Properties

Label 140.2.w.b
Level $140$
Weight $2$
Character orbit 140.w
Analytic conductor $1.118$
Analytic rank $0$
Dimension $72$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [140,2,Mod(23,140)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(140, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 9, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("140.23");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 140 = 2^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 140.w (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.11790562830\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(18\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 72 q + 2 q^{2} - 8 q^{5} - 16 q^{6} - 4 q^{8}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 72 q + 2 q^{2} - 8 q^{5} - 16 q^{6} - 4 q^{8} + 2 q^{10} + 10 q^{12} - 28 q^{16} + 4 q^{17} - 20 q^{18} - 56 q^{20} + 4 q^{21} - 16 q^{22} - 16 q^{25} - 4 q^{26} + 42 q^{28} - 32 q^{30} - 38 q^{32} - 64 q^{33} + 16 q^{36} - 4 q^{37} + 12 q^{38} + 2 q^{40} - 40 q^{41} + 78 q^{42} - 12 q^{45} - 28 q^{46} + 12 q^{48} - 28 q^{50} + 48 q^{52} - 24 q^{53} + 36 q^{56} - 16 q^{57} + 30 q^{58} - 10 q^{60} - 20 q^{61} + 56 q^{62} + 4 q^{65} + 44 q^{66} - 12 q^{68} + 84 q^{70} + 44 q^{72} - 12 q^{73} + 112 q^{76} + 16 q^{77} + 64 q^{78} + 52 q^{80} - 52 q^{81} - 34 q^{82} + 16 q^{85} + 64 q^{86} + 16 q^{88} - 32 q^{90} + 44 q^{92} + 12 q^{93} - 48 q^{96} - 24 q^{97} - 90 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
23.1 −1.41262 0.0671791i 2.38471 + 0.638980i 1.99097 + 0.189797i −0.525600 2.17342i −3.32575 1.06284i 2.10106 1.60796i −2.79973 0.401862i 2.68045 + 1.54756i 0.596463 + 3.10552i
23.2 −1.40543 0.157385i 1.08292 + 0.290169i 1.95046 + 0.442386i 1.68711 + 1.46754i −1.47630 0.578247i −1.51730 + 2.16744i −2.67161 0.928715i −1.50955 0.871538i −2.14014 2.32805i
23.3 −1.34754 0.429119i −2.71477 0.727420i 1.63171 + 1.15651i −2.01971 + 0.959579i 3.34610 + 2.14518i 2.59868 + 0.496852i −1.70252 2.25864i 4.24276 + 2.44956i 3.13340 0.426375i
23.4 −1.24267 + 0.675113i −0.402205 0.107770i 1.08845 1.67788i −2.22809 0.188711i 0.572564 0.137611i −2.30240 1.30345i −0.219816 + 2.81987i −2.44792 1.41331i 2.89618 1.26971i
23.5 −1.05431 0.942570i −1.20413 0.322645i 0.223125 + 1.98751i 2.09885 0.771256i 0.965404 + 1.47514i −0.451584 2.60693i 1.63813 2.30576i −1.25225 0.722989i −2.93979 1.16517i
23.6 −0.809319 + 1.15974i −0.551941 0.147892i −0.690004 1.87720i 1.08510 1.95513i 0.618214 0.520418i 2.54158 + 0.735093i 2.73551 + 0.719030i −2.31531 1.33674i 1.38926 + 2.84077i
23.7 −0.674418 + 1.24304i 2.47915 + 0.664287i −1.09032 1.67666i 1.93364 + 1.12296i −2.49773 + 2.63369i −1.41045 2.23844i 2.81950 0.224544i 3.10685 + 1.79374i −2.69997 + 1.64626i
23.8 −0.667698 1.24667i 2.02821 + 0.543458i −1.10836 + 1.66480i −0.518800 + 2.17505i −0.676724 2.89137i 2.64471 0.0742486i 2.81549 + 0.270171i 1.22023 + 0.704499i 3.05797 0.805507i
23.9 −0.212826 + 1.39811i −0.807254 0.216303i −1.90941 0.595107i −0.780454 + 2.09545i 0.474220 1.08259i −0.335905 + 2.62434i 1.23840 2.54291i −1.99320 1.15078i −2.76356 1.53712i
23.10 −0.0450897 1.41349i −2.02821 0.543458i −1.99593 + 0.127468i −0.518800 + 2.17505i −0.676724 + 2.89137i −2.64471 + 0.0742486i 0.270171 + 2.81549i 1.22023 + 0.704499i 3.09782 + 0.635249i
23.11 0.441772 1.34344i 1.20413 + 0.322645i −1.60968 1.18699i 2.09885 0.771256i 0.965404 1.47514i 0.451584 + 2.60693i −2.30576 + 1.63813i −1.25225 0.722989i −0.108927 3.16040i
23.12 0.883367 + 1.10438i 0.807254 + 0.216303i −0.439327 + 1.95115i −0.780454 + 2.09545i 0.474220 + 1.08259i 0.335905 2.62434i −2.54291 + 1.23840i −1.99320 1.15078i −3.00360 + 0.989126i
23.13 0.952442 1.04540i 2.71477 + 0.727420i −0.185707 1.99136i −2.01971 + 0.959579i 3.34610 2.14518i −2.59868 0.496852i −2.25864 1.70252i 4.24276 + 2.44956i −0.920513 + 3.02534i
23.14 1.13844 0.839014i −1.08292 0.290169i 0.592112 1.91034i 1.68711 + 1.46754i −1.47630 + 0.578247i 1.51730 2.16744i −0.928715 2.67161i −1.50955 0.871538i 3.15196 + 0.255205i
23.15 1.18977 0.764487i −2.38471 0.638980i 0.831118 1.81913i −0.525600 2.17342i −3.32575 + 1.06284i −2.10106 + 1.60796i −0.401862 2.79973i 2.68045 + 1.54756i −2.28689 2.18406i
23.16 1.20559 + 0.739299i −2.47915 0.664287i 0.906874 + 1.78258i 1.93364 + 1.12296i −2.49773 2.63369i 1.41045 + 2.23844i −0.224544 + 2.81950i 3.10685 + 1.79374i 1.50097 + 2.78336i
23.17 1.28076 + 0.599707i 0.551941 + 0.147892i 1.28070 + 1.53616i 1.08510 1.95513i 0.618214 + 0.520418i −2.54158 0.735093i 0.719030 + 2.73551i −2.31531 1.33674i 2.56227 1.85332i
23.18 1.41374 0.0366689i 0.402205 + 0.107770i 1.99731 0.103680i −2.22809 0.188711i 0.572564 + 0.137611i 2.30240 + 1.30345i 2.81987 0.219816i −2.44792 1.41331i −3.15686 0.185086i
67.1 −1.41262 + 0.0671791i 2.38471 0.638980i 1.99097 0.189797i −0.525600 + 2.17342i −3.32575 + 1.06284i 2.10106 + 1.60796i −2.79973 + 0.401862i 2.68045 1.54756i 0.596463 3.10552i
67.2 −1.40543 + 0.157385i 1.08292 0.290169i 1.95046 0.442386i 1.68711 1.46754i −1.47630 + 0.578247i −1.51730 2.16744i −2.67161 + 0.928715i −1.50955 + 0.871538i −2.14014 + 2.32805i
See all 72 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 23.18
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
5.c odd 4 1 inner
7.c even 3 1 inner
20.e even 4 1 inner
28.g odd 6 1 inner
35.l odd 12 1 inner
140.w even 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 140.2.w.b 72
4.b odd 2 1 inner 140.2.w.b 72
5.b even 2 1 700.2.be.e 72
5.c odd 4 1 inner 140.2.w.b 72
5.c odd 4 1 700.2.be.e 72
7.b odd 2 1 980.2.x.m 72
7.c even 3 1 inner 140.2.w.b 72
7.c even 3 1 980.2.k.k 36
7.d odd 6 1 980.2.k.j 36
7.d odd 6 1 980.2.x.m 72
20.d odd 2 1 700.2.be.e 72
20.e even 4 1 inner 140.2.w.b 72
20.e even 4 1 700.2.be.e 72
28.d even 2 1 980.2.x.m 72
28.f even 6 1 980.2.k.j 36
28.f even 6 1 980.2.x.m 72
28.g odd 6 1 inner 140.2.w.b 72
28.g odd 6 1 980.2.k.k 36
35.f even 4 1 980.2.x.m 72
35.j even 6 1 700.2.be.e 72
35.k even 12 1 980.2.k.j 36
35.k even 12 1 980.2.x.m 72
35.l odd 12 1 inner 140.2.w.b 72
35.l odd 12 1 700.2.be.e 72
35.l odd 12 1 980.2.k.k 36
140.j odd 4 1 980.2.x.m 72
140.p odd 6 1 700.2.be.e 72
140.w even 12 1 inner 140.2.w.b 72
140.w even 12 1 700.2.be.e 72
140.w even 12 1 980.2.k.k 36
140.x odd 12 1 980.2.k.j 36
140.x odd 12 1 980.2.x.m 72
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
140.2.w.b 72 1.a even 1 1 trivial
140.2.w.b 72 4.b odd 2 1 inner
140.2.w.b 72 5.c odd 4 1 inner
140.2.w.b 72 7.c even 3 1 inner
140.2.w.b 72 20.e even 4 1 inner
140.2.w.b 72 28.g odd 6 1 inner
140.2.w.b 72 35.l odd 12 1 inner
140.2.w.b 72 140.w even 12 1 inner
700.2.be.e 72 5.b even 2 1
700.2.be.e 72 5.c odd 4 1
700.2.be.e 72 20.d odd 2 1
700.2.be.e 72 20.e even 4 1
700.2.be.e 72 35.j even 6 1
700.2.be.e 72 35.l odd 12 1
700.2.be.e 72 140.p odd 6 1
700.2.be.e 72 140.w even 12 1
980.2.k.j 36 7.d odd 6 1
980.2.k.j 36 28.f even 6 1
980.2.k.j 36 35.k even 12 1
980.2.k.j 36 140.x odd 12 1
980.2.k.k 36 7.c even 3 1
980.2.k.k 36 28.g odd 6 1
980.2.k.k 36 35.l odd 12 1
980.2.k.k 36 140.w even 12 1
980.2.x.m 72 7.b odd 2 1
980.2.x.m 72 7.d odd 6 1
980.2.x.m 72 28.d even 2 1
980.2.x.m 72 28.f even 6 1
980.2.x.m 72 35.f even 4 1
980.2.x.m 72 35.k even 12 1
980.2.x.m 72 140.j odd 4 1
980.2.x.m 72 140.x odd 12 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{72} - 167 T_{3}^{68} + 17716 T_{3}^{64} - 1150565 T_{3}^{60} + 54628057 T_{3}^{56} + \cdots + 136048896 \) acting on \(S_{2}^{\mathrm{new}}(140, [\chi])\). Copy content Toggle raw display