 1.04112 1.69777i
\(619\) 6.44385 + 11.1611i 0.259000 + 0.448601i 0.965974 0.258638i \(-0.0832737\pi\)
−0.706974 + 0.707239i \(0.749940\pi\)
\(620\) −8.81441 17.4355i −0.353995 0.700225i
\(621\) −1.90781 + 3.30442i −0.0765577 + 0.132602i
\(622\) −6.13994 0.162689i −0.246189 0.00652323i
\(623\) 0.443694 + 11.4702i 0.0177762 + 0.459544i
\(624\) −42.5297 4.52349i −1.70255 0.181085i
\(625\) −12.7197 + 21.5223i −0.508787 + 0.860893i
\(626\) 10.6411 + 3.15563i 0.425304 + 0.126124i
\(627\) −6.52416 + 24.3485i −0.260550 + 0.972386i
\(628\) 2.35153 + 11.0970i 0.0938362 + 0.442817i
\(629\) 12.3115i 0.490892i
\(630\) −25.8481 + 15.2571i −1.02981 + 0.607858i
\(631\) 35.1539i 1.39945i 0.714410 + 0.699727i \(0.246695\pi\)
−0.714410 + 0.699727i \(0.753305\pi\)
\(632\) −18.4401 12.6988i −0.733507 0.505133i
\(633\) 12.4049 46.2958i 0.493052 1.84009i
\(634\) 0.975205 3.28849i 0.0387304 0.130602i
\(635\) 7.30788 + 27.5536i 0.290004 + 1.09343i
\(636\) −13.8573 0.734867i −0.549479 0.0291394i
\(637\) 27.5008 9.70101i 1.08962 0.384368i
\(638\) 0.439057 16.5702i 0.0173824 0.656020i
\(639\) 18.8910 32.7202i 0.747318 1.29439i
\(640\) −8.33210 23.8867i −0.329355 0.944206i
\(641\) −4.98684 8.63746i −0.196968 0.341159i 0.750576 0.660784i \(-0.229776\pi\)
−0.947544 + 0.319625i \(0.896443\pi\)
\(642\) −14.4510 8.86178i −0.570336 0.349746i
\(643\) −25.3846 + 25.3846i −1.00107 + 1.00107i −0.00107009 + 0.999999i \(0.500341\pi\)
−0.999999 + 0.00107009i \(0.999659\pi\)
\(644\) 12.8830 + 3.65047i 0.507662 + 0.143849i
\(645\) 8.30997 + 0.0211406i 0.327205 + 0.000832410i
\(646\) −22.5225 + 5.39977i −0.886135 + 0.212451i
\(647\) 0.521998 1.94812i 0.0205218 0.0765886i −0.954906 0.296910i \(-0.904044\pi\)
0.975427 + 0.220321i \(0.0707106\pi\)
\(648\) 17.6034 8.37627i 0.691528 0.329051i
\(649\) −6.75159 3.89803i −0.265023 0.153011i
\(650\) 21.4771 20.1617i 0.842400 0.790808i
\(651\) 21.7717 + 20.1500i 0.853299 + 0.789742i
\(652\) −4.41569 + 3.97094i −0.172932 + 0.155514i
\(653\) 12.7709 3.42196i 0.499766 0.133912i −0.000125665 1.00000i \(-0.500040\pi\)
0.499891 + 0.866088i \(0.333373\pi\)
\(654\) 35.2554 + 10.4550i 1.37859 + 0.408824i
\(655\) −20.8721 36.3648i −0.815540 1.42089i
\(656\) −25.0736 + 34.4208i −0.978959 + 1.34391i
\(657\) −5.19215 + 5.19215i −0.202565 + 0.202565i
\(658\) −0.823209 2.92916i −0.0320920 0.114191i
\(659\) 43.1794 1.68203 0.841015 0.541011i \(-0.181958\pi\)
0.841015 + 0.541011i \(0.181958\pi\)
\(660\) −4.33393 20.7117i −0.168698 0.806202i
\(661\) 8.09021 + 14.0127i 0.314673 + 0.545029i 0.979368 0.202085i \(-0.0647719\pi\)
−0.664695 + 0.747115i \(0.731439\pi\)
\(662\) −8.65484 15.9520i −0.336380 0.619994i
\(663\) −8.50719 31.7493i −0.330392 1.23304i
\(664\) −0.590194 0.692334i −0.0229040 0.0268678i
\(665\) 27.8465 + 14.7630i 1.07984 + 0.572483i
\(666\) 14.7432 13.9821i 0.571287 0.541794i
\(667\) −15.5407 + 4.16412i −0.601738 + 0.161235i
\(668\) 9.78337 30.0466i 0.378530 1.16254i
\(669\) −34.8142 + 20.1000i −1.34600 + 0.777111i
\(670\) 10.1791 2.41308i 0.393254 0.0932253i
\(671\) 22.1443i 0.854870i
\(672\) 24.4992 + 29.5869i 0.945078 + 1.14134i
\(673\) −9.53669 9.53669i −0.367612 0.367612i 0.498993 0.866606i \(-0.333703\pi\)
−0.866606 + 0.498993i \(0.833703\pi\)
\(674\) 48.8319 11.7075i 1.88093 0.450955i
\(675\) 1.98832 7.27230i 0.0765304 0.279911i
\(676\) −7.76349 + 3.94962i −0.298596 + 0.151908i
\(677\) 7.92901 + 29.5915i 0.304737 + 1.13729i 0.933172 + 0.359431i \(0.117029\pi\)
−0.628435 + 0.777862i \(0.716304\pi\)
\(678\) −1.04753 + 39.5342i −0.0402302 + 1.51830i
\(679\) 0.715700 + 0.162403i 0.0274660 + 0.00623245i
\(680\) 14.8278 12.5752i 0.568619 0.482238i
\(681\) 3.36915 5.83554i 0.129106 0.223618i
\(682\) −10.0109 + 5.43145i −0.383337 + 0.207981i
\(683\) −20.1250 5.39248i −0.770062 0.206338i −0.147663 0.989038i \(-0.547175\pi\)
−0.622399 + 0.782700i \(0.713842\pi\)
\(684\) 32.0448 + 20.8385i 1.22527 + 0.796779i
\(685\) 28.4602 + 28.6054i 1.08741 + 1.09296i
\(686\) −23.7623 11.0160i −0.907249 0.420594i
\(687\) −3.68921 3.68921i −0.140752 0.140752i
\(688\) −0.898933 5.72165i −0.0342715 0.218136i
\(689\) −9.75316 + 5.63099i −0.371566 + 0.214524i
\(690\) −18.0775 + 9.74855i −0.688197 + 0.371121i
\(691\) −5.07142 2.92798i −0.192926 0.111386i 0.400426 0.916329i \(-0.368862\pi\)
−0.593352 + 0.804943i \(0.702196\pi\)
\(692\) 9.28338 + 10.3231i 0.352901 + 0.392427i
\(693\) 9.32815 + 14.8041i 0.354347 + 0.562362i
\(694\) −4.36357 + 4.13830i −0.165639 + 0.157088i
\(695\) 4.61652 + 2.68103i 0.175115 + 0.101697i
\(696\) −43.4937 15.4475i −1.64862 0.585538i
\(697\) −31.6122 8.47047i −1.19740 0.320842i
\(698\) −3.02568 + 4.93402i −0.114524 + 0.186755i
\(699\) 35.7582 1.35250
\(700\) −26.4525 0.513407i −0.999812 0.0194050i
\(701\) 20.0349 0.756706 0.378353 0.925661i \(-0.376491\pi\)
0.378353 + 0.925661i \(0.376491\pi\)
\(702\) −4.64399 + 7.57302i −0.175276 + 0.285825i
\(703\) −20.6092 5.52223i −0.777292 0.208275i
\(704\) −13.7784 + 5.25958i −0.519292 + 0.198228i
\(705\) 4.03574 + 2.34374i 0.151995 + 0.0882704i
\(706\) 20.5035 19.4450i 0.771658 0.731821i
\(707\) −9.06364 + 17.2018i −0.340873 + 0.646941i
\(708\) −16.1412 + 14.5154i −0.606622 + 0.545523i
\(709\) 42.7844 + 24.7016i 1.60680 + 0.927688i 0.990080 + 0.140508i \(0.0448735\pi\)
0.616723 + 0.787180i \(0.288460\pi\)
\(710\) 29.3133 15.8077i 1.10011 0.593251i
\(711\) −24.5937 + 14.1992i −0.922335 + 0.532510i
\(712\) −6.95998 + 10.1066i −0.260836 + 0.378763i
\(713\) 7.81688 + 7.81688i 0.292744 + 0.292744i
\(714\) −14.4485 + 25.7442i −0.540721 + 0.963452i
\(715\) −12.1122 12.1740i −0.452972 0.455282i
\(716\) −11.0954 + 17.0623i −0.414656 + 0.637646i
\(717\) 24.1198 + 6.46287i 0.900769 + 0.241360i
\(718\) 12.0798 6.55395i 0.450815 0.244591i
\(719\) −12.1477 + 21.0405i −0.453033 + 0.784677i −0.998573 0.0534084i \(-0.982991\pi\)
0.545539 + 0.838085i \(0.316325\pi\)
\(720\) −31.8987 3.47487i −1.18880 0.129501i
\(721\) −24.5127 + 26.4854i −0.912901 + 0.986369i
\(722\) 0.351443 13.2636i 0.0130794 0.493620i
\(723\) 10.5928 + 39.5327i 0.393949 + 1.47024i
\(724\) −9.79922 19.2616i −0.364185 0.715853i
\(725\) 27.6113 15.7546i 1.02546 0.585112i
\(726\) 26.8309 6.43271i 0.995788 0.238740i
\(727\) 15.7313 + 15.7313i 0.583441 + 0.583441i 0.935847 0.352406i \(-0.114636\pi\)
−0.352406 + 0.935847i \(0.614636\pi\)
\(728\) 29.7587 + 9.29054i 1.10293 + 0.344330i
\(729\) 36.3365i 1.34580i
\(730\) −6.29795 + 1.49300i −0.233098 + 0.0552585i
\(731\) 3.85480 2.22557i 0.142575 0.0823157i
\(732\) 58.6304 + 19.0905i 2.16704 + 0.705604i
\(733\) −27.6619 + 7.41199i −1.02172 + 0.273768i −0.730517 0.682895i \(-0.760721\pi\)
−0.291199 + 0.956663i \(0.594054\pi\)
\(734\) 15.5895 14.7847i 0.575420 0.545713i
\(735\) 37.9196 13.2679i 1.39869 0.489394i
\(736\) 8.69661 + 11.3702i 0.320561 + 0.419110i
\(737\) −1.57843 5.89079i −0.0581423 0.216990i
\(738\) 25.7582 + 47.4759i 0.948172 + 1.74761i
\(739\) −4.43514 7.68188i −0.163149 0.282583i 0.772847 0.634592i \(-0.218832\pi\)
−0.935996 + 0.352009i \(0.885498\pi\)
\(740\) 17.5309 3.66836i 0.644450 0.134852i
\(741\) 56.9635 2.09261
\(742\) 9.80144 + 2.49882i 0.359822 + 0.0917347i
\(743\) −10.5849 + 10.5849i −0.388323 + 0.388323i −0.874089 0.485766i \(-0.838541\pi\)
0.485766 + 0.874089i \(0.338541\pi\)
\(744\) 5.75027 + 31.1879i 0.210815 + 1.14340i
\(745\) −12.2654 21.3697i −0.449371 0.782927i
\(746\) −43.7627 12.9779i −1.60227 0.475154i
\(747\) −1.11459 + 0.298652i −0.0407806 + 0.0109271i
\(748\) −7.57884 8.42768i −0.277110 0.308147i
\(749\) 9.06844 + 8.39300i 0.331354 + 0.306673i
\(750\) 29.6578 27.6999i 1.08295 1.01146i
\(751\) 26.2007 + 15.1270i 0.956078 + 0.551992i 0.894964 0.446139i \(-0.147201\pi\)
0.0611139 + 0.998131i \(0.480535\pi\)
\(752\) 1.16944 3.03523i 0.0426453 0.110683i
\(753\) 3.73521 13.9400i 0.136119 0.508002i
\(754\) −36.4260 + 8.73315i −1.32656 + 0.318042i
\(755\) −37.0058 0.0941429i −1.34678 0.00342621i
\(756\) 7.73566 1.95450i 0.281343 0.0710844i
\(757\) −18.0236 + 18.0236i −0.655078 + 0.655078i −0.954211 0.299133i \(-0.903302\pi\)
0.299133 + 0.954211i \(0.403302\pi\)
\(758\) 35.2752 + 21.6317i 1.28125 + 0.785700i
\(759\) 5.98667 + 10.3692i 0.217302 + 0.376378i
\(760\) 14.3998 + 30.4619i 0.522337 + 1.10497i
\(761\) 12.9621 22.4510i 0.469875 0.813848i −0.529532 0.848290i \(-0.677632\pi\)
0.999407 + 0.0344427i \(0.0109656\pi\)
\(762\) 1.22566 46.2569i 0.0444010 1.67571i
\(763\) −23.7138 12.4948i −0.858497 0.452343i
\(764\) −1.46440 + 27.6142i −0.0529803 + 0.999046i
\(765\) −6.32182 23.8357i −0.228566 0.861783i
\(766\) −4.53952 + 15.3077i −0.164020 + 0.553090i
\(767\) −4.55974 + 17.0172i −0.164643 + 0.614455i
\(768\) 2.04728 + 41.0147i 0.0738749 + 1.47999i
\(769\) 43.7662i 1.57825i −0.614232 0.789125i \(-0.710534\pi\)
0.614232 0.789125i \(-0.289466\pi\)
\(770\) 0.148506 + 15.4232i 0.00535180 + 0.555815i
\(771\) 13.1540i 0.473731i
\(772\) 13.4949 2.85967i 0.485693 0.102922i
\(773\) −2.58809 + 9.65890i −0.0930873 + 0.347406i −0.996723 0.0808964i \(-0.974222\pi\)
0.903635 + 0.428303i \(0.140888\pi\)
\(774\) −7.04301 2.08861i −0.253156 0.0750737i
\(775\) −18.8607 11.0175i −0.677495 0.395762i
\(776\) 0.508979 + 0.597063i 0.0182713 + 0.0214333i
\(777\) −23.0092 + 14.4982i −0.825451 + 0.520121i
\(778\) 54.6132 + 1.44708i 1.95798 + 0.0518802i
\(779\) 28.3588 49.1189i 1.01606 1.75987i
\(780\) −42.6745 + 21.5739i −1.52799 + 0.772468i
\(781\) −9.70762 16.8141i −0.347366 0.601655i
\(782\) −5.75101 + 9.37825i −0.205656 + 0.335366i
\(783\) −6.77890 + 6.77890i −0.242258 + 0.242258i
\(784\) −13.3000 24.6396i −0.474999 0.879987i
\(785\) 8.94490 + 8.99052i 0.319257 + 0.320886i
\(786\) 15.8682 + 66.1864i 0.566000 + 2.36079i
\(787\) 3.75602 14.0177i 0.133888 0.499675i −0.866112 0.499849i \(-0.833389\pi\)
1.00000 0.000173930i \(5.53638e-5\pi\)
\(788\) −21.1222 6.87753i −0.752447 0.245002i
\(789\) −17.5399 10.1267i −0.624439 0.360520i
\(790\) −25.0219 0.726705i −0.890238 0.0258550i
\(791\) 6.37911 28.1124i 0.226815 0.999561i
\(792\) −1.48504 + 18.6470i −0.0527686 + 0.662592i
\(793\) 48.3363 12.9517i 1.71647 0.459927i
\(794\) 3.45031 11.6348i 0.122447 0.412903i
\(795\) −13.4559 + 7.72317i −0.477230 + 0.273912i
\(796\) 18.8362 28.9658i 0.667632 1.02667i
\(797\) −16.4978 + 16.4978i −0.584382 + 0.584382i −0.936104 0.351723i \(-0.885596\pi\)
0.351723 + 0.936104i \(0.385596\pi\)
\(798\) −36.6145 35.7338i −1.29614 1.26496i
\(799\) 2.49978 0.0884360
\(800\) −22.3246 17.3670i −0.789293 0.614017i
\(801\) 7.78228 + 13.4793i 0.274973 + 0.476268i
\(802\) 2.89206 1.56910i 0.102122 0.0554067i
\(803\) 0.976597 + 3.64471i 0.0344633 + 0.128619i
\(804\) −16.9575 0.899273i −0.598046 0.0317149i
\(805\) 14.3112 4.39437i 0.504405 0.154881i
\(806\) 17.7109 + 18.6750i 0.623839 + 0.657798i
\(807\) 11.3921 3.05251i 0.401021 0.107453i
\(808\) −18.7695 + 8.93113i −0.660309 + 0.314196i
\(809\) 9.19342 5.30782i 0.323223 0.186613i −0.329605 0.944119i \(-0.606916\pi\)
0.652828 + 0.757506i \(0.273582\pi\)
\(810\) 11.4412 18.5513i 0.402004 0.651827i
\(811\) 51.1988i 1.79783i −0.438122 0.898916i \(-0.644356\pi\)
0.438122 0.898916i \(-0.355644\pi\)
\(812\) 28.8920 + 17.2370i 1.01391 + 0.604901i
\(813\) −52.0190 52.0190i −1.82439 1.82439i
\(814\) −2.43434 10.1536i −0.0853235 0.355885i
\(815\) −1.73475 + 6.40890i −0.0607655 + 0.224494i
\(816\) −28.8473 + 12.8007i −1.00986 + 0.448114i
\(817\) 1.99652 + 7.45113i 0.0698495 + 0.260682i
\(818\) −0.265759 0.00704177i −0.00929205 0.000246210i
\(819\) 26.8585 29.0200i 0.938511 1.01404i
\(820\) −2.64228 + 47.5380i −0.0922723 + 1.66010i
\(821\) 2.15663 3.73539i 0.0752668 0.130366i −0.825935 0.563765i \(-0.809352\pi\)
0.901202 + 0.433399i \(0.142686\pi\)
\(822\) −31.2367 57.5734i −1.08950 2.00810i
\(823\) 25.5920 + 6.85735i 0.892080 + 0.239032i 0.675612 0.737257i \(-0.263879\pi\)
0.216468 + 0.976290i \(0.430546\pi\)
\(824\) −37.9403 + 6.99525i −1.32171 + 0.243691i
\(825\) −16.6433 16.8136i −0.579447 0.585374i
\(826\) 13.6059 8.07779i 0.473411 0.281062i
\(827\) −37.0665 37.0665i −1.28893 1.28893i −0.935438 0.353490i \(-0.884995\pi\)
−0.353490 0.935438i \(-0.615005\pi\)
\(828\) 17.7619 3.76388i 0.617270 0.130804i
\(829\) 9.10301 5.25563i 0.316161 0.182535i −0.333519 0.942743i \(-0.608236\pi\)
0.649680 + 0.760208i \(0.274903\pi\)
\(830\) −0.974423 0.291666i −0.0338227 0.0101239i
\(831\) 11.9461 + 6.89709i 0.414406 + 0.239257i
\(832\) 19.5392 + 26.9991i 0.677400 + 0.936026i
\(833\) 13.9950 16.3459i 0.484899 0.566351i
\(834\) −5.96326 6.28787i −0.206491 0.217731i
\(835\) −9.05698 34.1484i −0.313430 1.18175i
\(836\) 17.5072 8.90667i 0.605500 0.308044i
\(837\) 6.36268 + 1.70487i 0.219926 + 0.0589291i
\(838\) −15.7764 9.67453i −0.544986 0.334201i
\(839\) −32.0936 −1.10799 −0.553996 0.832519i \(-0.686898\pi\)
−0.553996 + 0.832519i \(0.686898\pi\)
\(840\) 40.9635 + 12.9031i 1.41337 + 0.445199i
\(841\) −11.4237 −0.393921
\(842\) 4.02105 + 2.46582i 0.138575 + 0.0849779i
\(843\) −60.2066 16.1323i −2.07363 0.555626i
\(844\) −33.2879 + 16.9350i −1.14582 + 0.582926i
\(845\) −4.89071 + 8.42140i −0.168245 + 0.289705i
\(846\) −2.83898 2.99352i −0.0976061 0.102919i
\(847\) −20.0965 + 0.777380i −0.690525 + 0.0267111i
\(848\) 6.79461 + 8.41199i 0.233328 + 0.288869i
\(849\) −22.6371 13.0695i −0.776902 0.448544i
\(850\) 6.28608 20.8083i 0.215611 0.713717i
\(851\) −8.77678 + 5.06728i −0.300864 + 0.173704i
\(852\) −52.8868 + 11.2071i −1.81187 + 0.383949i
\(853\) −14.4800 14.4800i −0.495785 0.495785i 0.414338 0.910123i \(-0.364013\pi\)
−0.910123 + 0.414338i \(0.864013\pi\)
\(854\) −39.1939 21.9969i −1.34119 0.752719i
\(855\) 42.7362 + 0.108721i 1.46155 + 0.00371818i
\(856\) 2.39513 + 12.9905i 0.0818638 + 0.444007i
\(857\) −4.04846 1.08478i −0.138293 0.0370554i 0.189009 0.981975i \(-0.439473\pi\)
−0.327301 + 0.944920i \(0.606139\pi\)
\(858\) 13.2938 + 24.5024i 0.453844 + 0.836497i
\(859\) −17.7614 + 30.7636i −0.606010 + 1.04964i 0.385881 + 0.922549i \(0.373897\pi\)
−0.991891 + 0.127091i \(0.959436\pi\)
\(860\) −4.31768 4.82590i −0.147232 0.164562i
\(861\) −21.3964 69.0556i −0.729187 2.35341i
\(862\) −3.40814 0.0903049i −0.116082 0.00307580i
\(863\) 0.907912 + 3.38837i 0.0309057 + 0.115342i 0.979656 0.200687i \(-0.0643173\pi\)
−0.948750 + 0.316028i \(0.897651\pi\)
\(864\) 7.87529 + 3.27639i 0.267923 + 0.111465i
\(865\) 14.9829 + 4.05554i 0.509435 + 0.137893i
\(866\) 0.145955 + 0.608780i 0.00495975 + 0.0206872i
\(867\) 13.7023 + 13.7023i 0.465354 + 0.465354i
\(868\) 0.330973 23.1140i 0.0112339 0.784539i
\(869\) 14.5932i 0.495039i
\(870\) −50.2117 + 11.9033i −1.70234 + 0.403559i
\(871\) −11.9352 + 6.89077i −0.404408 + 0.233485i
\(872\) −12.3121 25.8750i −0.416941 0.876237i
\(873\) 0.961210 0.257555i 0.0325320 0.00871693i
\(874\) −13.1194 13.8336i −0.443772 0.467929i
\(875\) −25.1462 + 15.5779i −0.850095 + 0.526629i
\(876\) 10.4919 + 0.556392i 0.354487 + 0.0187987i
\(877\) −5.75864 21.4915i −0.194455 0.725718i −0.992407 0.122996i \(-0.960750\pi\)
0.797952 0.602721i \(-0.205917\pi\)
\(878\) 27.9187 15.1474i 0.942212 0.511200i
\(879\) −35.5513 61.5767i −1.19912 2.07693i
\(880\) −9.74238 + 13.3030i −0.328416 + 0.448444i
\(881\) −35.9299 −1.21051 −0.605254 0.796032i \(-0.706929\pi\)
−0.605254 + 0.796032i \(0.706929\pi\)
\(882\) −35.4684 + 1.80461i −1.19428 + 0.0607644i
\(883\) 39.0358 39.0358i 1.31366 1.31366i 0.394964 0.918697i \(-0.370757\pi\)
0.918697 0.394964i \(-0.129243\pi\)
\(884\) −13.9632 + 21.4722i −0.469632 + 0.722188i
\(885\) −6.34121 + 23.4272i −0.213158 + 0.787496i
\(886\) 7.01396 23.6518i 0.235639 0.794596i
\(887\) 28.2871 7.57952i 0.949789 0.254495i 0.249516 0.968371i \(-0.419728\pi\)
0.700273 + 0.713875i \(0.253062\pi\)
\(888\) −28.9820 2.30811i −0.972571 0.0774552i
\(889\) −7.46387 + 32.8928i −0.250330 + 1.10319i
\(890\) −0.398292 + 13.7140i −0.0133508 + 0.459694i
\(891\) −11.0039 6.35313i −0.368646 0.212838i
\(892\) 29.7862 + 9.69859i 0.997316 + 0.324733i
\(893\) −1.12126 + 4.18459i −0.0375215 + 0.140032i
\(894\) 9.32493 + 38.8943i 0.311872 + 1.30082i
\(895\) −0.0578884 + 22.7548i −0.00193500 + 0.760611i
\(896\) 4.37759 29.6114i 0.146245 0.989248i
\(897\) 19.1323 19.1323i 0.638810 0.638810i
\(898\) −18.0038 + 29.3591i −0.600795 + 0.979724i
\(899\) 13.8876 + 24.0541i 0.463178 + 0.802248i
\(900\) −32.0572 + 16.1041i −1.06857 + 0.536803i
\(901\) −4.15513 + 7.19690i −0.138428 + 0.239764i
\(902\) 27.7463 + 0.735189i 0.923851 + 0.0244791i
\(903\) 8.69888 + 4.58344i 0.289481 + 0.152527i
\(904\) 23.4524 19.9925i 0.780015 0.664939i
\(905\) −20.8940 12.1341i −0.694539 0.403351i
\(906\) 57.5915 + 17.0788i 1.91335 + 0.567406i
\(907\) 7.81783 29.1765i 0.259587 0.968791i −0.705894 0.708317i \(-0.749455\pi\)
0.965481 0.260474i \(-0.0838787\pi\)
\(908\) −5.13667 + 1.08850i −0.170467 + 0.0361231i
\(909\) 26.3643i 0.874449i
\(910\) 33.5788 9.34485i 1.11313 0.309779i
\(911\) 31.4256i 1.04118i −0.853808 0.520588i \(-0.825713\pi\)
0.853808 0.520588i \(-0.174287\pi\)
\(912\) −8.48893 54.0315i −0.281097 1.78916i
\(913\) −0.153470 + 0.572757i −0.00507911 + 0.0189555i
\(914\) 5.60614 18.9044i 0.185435 0.625304i
\(915\) 66.6343 17.6730i 2.20286 0.584253i
\(916\) −0.215297 + 4.05984i −0.00711360 + 0.134141i
\(917\) −1.91764 49.5740i −0.0633261 1.63708i
\(918\) −0.173631 + 6.55291i −0.00573068 + 0.216278i
\(919\) −25.4185 + 44.0262i −0.838480 + 1.45229i 0.0526848 + 0.998611i \(0.483222\pi\)
−0.891165 + 0.453679i \(0.850111\pi\)
\(920\) 15.0677 + 5.39478i 0.496768 + 0.177860i
\(921\) 37.6204 + 65.1604i 1.23963 + 2.14711i
\(922\) −19.1445 11.7399i −0.630490 0.386634i
\(923\) −31.0239 + 31.0239i −1.02116 + 1.02116i
\(924\) 6.82570 24.0888i 0.224549 0.792464i
\(925\) 14.2315 14.0874i 0.467928 0.463190i
\(926\) −41.3071 + 9.90338i −1.35744 + 0.325445i
\(927\) −12.6649 + 47.2660i −0.415969 + 1.55242i
\(928\) 13.7120 + 33.2497i 0.450118 + 1.09147i
\(929\) 35.1105 + 20.2711i 1.15194 + 0.665073i 0.949359 0.314193i \(-0.101734\pi\)
0.202580 + 0.979266i \(0.435067\pi\)
\(930\) 24.3333 + 25.7890i 0.797922 + 0.845656i
\(931\) 21.0853 + 30.7592i 0.691043 + 1.00809i
\(932\) −18.6319 20.7187i −0.610308 0.678663i
\(933\) 10.7673 2.88508i 0.352504 0.0944532i
\(934\) 32.1010 + 9.51961i 1.05038 + 0.311491i
\(935\) −12.2319 3.31090i −0.400025 0.108278i
\(936\) 41.5710 7.66467i 1.35879 0.250527i
\(937\) 7.47390 7.47390i 0.244162 0.244162i −0.574408 0.818569i \(-0.694768\pi\)
0.818569 + 0.574408i \(0.194768\pi\)
\(938\) 11.9942 + 3.05787i 0.391626 + 0.0998429i
\(939\) −20.1435 −0.657357
\(940\) −0.744839 3.55956i −0.0242940 0.116100i
\(941\) 2.77299 + 4.80295i 0.0903968 + 0.156572i 0.907678 0.419667i \(-0.137853\pi\)
−0.817281 + 0.576239i \(0.804520\pi\)
\(942\) −9.81753 18.0950i −0.319872 0.589568i
\(943\) −6.97270 26.0225i −0.227062 0.847408i
\(944\) 16.8208 + 1.78907i 0.547470 + 0.0582294i
\(945\) 6.07586 6.53143i 0.197648 0.212467i
\(946\) −2.73910 + 2.59769i −0.0890559 + 0.0844583i
\(947\) 20.8206 5.57887i 0.676579 0.181289i 0.0958624 0.995395i \(-0.469439\pi\)
0.580717 + 0.814106i \(0.302772\pi\)
\(948\) 38.6377 + 12.5807i 1.25489 + 0.408602i
\(949\) 7.38444 4.26341i 0.239709 0.138396i
\(950\) 32.0131 + 19.8562i 1.03864 + 0.644219i
\(951\) 6.22506i 0.201862i
\(952\) 22.4449 5.04246i 0.727442 0.163427i
\(953\) 32.3871 + 32.3871i 1.04912 + 1.04912i 0.998730 + 0.0503899i \(0.0160464\pi\)
0.0503899 + 0.998730i \(0.483954\pi\)
\(954\) 13.3373 3.19763i 0.431812 0.103527i
\(955\) 15.3903 + 26.8141i 0.498019 + 0.867684i
\(956\) −8.82299 17.3427i −0.285356 0.560904i
\(957\) 7.78612 + 29.0582i 0.251689 + 0.939318i
\(958\) 0.878920 33.1708i 0.0283966 1.07170i
\(959\) 14.1306 + 45.6057i 0.456301 + 1.47268i
\(960\) 26.8229 + 37.2629i 0.865706 + 1.20266i
\(961\) −5.95777 + 10.3192i −0.192186 + 0.332876i
\(962\) −20.7395 + 11.2523i −0.668667 + 0.362788i
\(963\) 16.1836 + 4.33638i 0.521508 + 0.139738i
\(964\) 17.3863 26.7362i 0.559975 0.861114i
\(965\) 10.9333 10.8778i 0.351955 0.350169i
\(966\) −24.2997 + 0.295801i −0.781829 + 0.00951723i
\(967\) 10.6422 + 10.6422i 0.342230 + 0.342230i 0.857205 0.514975i \(-0.172199\pi\)
−0.514975 + 0.857205i \(0.672199\pi\)
\(968\) −17.7075 12.1943i −0.569140 0.391941i
\(969\) 36.4022 21.0168i 1.16941 0.675158i
\(970\) 0.840335 + 0.251530i 0.0269815 + 0.00807614i
\(971\) 10.1110 + 5.83760i 0.324478 + 0.187337i 0.653387 0.757024i \(-0.273348\pi\)
−0.328909 + 0.944362i \(0.606681\pi\)
\(972\) −33.0344 + 29.7071i −1.05958 + 0.952857i
\(973\) 3.36742 + 5.34422i 0.107955 + 0.171328i
\(974\) −8.43886 + 8.00320i −0.270399 + 0.256439i
\(975\) −26.9662 + 46.1628i −0.863609 + 1.47839i
\(976\) −19.4883 43.9182i −0.623805 1.40579i
\(977\) 29.7605 + 7.97429i 0.952121 + 0.255120i 0.701262 0.712903i \(-0.252620\pi\)
0.250859 + 0.968024i \(0.419287\pi\)
\(978\) 5.63420 9.18777i 0.180162 0.293792i
\(979\) 7.99822 0.255624
\(980\) −27.4457 15.0578i −0.876719 0.481003i
\(981\) −36.3449 −1.16040
\(982\) −18.8577 + 30.7515i −0.601773 + 0.981319i
\(983\) 45.1780 + 12.1054i 1.44095 + 0.386102i 0.892868 0.450319i \(-0.148690\pi\)
0.548086 + 0.836422i \(0.315357\pi\)
\(984\) 25.8665 72.8289i 0.824594 2.32170i
\(985\) −24.0057 + 6.36689i −0.764884 + 0.202866i
\(986\) −20.0557 + 19.0203i −0.638705 + 0.605731i
\(987\) 2.94378 + 4.67189i 0.0937016 + 0.148708i
\(988\) −29.6810 33.0053i −0.944277 1.05004i
\(989\) 3.17318 + 1.83204i 0.100901 + 0.0582554i
\(990\) 9.92678 + 18.4080i 0.315494 + 0.585044i
\(991\) −43.4359 + 25.0777i −1.37979 + 0.796620i −0.992133 0.125186i \(-0.960047\pi\)
−0.387652 + 0.921806i \(0.626714\pi\)
\(992\) 15.0744 19.5823i 0.478612 0.621738i
\(993\) 23.2903 + 23.2903i 0.739094 + 0.739094i
\(994\) 39.4029 0.479653i 1.24978 0.0152137i
\(995\) 0.0982746 38.6299i 0.00311551 1.22465i
\(996\) 1.38416 + 0.900106i 0.0438587 + 0.0285209i
\(997\) −28.0782 7.52352i −0.889245 0.238272i −0.214853 0.976646i \(-0.568927\pi\)
−0.674391 + 0.738374i \(0.735594\pi\)
\(998\) −30.4000 + 16.4936i −0.962295 + 0.522097i
\(999\) −3.01941 + 5.22977i −0.0955299 + 0.165463i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 140.2.w.b.23.16 yes 72
4.3 odd 2 inner 140.2.w.b.23.7 72
5.2 odd 4 inner 140.2.w.b.107.5 yes 72
5.3 odd 4 700.2.be.e.107.14 72
5.4 even 2 700.2.be.e.443.3 72
7.2 even 3 980.2.k.k.883.10 36
7.3 odd 6 980.2.x.m.263.2 72
7.4 even 3 inner 140.2.w.b.123.2 yes 72
7.5 odd 6 980.2.k.j.883.10 36
7.6 odd 2 980.2.x.m.863.16 72
20.3 even 4 700.2.be.e.107.17 72
20.7 even 4 inner 140.2.w.b.107.2 yes 72
20.19 odd 2 700.2.be.e.443.12 72
28.3 even 6 980.2.x.m.263.5 72
28.11 odd 6 inner 140.2.w.b.123.5 yes 72
28.19 even 6 980.2.k.j.883.18 36
28.23 odd 6 980.2.k.k.883.18 36
28.27 even 2 980.2.x.m.863.7 72
35.2 odd 12 980.2.k.k.687.18 36
35.4 even 6 700.2.be.e.543.17 72
35.12 even 12 980.2.k.j.687.18 36
35.17 even 12 980.2.x.m.67.7 72
35.18 odd 12 700.2.be.e.207.12 72
35.27 even 4 980.2.x.m.667.5 72
35.32 odd 12 inner 140.2.w.b.67.7 yes 72
140.27 odd 4 980.2.x.m.667.2 72
140.39 odd 6 700.2.be.e.543.14 72
140.47 odd 12 980.2.k.j.687.10 36
140.67 even 12 inner 140.2.w.b.67.16 yes 72
140.87 odd 12 980.2.x.m.67.16 72
140.107 even 12 980.2.k.k.687.10 36
140.123 even 12 700.2.be.e.207.3 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.w.b.23.7 72 4.3 odd 2 inner
140.2.w.b.23.16 yes 72 1.1 even 1 trivial
140.2.w.b.67.7 yes 72 35.32 odd 12 inner
140.2.w.b.67.16 yes 72 140.67 even 12 inner
140.2.w.b.107.2 yes 72 20.7 even 4 inner
140.2.w.b.107.5 yes 72 5.2 odd 4 inner
140.2.w.b.123.2 yes 72 7.4 even 3 inner
140.2.w.b.123.5 yes 72 28.11 odd 6 inner
700.2.be.e.107.14 72 5.3 odd 4
700.2.be.e.107.17 72 20.3 even 4
700.2.be.e.207.3 72 140.123 even 12
700.2.be.e.207.12 72 35.18 odd 12
700.2.be.e.443.3 72 5.4 even 2
700.2.be.e.443.12 72 20.19 odd 2
700.2.be.e.543.14 72 140.39 odd 6
700.2.be.e.543.17 72 35.4 even 6
980.2.k.j.687.10 36 140.47 odd 12
980.2.k.j.687.18 36 35.12 even 12
980.2.k.j.883.10 36 7.5 odd 6
980.2.k.j.883.18 36 28.19 even 6
980.2.k.k.687.10 36 140.107 even 12
980.2.k.k.687.18 36 35.2 odd 12
980.2.k.k.883.10 36 7.2 even 3
980.2.k.k.883.18 36 28.23 odd 6
980.2.x.m.67.7 72 35.17 even 12
980.2.x.m.67.16 72 140.87 odd 12
980.2.x.m.263.2 72 7.3 odd 6
980.2.x.m.263.5 72 28.3 even 6
980.2.x.m.667.2 72 140.27 odd 4
980.2.x.m.667.5 72 35.27 even 4
980.2.x.m.863.7 72 28.27 even 2
980.2.x.m.863.16 72 7.6 odd 2