Properties

Label 980.2.x.m.863.7
Level $980$
Weight $2$
Character 980.863
Analytic conductor $7.825$
Analytic rank $0$
Dimension $72$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [980,2,Mod(67,980)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(980, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 3, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("980.67");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.x (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(18\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 863.7
Character \(\chi\) \(=\) 980.863
Dual form 980.2.x.m.67.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.674418 + 1.24304i) q^{2} +(-2.47915 - 0.664287i) q^{3} +(-1.09032 - 1.67666i) q^{4} +(-1.93364 - 1.12296i) q^{5} +(2.49773 - 2.63369i) q^{6} +(2.81950 - 0.224544i) q^{8} +(3.10685 + 1.79374i) q^{9} +(2.69997 - 1.64626i) q^{10} +(-1.59653 + 0.921758i) q^{11} +(1.58929 + 4.88099i) q^{12} +(2.94578 + 2.94578i) q^{13} +(4.04783 + 4.06848i) q^{15} +(-1.62240 + 3.65620i) q^{16} +(2.96933 + 0.795631i) q^{17} +(-4.32502 + 2.65222i) q^{18} +(2.66374 - 4.61374i) q^{19} +(0.225467 + 4.46645i) q^{20} +(-0.0690563 - 2.60621i) q^{22} +(0.654945 + 2.44429i) q^{23} +(-7.13914 - 1.31628i) q^{24} +(2.47794 + 4.34279i) q^{25} +(-5.64842 + 1.67505i) q^{26} +(-1.06621 - 1.06621i) q^{27} -6.35796i q^{29} +(-7.78723 + 2.28778i) q^{30} +(-3.78330 + 2.18429i) q^{31} +(-3.45064 - 4.48253i) q^{32} +(4.57036 - 1.22462i) q^{33} +(-2.99158 + 3.15443i) q^{34} +(-0.379961 - 7.16490i) q^{36} +(-1.03655 - 3.86848i) q^{37} +(3.93860 + 6.42274i) q^{38} +(-5.34619 - 9.25988i) q^{39} +(-5.70405 - 2.73199i) q^{40} -10.6462 q^{41} +(1.02386 - 1.02386i) q^{43} +(3.28621 + 1.67184i) q^{44} +(-3.99324 - 6.95731i) q^{45} +(-3.48006 - 0.834346i) q^{46} +(-0.785472 + 0.210467i) q^{47} +(6.45096 - 7.98654i) q^{48} +(-7.06945 + 0.151328i) q^{50} +(-6.83291 - 3.94498i) q^{51} +(1.72724 - 8.15092i) q^{52} +(0.699675 - 2.61122i) q^{53} +(2.04441 - 0.606273i) q^{54} +(4.12221 + 0.0104869i) q^{55} +(-9.66867 + 9.66867i) q^{57} +(7.90323 + 4.28793i) q^{58} +(-2.11446 - 3.66235i) q^{59} +(2.40804 - 11.2228i) q^{60} +(6.00599 - 10.4027i) q^{61} +(-0.163643 - 6.17593i) q^{62} +(7.89916 - 1.26620i) q^{64} +(-2.38810 - 9.00406i) q^{65} +(-1.56007 + 6.50707i) q^{66} +(-0.856208 + 3.19541i) q^{67} +(-1.90352 - 5.84607i) q^{68} -6.49484i q^{69} +10.5316i q^{71} +(9.16254 + 4.35983i) q^{72} +(0.529747 - 1.97704i) q^{73} +(5.50776 + 1.32049i) q^{74} +(-3.25832 - 12.4125i) q^{75} +(-10.6400 + 0.564249i) q^{76} +(15.1160 - 0.400526i) q^{78} +(3.95797 - 6.85541i) q^{79} +(7.24290 - 5.24789i) q^{80} +(-3.44620 - 5.96900i) q^{81} +(7.18001 - 13.2337i) q^{82} +(-0.227439 + 0.227439i) q^{83} +(-4.84817 - 4.87290i) q^{85} +(0.582195 + 1.96322i) q^{86} +(-4.22352 + 15.7624i) q^{87} +(-4.29444 + 2.95739i) q^{88} +(-3.75731 - 2.16929i) q^{89} +(11.3414 - 0.271639i) q^{90} +(3.38415 - 3.76318i) q^{92} +(10.8304 - 2.90199i) q^{93} +(0.268117 - 1.11832i) q^{94} +(-10.3317 + 5.93004i) q^{95} +(5.57699 + 13.4051i) q^{96} +(-0.196142 + 0.196142i) q^{97} -6.61358 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + 2 q^{2} + 8 q^{5} + 16 q^{6} - 4 q^{8} - 2 q^{10} - 10 q^{12} - 28 q^{16} - 4 q^{17} - 20 q^{18} + 56 q^{20} - 16 q^{22} - 16 q^{25} + 4 q^{26} - 32 q^{30} - 38 q^{32} + 64 q^{33} + 16 q^{36} - 4 q^{37}+ \cdots + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.674418 + 1.24304i −0.476886 + 0.878965i
\(3\) −2.47915 0.664287i −1.43134 0.383527i −0.541848 0.840476i \(-0.682275\pi\)
−0.889492 + 0.456950i \(0.848942\pi\)
\(4\) −1.09032 1.67666i −0.545160 0.838332i
\(5\) −1.93364 1.12296i −0.864751 0.502202i
\(6\) 2.49773 2.63369i 1.01969 1.07520i
\(7\) 0 0
\(8\) 2.81950 0.224544i 0.996844 0.0793882i
\(9\) 3.10685 + 1.79374i 1.03562 + 0.597914i
\(10\) 2.69997 1.64626i 0.853805 0.520593i
\(11\) −1.59653 + 0.921758i −0.481372 + 0.277920i −0.720988 0.692947i \(-0.756312\pi\)
0.239616 + 0.970868i \(0.422978\pi\)
\(12\) 1.58929 + 4.88099i 0.458787 + 1.40902i
\(13\) 2.94578 + 2.94578i 0.817012 + 0.817012i 0.985674 0.168662i \(-0.0539447\pi\)
−0.168662 + 0.985674i \(0.553945\pi\)
\(14\) 0 0
\(15\) 4.04783 + 4.06848i 1.04514 + 1.05048i
\(16\) −1.62240 + 3.65620i −0.405601 + 0.914050i
\(17\) 2.96933 + 0.795631i 0.720169 + 0.192969i 0.600247 0.799815i \(-0.295069\pi\)
0.119922 + 0.992783i \(0.461736\pi\)
\(18\) −4.32502 + 2.65222i −1.01942 + 0.625135i
\(19\) 2.66374 4.61374i 0.611104 1.05846i −0.379950 0.925007i \(-0.624059\pi\)
0.991055 0.133457i \(-0.0426077\pi\)
\(20\) 0.225467 + 4.46645i 0.0504159 + 0.998728i
\(21\) 0 0
\(22\) −0.0690563 2.60621i −0.0147228 0.555646i
\(23\) 0.654945 + 2.44429i 0.136565 + 0.509669i 0.999987 + 0.00518527i \(0.00165053\pi\)
−0.863421 + 0.504484i \(0.831683\pi\)
\(24\) −7.13914 1.31628i −1.45727 0.268684i
\(25\) 2.47794 + 4.34279i 0.495587 + 0.868558i
\(26\) −5.64842 + 1.67505i −1.10775 + 0.328504i
\(27\) −1.06621 1.06621i −0.205191 0.205191i
\(28\) 0 0
\(29\) 6.35796i 1.18064i −0.807168 0.590322i \(-0.799001\pi\)
0.807168 0.590322i \(-0.200999\pi\)
\(30\) −7.78723 + 2.28778i −1.42175 + 0.417689i
\(31\) −3.78330 + 2.18429i −0.679500 + 0.392310i −0.799667 0.600444i \(-0.794991\pi\)
0.120166 + 0.992754i \(0.461657\pi\)
\(32\) −3.45064 4.48253i −0.609993 0.792407i
\(33\) 4.57036 1.22462i 0.795597 0.213180i
\(34\) −2.99158 + 3.15443i −0.513051 + 0.540980i
\(35\) 0 0
\(36\) −0.379961 7.16490i −0.0633268 1.19415i
\(37\) −1.03655 3.86848i −0.170409 0.635973i −0.997288 0.0735946i \(-0.976553\pi\)
0.826880 0.562379i \(-0.190114\pi\)
\(38\) 3.93860 + 6.42274i 0.638926 + 1.04191i
\(39\) −5.34619 9.25988i −0.856076 1.48277i
\(40\) −5.70405 2.73199i −0.901890 0.431965i
\(41\) −10.6462 −1.66266 −0.831331 0.555777i \(-0.812421\pi\)
−0.831331 + 0.555777i \(0.812421\pi\)
\(42\) 0 0
\(43\) 1.02386 1.02386i 0.156137 0.156137i −0.624715 0.780853i \(-0.714785\pi\)
0.780853 + 0.624715i \(0.214785\pi\)
\(44\) 3.28621 + 1.67184i 0.495414 + 0.252039i
\(45\) −3.99324 6.95731i −0.595278 1.03714i
\(46\) −3.48006 0.834346i −0.513108 0.123018i
\(47\) −0.785472 + 0.210467i −0.114573 + 0.0306997i −0.315650 0.948876i \(-0.602223\pi\)
0.201077 + 0.979575i \(0.435556\pi\)
\(48\) 6.45096 7.98654i 0.931116 1.15276i
\(49\) 0 0
\(50\) −7.06945 + 0.151328i −0.999771 + 0.0214010i
\(51\) −6.83291 3.94498i −0.956799 0.552408i
\(52\) 1.72724 8.15092i 0.239525 1.13033i
\(53\) 0.699675 2.61122i 0.0961077 0.358679i −0.901077 0.433658i \(-0.857222\pi\)
0.997185 + 0.0749796i \(0.0238892\pi\)
\(54\) 2.04441 0.606273i 0.278209 0.0825033i
\(55\) 4.12221 + 0.0104869i 0.555839 + 0.00141406i
\(56\) 0 0
\(57\) −9.66867 + 9.66867i −1.28065 + 1.28065i
\(58\) 7.90323 + 4.28793i 1.03775 + 0.563032i
\(59\) −2.11446 3.66235i −0.275279 0.476797i 0.694927 0.719081i \(-0.255437\pi\)
−0.970205 + 0.242284i \(0.922104\pi\)
\(60\) 2.40804 11.2228i 0.310877 1.44886i
\(61\) 6.00599 10.4027i 0.768988 1.33193i −0.169124 0.985595i \(-0.554094\pi\)
0.938112 0.346332i \(-0.112573\pi\)
\(62\) −0.163643 6.17593i −0.0207826 0.784344i
\(63\) 0 0
\(64\) 7.89916 1.26620i 0.987395 0.158275i
\(65\) −2.38810 9.00406i −0.296207 1.11682i
\(66\) −1.56007 + 6.50707i −0.192031 + 0.800965i
\(67\) −0.856208 + 3.19541i −0.104602 + 0.390382i −0.998300 0.0582888i \(-0.981436\pi\)
0.893697 + 0.448670i \(0.148102\pi\)
\(68\) −1.90352 5.84607i −0.230836 0.708940i
\(69\) 6.49484i 0.781886i
\(70\) 0 0
\(71\) 10.5316i 1.24988i 0.780675 + 0.624938i \(0.214876\pi\)
−0.780675 + 0.624938i \(0.785124\pi\)
\(72\) 9.16254 + 4.35983i 1.07982 + 0.513811i
\(73\) 0.529747 1.97704i 0.0620022 0.231395i −0.927971 0.372653i \(-0.878448\pi\)
0.989973 + 0.141258i \(0.0451147\pi\)
\(74\) 5.50776 + 1.32049i 0.640264 + 0.153503i
\(75\) −3.25832 12.4125i −0.376239 1.43327i
\(76\) −10.6400 + 0.564249i −1.22049 + 0.0647238i
\(77\) 0 0
\(78\) 15.1160 0.400526i 1.71155 0.0453507i
\(79\) 3.95797 6.85541i 0.445307 0.771294i −0.552767 0.833336i \(-0.686428\pi\)
0.998074 + 0.0620421i \(0.0197613\pi\)
\(80\) 7.24290 5.24789i 0.809781 0.586732i
\(81\) −3.44620 5.96900i −0.382912 0.663222i
\(82\) 7.18001 13.2337i 0.792900 1.46142i
\(83\) −0.227439 + 0.227439i −0.0249647 + 0.0249647i −0.719479 0.694514i \(-0.755619\pi\)
0.694514 + 0.719479i \(0.255619\pi\)
\(84\) 0 0
\(85\) −4.84817 4.87290i −0.525858 0.528540i
\(86\) 0.582195 + 1.96322i 0.0627797 + 0.211699i
\(87\) −4.22352 + 15.7624i −0.452808 + 1.68990i
\(88\) −4.29444 + 2.95739i −0.457789 + 0.315259i
\(89\) −3.75731 2.16929i −0.398274 0.229944i 0.287465 0.957791i \(-0.407188\pi\)
−0.685739 + 0.727847i \(0.740521\pi\)
\(90\) 11.3414 0.271639i 1.19549 0.0286333i
\(91\) 0 0
\(92\) 3.38415 3.76318i 0.352822 0.392338i
\(93\) 10.8304 2.90199i 1.12306 0.300922i
\(94\) 0.268117 1.11832i 0.0276542 0.115346i
\(95\) −10.3317 + 5.93004i −1.06001 + 0.608410i
\(96\) 5.57699 + 13.4051i 0.569199 + 1.36815i
\(97\) −0.196142 + 0.196142i −0.0199152 + 0.0199152i −0.716994 0.697079i \(-0.754483\pi\)
0.697079 + 0.716994i \(0.254483\pi\)
\(98\) 0 0
\(99\) −6.61358 −0.664690
\(100\) 4.57966 8.88970i 0.457966 0.888970i
\(101\) −3.67449 6.36440i −0.365625 0.633281i 0.623251 0.782022i \(-0.285811\pi\)
−0.988876 + 0.148741i \(0.952478\pi\)
\(102\) 9.51203 5.83304i 0.941831 0.577557i
\(103\) 3.53030 + 13.1752i 0.347850 + 1.29820i 0.889247 + 0.457428i \(0.151229\pi\)
−0.541396 + 0.840768i \(0.682104\pi\)
\(104\) 8.96707 + 7.64416i 0.879294 + 0.749572i
\(105\) 0 0
\(106\) 2.77399 + 2.63078i 0.269434 + 0.255524i
\(107\) −4.51112 + 1.20875i −0.436107 + 0.116854i −0.470191 0.882565i \(-0.655815\pi\)
0.0340847 + 0.999419i \(0.489148\pi\)
\(108\) −0.625163 + 2.95017i −0.0601564 + 0.283881i
\(109\) −8.77373 + 5.06552i −0.840371 + 0.485188i −0.857390 0.514667i \(-0.827916\pi\)
0.0170193 + 0.999855i \(0.494582\pi\)
\(110\) −2.79313 + 5.11702i −0.266315 + 0.487889i
\(111\) 10.2791i 0.975651i
\(112\) 0 0
\(113\) −7.70435 7.70435i −0.724764 0.724764i 0.244807 0.969572i \(-0.421275\pi\)
−0.969572 + 0.244807i \(0.921275\pi\)
\(114\) −5.49786 18.5393i −0.514922 1.73637i
\(115\) 1.47840 5.46185i 0.137862 0.509320i
\(116\) −10.6602 + 6.93222i −0.989772 + 0.643640i
\(117\) 3.86813 + 14.4361i 0.357609 + 1.33461i
\(118\) 5.97849 0.158411i 0.550365 0.0145829i
\(119\) 0 0
\(120\) 12.3264 + 10.5622i 1.12524 + 0.964188i
\(121\) −3.80073 + 6.58305i −0.345521 + 0.598459i
\(122\) 8.88045 + 14.4815i 0.803998 + 1.31109i
\(123\) 26.3937 + 7.07216i 2.37984 + 0.637675i
\(124\) 7.78732 + 3.96175i 0.699322 + 0.355775i
\(125\) 0.0853274 11.1800i 0.00763192 0.999971i
\(126\) 0 0
\(127\) −9.01446 9.01446i −0.799904 0.799904i 0.183176 0.983080i \(-0.441362\pi\)
−0.983080 + 0.183176i \(0.941362\pi\)
\(128\) −3.75339 + 10.6730i −0.331756 + 0.943365i
\(129\) −3.21845 + 1.85817i −0.283369 + 0.163603i
\(130\) 12.8030 + 3.10399i 1.12290 + 0.272238i
\(131\) −16.2391 9.37562i −1.41881 0.819152i −0.422618 0.906308i \(-0.638889\pi\)
−0.996195 + 0.0871562i \(0.972222\pi\)
\(132\) −7.03644 6.32772i −0.612443 0.550758i
\(133\) 0 0
\(134\) −3.39460 3.21935i −0.293248 0.278109i
\(135\) 0.864356 + 3.25896i 0.0743920 + 0.280487i
\(136\) 8.55069 + 1.57653i 0.733216 + 0.135187i
\(137\) 17.4309 + 4.67059i 1.48922 + 0.399035i 0.909474 0.415761i \(-0.136485\pi\)
0.579747 + 0.814797i \(0.303151\pi\)
\(138\) 8.07337 + 4.38024i 0.687251 + 0.372870i
\(139\) 2.38747 0.202503 0.101251 0.994861i \(-0.467715\pi\)
0.101251 + 0.994861i \(0.467715\pi\)
\(140\) 0 0
\(141\) 2.08712 0.175767
\(142\) −13.0913 7.10273i −1.09860 0.596048i
\(143\) −7.41832 1.98773i −0.620351 0.166223i
\(144\) −11.5989 + 8.44910i −0.966571 + 0.704092i
\(145\) −7.13972 + 12.2940i −0.592921 + 1.02096i
\(146\) 2.10028 + 1.99185i 0.173821 + 0.164847i
\(147\) 0 0
\(148\) −5.35596 + 5.95583i −0.440257 + 0.489566i
\(149\) −9.54286 5.50957i −0.781781 0.451362i 0.0552800 0.998471i \(-0.482395\pi\)
−0.837061 + 0.547109i \(0.815728\pi\)
\(150\) 17.6268 + 4.32098i 1.43922 + 0.352807i
\(151\) 14.3323 8.27478i 1.16635 0.673392i 0.213532 0.976936i \(-0.431503\pi\)
0.952817 + 0.303544i \(0.0981699\pi\)
\(152\) 6.47443 13.6066i 0.525146 1.10364i
\(153\) 7.79813 + 7.79813i 0.630441 + 0.630441i
\(154\) 0 0
\(155\) 9.76840 + 0.0248508i 0.784617 + 0.00199607i
\(156\) −9.69664 + 19.0600i −0.776353 + 1.52602i
\(157\) −5.47844 1.46794i −0.437227 0.117155i 0.0334897 0.999439i \(-0.489338\pi\)
−0.470717 + 0.882284i \(0.656005\pi\)
\(158\) 5.85225 + 9.54335i 0.465580 + 0.759228i
\(159\) −3.46920 + 6.00883i −0.275126 + 0.476532i
\(160\) 1.63862 + 12.5425i 0.129544 + 0.991574i
\(161\) 0 0
\(162\) 9.74392 0.258183i 0.765555 0.0202848i
\(163\) −0.768508 2.86811i −0.0601942 0.224648i 0.929276 0.369387i \(-0.120432\pi\)
−0.989470 + 0.144739i \(0.953766\pi\)
\(164\) 11.6078 + 17.8502i 0.906417 + 1.39386i
\(165\) −10.2126 2.76433i −0.795052 0.215203i
\(166\) −0.129328 0.436106i −0.0100378 0.0338484i
\(167\) −11.1720 11.1720i −0.864517 0.864517i 0.127342 0.991859i \(-0.459355\pi\)
−0.991859 + 0.127342i \(0.959355\pi\)
\(168\) 0 0
\(169\) 4.35520i 0.335016i
\(170\) 9.32692 2.74012i 0.715342 0.210157i
\(171\) 16.5517 9.55613i 1.26574 0.730776i
\(172\) −2.83301 0.600335i −0.216015 0.0457751i
\(173\) −6.70516 + 1.79664i −0.509784 + 0.136596i −0.504537 0.863390i \(-0.668337\pi\)
−0.00524677 + 0.999986i \(0.501670\pi\)
\(174\) −16.7449 15.8805i −1.26943 1.20389i
\(175\) 0 0
\(176\) −0.779913 7.33270i −0.0587881 0.552723i
\(177\) 2.80921 + 10.4841i 0.211154 + 0.788036i
\(178\) 5.23052 3.20750i 0.392044 0.240413i
\(179\) −5.08815 8.81294i −0.380307 0.658710i 0.610799 0.791785i \(-0.290848\pi\)
−0.991106 + 0.133075i \(0.957515\pi\)
\(180\) −7.31117 + 14.2810i −0.544942 + 1.06444i
\(181\) 10.8055 0.803166 0.401583 0.915823i \(-0.368460\pi\)
0.401583 + 0.915823i \(0.368460\pi\)
\(182\) 0 0
\(183\) −21.8002 + 21.8002i −1.61151 + 1.61151i
\(184\) 2.39547 + 6.74460i 0.176596 + 0.497219i
\(185\) −2.33981 + 8.64425i −0.172026 + 0.635538i
\(186\) −3.69690 + 15.4198i −0.271070 + 1.13063i
\(187\) −5.47401 + 1.46676i −0.400299 + 0.107260i
\(188\) 1.20930 + 1.08750i 0.0881971 + 0.0793139i
\(189\) 0 0
\(190\) −0.403390 16.8422i −0.0292650 1.22186i
\(191\) −11.9741 6.91324i −0.866415 0.500225i −0.000259570 1.00000i \(-0.500083\pi\)
−0.866155 + 0.499775i \(0.833416\pi\)
\(192\) −20.4244 2.10820i −1.47400 0.152146i
\(193\) 1.78515 6.66228i 0.128498 0.479561i −0.871442 0.490498i \(-0.836815\pi\)
0.999940 + 0.0109371i \(0.00348146\pi\)
\(194\) −0.111531 0.376094i −0.00800748 0.0270020i
\(195\) −0.0608241 + 23.9088i −0.00435571 + 1.71215i
\(196\) 0 0
\(197\) −7.85372 + 7.85372i −0.559554 + 0.559554i −0.929181 0.369626i \(-0.879486\pi\)
0.369626 + 0.929181i \(0.379486\pi\)
\(198\) 4.46032 8.22098i 0.316981 0.584239i
\(199\) −8.63793 14.9613i −0.612327 1.06058i −0.990847 0.134988i \(-0.956900\pi\)
0.378520 0.925593i \(-0.376433\pi\)
\(200\) 7.96169 + 11.6881i 0.562976 + 0.826473i
\(201\) 4.24534 7.35315i 0.299443 0.518651i
\(202\) 10.3894 0.275285i 0.730994 0.0193690i
\(203\) 0 0
\(204\) 0.835649 + 15.7578i 0.0585071 + 1.10327i
\(205\) 20.5860 + 11.9553i 1.43779 + 0.834992i
\(206\) −18.7583 4.49731i −1.30695 0.313342i
\(207\) −2.34960 + 8.76884i −0.163309 + 0.609477i
\(208\) −15.5496 + 5.99111i −1.07817 + 0.415409i
\(209\) 9.82130i 0.679353i
\(210\) 0 0
\(211\) 18.6740i 1.28557i −0.766045 0.642787i \(-0.777778\pi\)
0.766045 0.642787i \(-0.222222\pi\)
\(212\) −5.14101 + 1.67395i −0.353086 + 0.114967i
\(213\) 6.99603 26.1096i 0.479360 1.78900i
\(214\) 1.53985 6.42273i 0.105262 0.439049i
\(215\) −3.12953 + 0.830028i −0.213432 + 0.0566075i
\(216\) −3.24558 2.76676i −0.220834 0.188254i
\(217\) 0 0
\(218\) −0.379499 14.3224i −0.0257029 0.970036i
\(219\) −2.62665 + 4.54949i −0.177492 + 0.307426i
\(220\) −4.47695 6.92300i −0.301836 0.466748i
\(221\) 6.40324 + 11.0907i 0.430729 + 0.746044i
\(222\) −12.7774 6.93243i −0.857563 0.465274i
\(223\) 11.0752 11.0752i 0.741650 0.741650i −0.231245 0.972895i \(-0.574280\pi\)
0.972895 + 0.231245i \(0.0742800\pi\)
\(224\) 0 0
\(225\) −0.0912651 + 17.9372i −0.00608434 + 1.19581i
\(226\) 14.7728 4.38090i 0.982672 0.291413i
\(227\) −0.679495 + 2.53591i −0.0450997 + 0.168314i −0.984803 0.173678i \(-0.944435\pi\)
0.939703 + 0.341992i \(0.111102\pi\)
\(228\) 26.7531 + 5.66917i 1.77177 + 0.375450i
\(229\) −1.76043 1.01639i −0.116333 0.0671646i 0.440705 0.897652i \(-0.354729\pi\)
−0.557037 + 0.830488i \(0.688062\pi\)
\(230\) 5.79226 + 5.52129i 0.381930 + 0.364063i
\(231\) 0 0
\(232\) −1.42764 17.9263i −0.0937293 1.17692i
\(233\) −13.4574 + 3.60589i −0.881621 + 0.236230i −0.671106 0.741361i \(-0.734181\pi\)
−0.210514 + 0.977591i \(0.567514\pi\)
\(234\) −20.5534 4.92768i −1.34362 0.322133i
\(235\) 1.75517 + 0.475084i 0.114494 + 0.0309911i
\(236\) −3.83509 + 7.53837i −0.249643 + 0.490706i
\(237\) −14.3664 + 14.3664i −0.933197 + 0.933197i
\(238\) 0 0
\(239\) 9.72902 0.629318 0.314659 0.949205i \(-0.398110\pi\)
0.314659 + 0.949205i \(0.398110\pi\)
\(240\) −21.4424 + 8.19896i −1.38410 + 0.529241i
\(241\) 7.97303 + 13.8097i 0.513588 + 0.889560i 0.999876 + 0.0157617i \(0.00501731\pi\)
−0.486288 + 0.873799i \(0.661649\pi\)
\(242\) −5.61975 9.16420i −0.361251 0.589097i
\(243\) 5.74932 + 21.4567i 0.368819 + 1.37645i
\(244\) −23.9903 + 1.27222i −1.53582 + 0.0814458i
\(245\) 0 0
\(246\) −26.5914 + 28.0389i −1.69540 + 1.78770i
\(247\) 21.4378 5.74425i 1.36406 0.365498i
\(248\) −10.1765 + 7.00812i −0.646211 + 0.445016i
\(249\) 0.714941 0.412771i 0.0453075 0.0261583i
\(250\) 13.8397 + 7.64607i 0.875300 + 0.483580i
\(251\) 5.62289i 0.354913i 0.984129 + 0.177457i \(0.0567870\pi\)
−0.984129 + 0.177457i \(0.943213\pi\)
\(252\) 0 0
\(253\) −3.29868 3.29868i −0.207386 0.207386i
\(254\) 17.2849 5.12586i 1.08455 0.321625i
\(255\) 8.78235 + 15.3012i 0.549972 + 0.958201i
\(256\) −10.7356 11.8637i −0.670976 0.741479i
\(257\) −1.32646 4.95043i −0.0827426 0.308799i 0.912135 0.409891i \(-0.134433\pi\)
−0.994877 + 0.101091i \(0.967767\pi\)
\(258\) −0.139211 5.25386i −0.00866687 0.327091i
\(259\) 0 0
\(260\) −12.4930 + 13.8213i −0.774782 + 0.857163i
\(261\) 11.4045 19.7533i 0.705924 1.22270i
\(262\) 22.6062 13.8628i 1.39662 0.856445i
\(263\) −7.62222 2.04237i −0.470006 0.125938i 0.0160390 0.999871i \(-0.494894\pi\)
−0.486045 + 0.873934i \(0.661561\pi\)
\(264\) 12.6111 4.47907i 0.776162 0.275668i
\(265\) −4.28521 + 4.26346i −0.263238 + 0.261902i
\(266\) 0 0
\(267\) 7.87393 + 7.87393i 0.481877 + 0.481877i
\(268\) 6.29117 2.04845i 0.384294 0.125129i
\(269\) 3.97953 2.29758i 0.242636 0.140086i −0.373752 0.927529i \(-0.621929\pi\)
0.616388 + 0.787443i \(0.288595\pi\)
\(270\) −4.63397 1.12347i −0.282015 0.0683722i
\(271\) 24.8226 + 14.3314i 1.50787 + 0.870568i 0.999958 + 0.00915707i \(0.00291483\pi\)
0.507909 + 0.861411i \(0.330419\pi\)
\(272\) −7.72644 + 9.56565i −0.468485 + 0.580002i
\(273\) 0 0
\(274\) −17.5615 + 18.5174i −1.06093 + 1.11868i
\(275\) −7.95910 4.64934i −0.479952 0.280366i
\(276\) −10.8897 + 7.08145i −0.655480 + 0.426253i
\(277\) −5.19134 1.39102i −0.311918 0.0835781i 0.0994644 0.995041i \(-0.468287\pi\)
−0.411382 + 0.911463i \(0.634954\pi\)
\(278\) −1.61016 + 2.96774i −0.0965707 + 0.177993i
\(279\) −15.6722 −0.938270
\(280\) 0 0
\(281\) 24.2851 1.44873 0.724365 0.689417i \(-0.242133\pi\)
0.724365 + 0.689417i \(0.242133\pi\)
\(282\) −1.40759 + 2.59438i −0.0838208 + 0.154493i
\(283\) 9.83724 + 2.63588i 0.584763 + 0.156687i 0.539059 0.842268i \(-0.318780\pi\)
0.0457044 + 0.998955i \(0.485447\pi\)
\(284\) 17.6580 11.4829i 1.04781 0.681382i
\(285\) 29.5532 7.83824i 1.75058 0.464297i
\(286\) 7.47389 7.88074i 0.441940 0.465998i
\(287\) 0 0
\(288\) −2.68013 20.1161i −0.157928 1.18535i
\(289\) −6.53852 3.77501i −0.384619 0.222060i
\(290\) −10.4669 17.1663i −0.614635 1.00804i
\(291\) 0.616559 0.355971i 0.0361434 0.0208674i
\(292\) −3.89243 + 1.26740i −0.227787 + 0.0741691i
\(293\) −19.5889 19.5889i −1.14440 1.14440i −0.987636 0.156762i \(-0.949894\pi\)
−0.156762 0.987636i \(-0.550106\pi\)
\(294\) 0 0
\(295\) −0.0240564 + 9.45611i −0.00140062 + 0.550556i
\(296\) −3.79121 10.6744i −0.220360 0.620438i
\(297\) 2.68501 + 0.719447i 0.155800 + 0.0417466i
\(298\) 13.2845 8.14644i 0.769551 0.471911i
\(299\) −5.27100 + 9.12965i −0.304830 + 0.527981i
\(300\) −17.2590 + 18.9967i −0.996448 + 1.09678i
\(301\) 0 0
\(302\) 0.619930 + 23.3964i 0.0356730 + 1.34631i
\(303\) 4.88183 + 18.2192i 0.280454 + 1.04667i
\(304\) 12.5471 + 17.2245i 0.719624 + 0.987894i
\(305\) −23.2952 + 13.3706i −1.33388 + 0.765598i
\(306\) −14.9526 + 4.43422i −0.854784 + 0.253488i
\(307\) −20.7290 20.7290i −1.18307 1.18307i −0.978946 0.204121i \(-0.934567\pi\)
−0.204121 0.978946i \(-0.565433\pi\)
\(308\) 0 0
\(309\) 35.0086i 1.99157i
\(310\) −6.61888 + 12.1258i −0.375927 + 0.688699i
\(311\) −3.76125 + 2.17156i −0.213281 + 0.123138i −0.602835 0.797866i \(-0.705962\pi\)
0.389554 + 0.921003i \(0.372629\pi\)
\(312\) −17.1528 24.9078i −0.971088 1.41012i
\(313\) −7.58085 + 2.03128i −0.428495 + 0.114815i −0.466620 0.884458i \(-0.654528\pi\)
0.0381246 + 0.999273i \(0.487862\pi\)
\(314\) 5.51948 5.81993i 0.311482 0.328438i
\(315\) 0 0
\(316\) −15.8097 + 0.838401i −0.889364 + 0.0471637i
\(317\) −0.627741 2.34276i −0.0352574 0.131583i 0.946054 0.324009i \(-0.105031\pi\)
−0.981311 + 0.192427i \(0.938364\pi\)
\(318\) −5.12956 8.36484i −0.287651 0.469077i
\(319\) 5.86050 + 10.1507i 0.328125 + 0.568329i
\(320\) −16.6960 6.42203i −0.933337 0.359003i
\(321\) 11.9867 0.669034
\(322\) 0 0
\(323\) 11.5804 11.5804i 0.644349 0.644349i
\(324\) −6.25054 + 12.2862i −0.347252 + 0.682569i
\(325\) −5.49345 + 20.0923i −0.304722 + 1.11452i
\(326\) 4.08349 + 0.979016i 0.226163 + 0.0542227i
\(327\) 25.1164 6.72992i 1.38894 0.372165i
\(328\) −30.0171 + 2.39055i −1.65741 + 0.131996i
\(329\) 0 0
\(330\) 10.3238 10.8304i 0.568305 0.596196i
\(331\) 11.1137 + 6.41652i 0.610866 + 0.352684i 0.773304 0.634035i \(-0.218602\pi\)
−0.162438 + 0.986719i \(0.551936\pi\)
\(332\) 0.629320 + 0.133357i 0.0345384 + 0.00731894i
\(333\) 3.71862 13.8781i 0.203779 0.760515i
\(334\) 21.4219 6.35270i 1.17216 0.347605i
\(335\) 5.24391 5.21729i 0.286505 0.285051i
\(336\) 0 0
\(337\) 25.1079 25.1079i 1.36771 1.36771i 0.504022 0.863691i \(-0.331853\pi\)
0.863691 0.504022i \(-0.168147\pi\)
\(338\) −5.41371 2.93723i −0.294467 0.159764i
\(339\) 13.9824 + 24.2182i 0.759418 + 1.31535i
\(340\) −2.88416 + 13.4418i −0.156415 + 0.728982i
\(341\) 4.02677 6.97457i 0.218062 0.377694i
\(342\) 0.715927 + 27.0193i 0.0387129 + 1.46104i
\(343\) 0 0
\(344\) 2.65688 3.11668i 0.143249 0.168040i
\(345\) −7.29342 + 12.5587i −0.392665 + 0.676137i
\(346\) 2.28877 9.54650i 0.123045 0.513223i
\(347\) 1.10061 4.10753i 0.0590838 0.220504i −0.930071 0.367379i \(-0.880255\pi\)
0.989155 + 0.146876i \(0.0469217\pi\)
\(348\) 31.0332 10.1046i 1.66355 0.541664i
\(349\) 4.09263i 0.219074i −0.993983 0.109537i \(-0.965063\pi\)
0.993983 0.109537i \(-0.0349368\pi\)
\(350\) 0 0
\(351\) 6.28161i 0.335288i
\(352\) 9.64086 + 3.97584i 0.513860 + 0.211913i
\(353\) −5.17152 + 19.3004i −0.275252 + 1.02726i 0.680420 + 0.732823i \(0.261798\pi\)
−0.955672 + 0.294433i \(0.904869\pi\)
\(354\) −14.9268 3.57871i −0.793352 0.190206i
\(355\) 11.8266 20.3644i 0.627689 1.08083i
\(356\) 0.459511 + 8.66497i 0.0243540 + 0.459242i
\(357\) 0 0
\(358\) 14.3864 0.381195i 0.760346 0.0201468i
\(359\) −4.85897 + 8.41598i −0.256446 + 0.444178i −0.965287 0.261190i \(-0.915885\pi\)
0.708841 + 0.705368i \(0.249218\pi\)
\(360\) −12.8212 18.7195i −0.675735 0.986604i
\(361\) −4.69104 8.12512i −0.246897 0.427638i
\(362\) −7.28742 + 13.4317i −0.383019 + 0.705955i
\(363\) 13.7956 13.7956i 0.724082 0.724082i
\(364\) 0 0
\(365\) −3.24447 + 3.22801i −0.169824 + 0.168962i
\(366\) −12.3961 41.8010i −0.647957 2.18497i
\(367\) 3.93209 14.6748i 0.205254 0.766017i −0.784119 0.620611i \(-0.786885\pi\)
0.989372 0.145406i \(-0.0464488\pi\)
\(368\) −9.99939 1.57101i −0.521254 0.0818947i
\(369\) −33.0763 19.0966i −1.72188 0.994129i
\(370\) −9.16718 8.73832i −0.476579 0.454284i
\(371\) 0 0
\(372\) −16.6742 14.9948i −0.864519 0.777444i
\(373\) −31.1771 + 8.35388i −1.61429 + 0.432548i −0.949317 0.314320i \(-0.898223\pi\)
−0.664972 + 0.746868i \(0.731557\pi\)
\(374\) 1.86853 7.79365i 0.0966193 0.403000i
\(375\) −7.63828 + 27.6603i −0.394439 + 1.42837i
\(376\) −2.16738 + 0.769784i −0.111774 + 0.0396986i
\(377\) 18.7291 18.7291i 0.964600 0.964600i
\(378\) 0 0
\(379\) −29.2598 −1.50297 −0.751487 0.659747i \(-0.770663\pi\)
−0.751487 + 0.659747i \(0.770663\pi\)
\(380\) 21.2076 + 10.8572i 1.08793 + 0.556964i
\(381\) 16.3600 + 28.3364i 0.838150 + 1.45172i
\(382\) 16.6690 10.2219i 0.852861 0.522998i
\(383\) 2.92209 + 10.9054i 0.149312 + 0.557240i 0.999526 + 0.0308021i \(0.00980617\pi\)
−0.850213 + 0.526438i \(0.823527\pi\)
\(384\) 16.3951 23.9666i 0.836661 1.22304i
\(385\) 0 0
\(386\) 7.07757 + 6.71218i 0.360239 + 0.341641i
\(387\) 5.01753 1.34444i 0.255055 0.0683419i
\(388\) 0.542720 + 0.115006i 0.0275525 + 0.00583856i
\(389\) 33.4554 19.3155i 1.69625 0.979333i 0.747000 0.664824i \(-0.231494\pi\)
0.949255 0.314508i \(-0.101840\pi\)
\(390\) −29.6787 16.2002i −1.50284 0.820327i
\(391\) 7.77900i 0.393401i
\(392\) 0 0
\(393\) 34.0310 + 34.0310i 1.71664 + 1.71664i
\(394\) −4.46583 15.0592i −0.224985 0.758672i
\(395\) −15.3516 + 8.81127i −0.772424 + 0.443343i
\(396\) 7.21092 + 11.0888i 0.362362 + 0.557231i
\(397\) 2.22097 + 8.28877i 0.111467 + 0.416002i 0.998998 0.0447462i \(-0.0142479\pi\)
−0.887531 + 0.460748i \(0.847581\pi\)
\(398\) 24.4232 0.647137i 1.22422 0.0324381i
\(399\) 0 0
\(400\) −19.8983 + 2.01407i −0.994916 + 0.100704i
\(401\) 1.16330 2.01489i 0.0580922 0.100619i −0.835517 0.549465i \(-0.814832\pi\)
0.893609 + 0.448846i \(0.148165\pi\)
\(402\) 6.27716 + 10.2362i 0.313076 + 0.510538i
\(403\) −17.5792 4.71033i −0.875681 0.234638i
\(404\) −6.66459 + 13.1001i −0.331576 + 0.651755i
\(405\) −0.0392078 + 15.4118i −0.00194825 + 0.765821i
\(406\) 0 0
\(407\) 5.22069 + 5.22069i 0.258780 + 0.258780i
\(408\) −20.1512 9.58859i −0.997634 0.474706i
\(409\) 0.162801 0.0939930i 0.00804997 0.00464765i −0.495970 0.868340i \(-0.665187\pi\)
0.504020 + 0.863692i \(0.331854\pi\)
\(410\) −28.7445 + 17.5265i −1.41959 + 0.865571i
\(411\) −40.1112 23.1582i −1.97854 1.14231i
\(412\) 18.2413 20.2844i 0.898685 0.999339i
\(413\) 0 0
\(414\) −9.31545 8.83453i −0.457829 0.434193i
\(415\) 0.695189 0.184381i 0.0341255 0.00905092i
\(416\) 3.03971 23.3694i 0.149034 1.14578i
\(417\) −5.91892 1.58597i −0.289851 0.0776652i
\(418\) −12.2083 6.62366i −0.597128 0.323974i
\(419\) −13.0861 −0.639297 −0.319648 0.947536i \(-0.603565\pi\)
−0.319648 + 0.947536i \(0.603565\pi\)
\(420\) 0 0
\(421\) 3.33535 0.162555 0.0812776 0.996692i \(-0.474100\pi\)
0.0812776 + 0.996692i \(0.474100\pi\)
\(422\) 23.2127 + 12.5941i 1.12997 + 0.613072i
\(423\) −2.81787 0.755046i −0.137009 0.0367116i
\(424\) 1.38640 7.51944i 0.0673295 0.365177i
\(425\) 3.90256 + 14.8667i 0.189302 + 0.721142i
\(426\) 27.7371 + 26.3051i 1.34387 + 1.27449i
\(427\) 0 0
\(428\) 6.94524 + 6.24571i 0.335711 + 0.301898i
\(429\) 17.0707 + 9.85579i 0.824183 + 0.475842i
\(430\) 1.07885 4.44993i 0.0520268 0.214595i
\(431\) 2.08778 1.20538i 0.100565 0.0580612i −0.448874 0.893595i \(-0.648175\pi\)
0.549439 + 0.835534i \(0.314841\pi\)
\(432\) 5.62808 2.16845i 0.270781 0.104329i
\(433\) −0.313016 0.313016i −0.0150426 0.0150426i 0.699545 0.714588i \(-0.253386\pi\)
−0.714588 + 0.699545i \(0.753386\pi\)
\(434\) 0 0
\(435\) 25.8672 25.7360i 1.24024 1.23394i
\(436\) 18.0593 + 9.18756i 0.864886 + 0.440005i
\(437\) 13.0219 + 3.48921i 0.622922 + 0.166911i
\(438\) −3.88376 6.33330i −0.185573 0.302617i
\(439\) 11.2300 19.4509i 0.535978 0.928341i −0.463138 0.886286i \(-0.653276\pi\)
0.999115 0.0420543i \(-0.0133902\pi\)
\(440\) 11.6249 0.896050i 0.554197 0.0427175i
\(441\) 0 0
\(442\) −18.1048 + 0.479719i −0.861155 + 0.0228179i
\(443\) 4.51489 + 16.8498i 0.214509 + 0.800559i 0.986339 + 0.164730i \(0.0526751\pi\)
−0.771830 + 0.635829i \(0.780658\pi\)
\(444\) 17.2346 11.2075i 0.817919 0.531886i
\(445\) 4.82928 + 8.41392i 0.228930 + 0.398858i
\(446\) 6.29765 + 21.2363i 0.298202 + 1.00557i
\(447\) 19.9983 + 19.9983i 0.945886 + 0.945886i
\(448\) 0 0
\(449\) 24.3525i 1.14927i 0.818411 + 0.574633i \(0.194855\pi\)
−0.818411 + 0.574633i \(0.805145\pi\)
\(450\) −22.2352 12.2106i −1.04818 0.575614i
\(451\) 16.9970 9.81325i 0.800360 0.462088i
\(452\) −4.51740 + 21.3178i −0.212481 + 1.00271i
\(453\) −41.0289 + 10.9937i −1.92771 + 0.516528i
\(454\) −2.69399 2.55491i −0.126435 0.119908i
\(455\) 0 0
\(456\) −25.0898 + 29.4319i −1.17494 + 1.37827i
\(457\) −3.60868 13.4678i −0.168807 0.629996i −0.997524 0.0703280i \(-0.977595\pi\)
0.828717 0.559668i \(-0.189071\pi\)
\(458\) 2.45068 1.50283i 0.114513 0.0702224i
\(459\) −2.31762 4.01423i −0.108177 0.187368i
\(460\) −10.7696 + 3.47638i −0.502136 + 0.162087i
\(461\) 15.8798 0.739597 0.369799 0.929112i \(-0.379427\pi\)
0.369799 + 0.929112i \(0.379427\pi\)
\(462\) 0 0
\(463\) 21.2388 21.2388i 0.987052 0.987052i −0.0128649 0.999917i \(-0.504095\pi\)
0.999917 + 0.0128649i \(0.00409513\pi\)
\(464\) 23.2460 + 10.3152i 1.07917 + 0.478871i
\(465\) −24.2009 6.55064i −1.12229 0.303778i
\(466\) 4.59361 19.1600i 0.212795 0.887568i
\(467\) 22.8692 6.12778i 1.05826 0.283560i 0.312599 0.949885i \(-0.398800\pi\)
0.745661 + 0.666325i \(0.232134\pi\)
\(468\) 19.9869 22.2255i 0.923896 1.02737i
\(469\) 0 0
\(470\) −1.77427 + 1.86134i −0.0818408 + 0.0858574i
\(471\) 12.6068 + 7.27851i 0.580889 + 0.335376i
\(472\) −6.78407 9.85120i −0.312262 0.453438i
\(473\) −0.690874 + 2.57838i −0.0317664 + 0.118554i
\(474\) −8.16911 27.5470i −0.375220 1.26528i
\(475\) 26.6371 + 0.135530i 1.22219 + 0.00621856i
\(476\) 0 0
\(477\) 6.85764 6.85764i 0.313990 0.313990i
\(478\) −6.56143 + 12.0936i −0.300113 + 0.553149i
\(479\) −11.7318 20.3200i −0.536038 0.928445i −0.999112 0.0421254i \(-0.986587\pi\)
0.463074 0.886319i \(-0.346746\pi\)
\(480\) 4.26946 32.1834i 0.194873 1.46896i
\(481\) 8.34221 14.4491i 0.380372 0.658823i
\(482\) −22.5432 + 0.597324i −1.02682 + 0.0272073i
\(483\) 0 0
\(484\) 15.1816 0.805092i 0.690071 0.0365951i
\(485\) 0.599526 0.159009i 0.0272231 0.00722022i
\(486\) −30.5491 7.32416i −1.38574 0.332231i
\(487\) 2.12851 7.94369i 0.0964518 0.359963i −0.900784 0.434268i \(-0.857007\pi\)
0.997236 + 0.0743048i \(0.0236738\pi\)
\(488\) 14.5980 30.6790i 0.660822 1.38877i
\(489\) 7.62100i 0.344633i
\(490\) 0 0
\(491\) 25.5075i 1.15114i −0.817753 0.575569i \(-0.804781\pi\)
0.817753 0.575569i \(-0.195219\pi\)
\(492\) −16.9199 51.9642i −0.762808 2.34273i
\(493\) 5.05859 18.8789i 0.227827 0.850264i
\(494\) −7.31770 + 30.5222i −0.329239 + 1.37326i
\(495\) 12.7883 + 7.42677i 0.574791 + 0.333808i
\(496\) −1.84816 17.3763i −0.0829847 0.780219i
\(497\) 0 0
\(498\) 0.0309240 + 1.16708i 0.00138574 + 0.0522983i
\(499\) 12.2280 21.1796i 0.547402 0.948128i −0.451049 0.892499i \(-0.648950\pi\)
0.998451 0.0556294i \(-0.0177165\pi\)
\(500\) −18.8382 + 12.0467i −0.842468 + 0.538746i
\(501\) 20.2757 + 35.1186i 0.905853 + 1.56898i
\(502\) −6.98950 3.79218i −0.311957 0.169253i
\(503\) 18.7502 18.7502i 0.836032 0.836032i −0.152302 0.988334i \(-0.548669\pi\)
0.988334 + 0.152302i \(0.0486687\pi\)
\(504\) 0 0
\(505\) −0.0418050 + 16.4327i −0.00186030 + 0.731248i
\(506\) 6.32510 1.87572i 0.281185 0.0833858i
\(507\) 2.89311 10.7972i 0.128487 0.479522i
\(508\) −5.28557 + 24.9429i −0.234509 + 1.10666i
\(509\) 16.5443 + 9.55184i 0.733312 + 0.423378i 0.819633 0.572889i \(-0.194178\pi\)
−0.0863205 + 0.996267i \(0.527511\pi\)
\(510\) −24.9431 + 0.597417i −1.10450 + 0.0264541i
\(511\) 0 0
\(512\) 21.9874 5.34377i 0.971713 0.236163i
\(513\) −7.75929 + 2.07910i −0.342581 + 0.0917943i
\(514\) 7.04820 + 1.68981i 0.310883 + 0.0745342i
\(515\) 7.96891 29.4406i 0.351152 1.29731i
\(516\) 6.62467 + 3.37025i 0.291635 + 0.148367i
\(517\) 1.06003 1.06003i 0.0466201 0.0466201i
\(518\) 0 0
\(519\) 17.8166 0.782062
\(520\) −8.75504 24.8507i −0.383934 1.08978i
\(521\) 5.20016 + 9.00694i 0.227823 + 0.394601i 0.957163 0.289551i \(-0.0935059\pi\)
−0.729340 + 0.684152i \(0.760173\pi\)
\(522\) 16.8627 + 27.4983i 0.738062 + 1.20357i
\(523\) 1.09296 + 4.07897i 0.0477917 + 0.178361i 0.985696 0.168533i \(-0.0539030\pi\)
−0.937904 + 0.346894i \(0.887236\pi\)
\(524\) 1.98600 + 37.4499i 0.0867588 + 1.63600i
\(525\) 0 0
\(526\) 7.67932 8.09735i 0.334834 0.353061i
\(527\) −12.9718 + 3.47577i −0.565059 + 0.151407i
\(528\) −2.93750 + 18.6970i −0.127838 + 0.813682i
\(529\) 14.3730 8.29825i 0.624913 0.360794i
\(530\) −2.40965 8.20206i −0.104668 0.356275i
\(531\) 15.1712i 0.658372i
\(532\) 0 0
\(533\) −31.3614 31.3614i −1.35841 1.35841i
\(534\) −15.0980 + 4.47733i −0.653353 + 0.193753i
\(535\) 10.0803 + 2.72850i 0.435808 + 0.117963i
\(536\) −1.69657 + 9.20172i −0.0732806 + 0.397454i
\(537\) 6.75999 + 25.2286i 0.291715 + 1.08870i
\(538\) 0.172130 + 6.49626i 0.00742106 + 0.280074i
\(539\) 0 0
\(540\) 4.52176 5.00255i 0.194586 0.215275i
\(541\) 0.191927 0.332427i 0.00825157 0.0142921i −0.861870 0.507129i \(-0.830707\pi\)
0.870122 + 0.492837i \(0.164040\pi\)
\(542\) −34.5553 + 21.1903i −1.48428 + 0.910202i
\(543\) −26.7885 7.17796i −1.14960 0.308036i
\(544\) −6.67967 16.0556i −0.286389 0.688377i
\(545\) 22.6536 + 0.0576308i 0.970374 + 0.00246863i
\(546\) 0 0
\(547\) −0.879876 0.879876i −0.0376208 0.0376208i 0.688046 0.725667i \(-0.258469\pi\)
−0.725667 + 0.688046i \(0.758469\pi\)
\(548\) −11.1742 34.3182i −0.477339 1.46600i
\(549\) 37.3195 21.5464i 1.59276 0.919578i
\(550\) 11.1471 6.75792i 0.475314 0.288159i
\(551\) −29.3340 16.9360i −1.24967 0.721497i
\(552\) −1.45838 18.3122i −0.0620726 0.779419i
\(553\) 0 0
\(554\) 5.23023 5.51494i 0.222211 0.234308i
\(555\) 11.5430 19.8761i 0.489973 0.843695i
\(556\) −2.60311 4.00299i −0.110396 0.169765i
\(557\) −37.5586 10.0638i −1.59141 0.426417i −0.648975 0.760810i \(-0.724802\pi\)
−0.942434 + 0.334394i \(0.891469\pi\)
\(558\) 10.5696 19.4812i 0.447448 0.824707i
\(559\) 6.03213 0.255132
\(560\) 0 0
\(561\) 14.5453 0.614102
\(562\) −16.3783 + 30.1875i −0.690879 + 1.27338i
\(563\) −9.14007 2.44907i −0.385208 0.103216i 0.0610177 0.998137i \(-0.480565\pi\)
−0.446225 + 0.894921i \(0.647232\pi\)
\(564\) −2.27563 3.49939i −0.0958211 0.147351i
\(565\) 6.24580 + 23.5491i 0.262763 + 0.990718i
\(566\) −9.91093 + 10.4504i −0.416587 + 0.439265i
\(567\) 0 0
\(568\) 2.36481 + 29.6940i 0.0992254 + 1.24593i
\(569\) −31.4026 18.1303i −1.31647 0.760062i −0.333308 0.942818i \(-0.608165\pi\)
−0.983158 + 0.182756i \(0.941498\pi\)
\(570\) −10.1880 + 42.0223i −0.426727 + 1.76012i
\(571\) −41.2518 + 23.8167i −1.72633 + 0.996699i −0.822575 + 0.568657i \(0.807463\pi\)
−0.903759 + 0.428042i \(0.859203\pi\)
\(572\) 4.75558 + 14.6053i 0.198841 + 0.610678i
\(573\) 25.0932 + 25.0932i 1.04828 + 1.04828i
\(574\) 0 0
\(575\) −8.99212 + 8.90108i −0.374997 + 0.371201i
\(576\) 26.8128 + 10.2352i 1.11720 + 0.426465i
\(577\) −44.0011 11.7901i −1.83179 0.490827i −0.833678 0.552251i \(-0.813769\pi\)
−0.998112 + 0.0614241i \(0.980436\pi\)
\(578\) 9.10221 5.58173i 0.378602 0.232169i
\(579\) −8.85133 + 15.3310i −0.367849 + 0.637133i
\(580\) 28.3975 1.43351i 1.17914 0.0595232i
\(581\) 0 0
\(582\) 0.0266686 + 1.00648i 0.00110545 + 0.0417201i
\(583\) 1.28986 + 4.81383i 0.0534206 + 0.199368i
\(584\) 1.04969 5.69322i 0.0434364 0.235587i
\(585\) 8.73149 32.2579i 0.361003 1.33370i
\(586\) 37.5611 11.1388i 1.55163 0.460139i
\(587\) 15.9943 + 15.9943i 0.660155 + 0.660155i 0.955417 0.295261i \(-0.0954067\pi\)
−0.295261 + 0.955417i \(0.595407\pi\)
\(588\) 0 0
\(589\) 23.2735i 0.958968i
\(590\) −11.7381 6.40728i −0.483252 0.263783i
\(591\) 24.6877 14.2535i 1.01552 0.586309i
\(592\) 15.8256 + 2.48638i 0.650430 + 0.102189i
\(593\) −6.44723 + 1.72753i −0.264756 + 0.0709412i −0.388755 0.921341i \(-0.627095\pi\)
0.123999 + 0.992282i \(0.460428\pi\)
\(594\) −2.70513 + 2.85238i −0.110993 + 0.117035i
\(595\) 0 0
\(596\) 1.16707 + 22.0074i 0.0478050 + 0.901457i
\(597\) 11.4761 + 42.8295i 0.469687 + 1.75290i
\(598\) −7.79370 12.7093i −0.318708 0.519722i
\(599\) −16.9948 29.4358i −0.694387 1.20271i −0.970387 0.241555i \(-0.922342\pi\)
0.276000 0.961158i \(-0.410991\pi\)
\(600\) −11.9740 34.2654i −0.488836 1.39888i
\(601\) −32.7782 −1.33705 −0.668526 0.743689i \(-0.733074\pi\)
−0.668526 + 0.743689i \(0.733074\pi\)
\(602\) 0 0
\(603\) −8.39185 + 8.39185i −0.341743 + 0.341743i
\(604\) −29.5009 15.0084i −1.20037 0.610682i
\(605\) 14.7417 8.46121i 0.599336 0.343997i
\(606\) −25.9397 6.21905i −1.05373 0.252632i
\(607\) −20.2807 + 5.43419i −0.823167 + 0.220567i −0.645731 0.763565i \(-0.723447\pi\)
−0.177436 + 0.984132i \(0.556780\pi\)
\(608\) −29.8728 + 3.98005i −1.21150 + 0.161412i
\(609\) 0 0
\(610\) −0.909531 37.9743i −0.0368258 1.53754i
\(611\) −2.93381 1.69384i −0.118689 0.0685254i
\(612\) 4.57238 21.5773i 0.184828 0.872210i
\(613\) −7.58040 + 28.2904i −0.306169 + 1.14264i 0.625765 + 0.780012i \(0.284787\pi\)
−0.931934 + 0.362628i \(0.881880\pi\)
\(614\) 39.7471 11.7871i 1.60406 0.475687i
\(615\) −43.0941 43.3140i −1.73772 1.74659i
\(616\) 0 0
\(617\) −27.0214 + 27.0214i −1.08784 + 1.08784i −0.0920892 + 0.995751i \(0.529354\pi\)
−0.995751 + 0.0920892i \(0.970646\pi\)
\(618\) 43.5173 + 23.6104i 1.75052 + 0.949751i
\(619\) 6.44385 + 11.1611i 0.259000 + 0.448601i 0.965974 0.258638i \(-0.0832737\pi\)
−0.706974 + 0.707239i \(0.749940\pi\)
\(620\) −10.6090 16.4054i −0.426068 0.658858i
\(621\) 1.90781 3.30442i 0.0765577 0.132602i
\(622\) −0.162689 6.13994i −0.00652323 0.246189i
\(623\) 0 0
\(624\) 42.5297 4.52349i 1.70255 0.181085i
\(625\) −12.7197 + 21.5223i −0.508787 + 0.860893i
\(626\) 2.58769 10.7933i 0.103425 0.431386i
\(627\) 6.52416 24.3485i 0.260550 0.972386i
\(628\) 3.51200 + 10.7860i 0.140144 + 0.430409i
\(629\) 12.3115i 0.490892i
\(630\) 0 0
\(631\) 35.1539i 1.39945i −0.714410 0.699727i \(-0.753305\pi\)
0.714410 0.699727i \(-0.246695\pi\)
\(632\) 9.62016 20.2176i 0.382670 0.804212i
\(633\) −12.4049 + 46.2958i −0.493052 + 1.84009i
\(634\) 3.33552 + 0.799690i 0.132470 + 0.0317598i
\(635\) 7.30788 + 27.5536i 0.290004 + 1.09343i
\(636\) 13.8573 0.734867i 0.549479 0.0291394i
\(637\) 0 0
\(638\) −16.5702 + 0.439057i −0.656020 + 0.0173824i
\(639\) −18.8910 + 32.7202i −0.747318 + 1.29439i
\(640\) 19.2430 16.4228i 0.760646 0.649167i
\(641\) −4.98684 8.63746i −0.196968 0.341159i 0.750576 0.660784i \(-0.229776\pi\)
−0.947544 + 0.319625i \(0.896443\pi\)
\(642\) −8.08407 + 14.9000i −0.319053 + 0.588057i
\(643\) −25.3846 + 25.3846i −1.00107 + 1.00107i −0.00107009 + 0.999999i \(0.500341\pi\)
−0.999999 + 0.00107009i \(0.999659\pi\)
\(644\) 0 0
\(645\) 8.30997 + 0.0211406i 0.327205 + 0.000832410i
\(646\) 6.58490 + 22.2049i 0.259080 + 0.873641i
\(647\) 0.521998 1.94812i 0.0205218 0.0765886i −0.954906 0.296910i \(-0.904044\pi\)
0.975427 + 0.220321i \(0.0707106\pi\)
\(648\) −11.0569 16.0558i −0.434355 0.630730i
\(649\) 6.75159 + 3.89803i 0.265023 + 0.153011i
\(650\) −21.2708 20.3792i −0.834309 0.799340i
\(651\) 0 0
\(652\) −3.97094 + 4.41569i −0.155514 + 0.172932i
\(653\) 12.7709 3.42196i 0.499766 0.133912i −0.000125665 1.00000i \(-0.500040\pi\)
0.499891 + 0.866088i \(0.333373\pi\)
\(654\) −8.57337 + 35.7596i −0.335245 + 1.39831i
\(655\) 20.8721 + 36.3648i 0.815540 + 1.42089i
\(656\) 17.2725 38.9248i 0.674378 1.51976i
\(657\) 5.19215 5.19215i 0.202565 0.202565i
\(658\) 0 0
\(659\) −43.1794 −1.68203 −0.841015 0.541011i \(-0.818042\pi\)
−0.841015 + 0.541011i \(0.818042\pi\)
\(660\) 6.50018 + 20.1372i 0.253019 + 0.783838i
\(661\) −8.09021 14.0127i −0.314673 0.545029i 0.664695 0.747115i \(-0.268561\pi\)
−0.979368 + 0.202085i \(0.935228\pi\)
\(662\) −15.4713 + 9.48746i −0.601310 + 0.368741i
\(663\) −8.50719 31.7493i −0.330392 1.23304i
\(664\) −0.590194 + 0.692334i −0.0229040 + 0.0268678i
\(665\) 0 0
\(666\) 14.7432 + 13.9821i 0.571287 + 0.541794i
\(667\) 15.5407 4.16412i 0.601738 0.161235i
\(668\) −6.55064 + 30.9128i −0.253452 + 1.19605i
\(669\) −34.8142 + 20.1000i −1.34600 + 0.777111i
\(670\) 2.94874 + 10.0370i 0.113920 + 0.387765i
\(671\) 22.1443i 0.854870i
\(672\) 0 0
\(673\) −9.53669 9.53669i −0.367612 0.367612i 0.498993 0.866606i \(-0.333703\pi\)
−0.866606 + 0.498993i \(0.833703\pi\)
\(674\) 14.2770 + 48.1434i 0.549929 + 1.85441i
\(675\) 1.98832 7.27230i 0.0765304 0.279911i
\(676\) 7.30221 4.74857i 0.280854 0.182637i
\(677\) −7.92901 29.5915i −0.304737 1.13729i −0.933172 0.359431i \(-0.882971\pi\)
0.628435 0.777862i \(-0.283696\pi\)
\(678\) −39.5342 + 1.04753i −1.51830 + 0.0402302i
\(679\) 0 0
\(680\) −14.7636 12.6505i −0.566158 0.485125i
\(681\) 3.36915 5.83554i 0.129106 0.223618i
\(682\) 5.95397 + 9.70923i 0.227989 + 0.371786i
\(683\) 20.1250 + 5.39248i 0.770062 + 0.206338i 0.622399 0.782700i \(-0.286158\pi\)
0.147663 + 0.989038i \(0.452825\pi\)
\(684\) −34.0691 17.3324i −1.30266 0.662721i
\(685\) −28.4602 28.6054i −1.08741 1.09296i
\(686\) 0 0
\(687\) 3.68921 + 3.68921i 0.140752 + 0.140752i
\(688\) 2.08233 + 5.40456i 0.0793879 + 0.206047i
\(689\) 9.75316 5.63099i 0.371566 0.214524i
\(690\) −10.6922 17.5359i −0.407045 0.667579i
\(691\) −5.07142 2.92798i −0.192926 0.111386i 0.400426 0.916329i \(-0.368862\pi\)
−0.593352 + 0.804943i \(0.702196\pi\)
\(692\) 10.3231 + 9.28338i 0.392427 + 0.352901i
\(693\) 0 0
\(694\) 4.36357 + 4.13830i 0.165639 + 0.157088i
\(695\) −4.61652 2.68103i −0.175115 0.101697i
\(696\) −8.36886 + 45.3904i −0.317221 + 1.72052i
\(697\) −31.6122 8.47047i −1.19740 0.320842i
\(698\) 5.08733 + 2.76015i 0.192558 + 0.104473i
\(699\) 35.7582 1.35250
\(700\) 0 0
\(701\) 20.0349 0.756706 0.378353 0.925661i \(-0.376491\pi\)
0.378353 + 0.925661i \(0.376491\pi\)
\(702\) 7.80832 + 4.23643i 0.294706 + 0.159894i
\(703\) −20.6092 5.52223i −0.777292 0.208275i
\(704\) −11.4441 + 9.30264i −0.431317 + 0.350607i
\(705\) −4.03574 2.34374i −0.151995 0.0882704i
\(706\) −20.5035 19.4450i −0.771658 0.731821i
\(707\) 0 0
\(708\) 14.5154 16.1412i 0.545523 0.606622i
\(709\) 42.7844 + 24.7016i 1.60680 + 0.927688i 0.990080 + 0.140508i \(0.0448735\pi\)
0.616723 + 0.787180i \(0.288460\pi\)
\(710\) 17.3378 + 28.4351i 0.650676 + 1.06715i
\(711\) 24.5937 14.1992i 0.922335 0.532510i
\(712\) −11.0808 5.27262i −0.415272 0.197600i
\(713\) −7.81688 7.81688i −0.292744 0.292744i
\(714\) 0 0
\(715\) 12.1122 + 12.1740i 0.452972 + 0.455282i
\(716\) −9.22863 + 18.1401i −0.344890 + 0.677926i
\(717\) −24.1198 6.46287i −0.900769 0.241360i
\(718\) −7.18446 11.7158i −0.268122 0.437230i
\(719\) −12.1477 + 21.0405i −0.453033 + 0.784677i −0.998573 0.0534084i \(-0.982991\pi\)
0.545539 + 0.838085i \(0.316325\pi\)
\(720\) 31.9160 3.31252i 1.18944 0.123450i
\(721\) 0 0
\(722\) 13.2636 0.351443i 0.493620 0.0130794i
\(723\) −10.5928 39.5327i −0.393949 1.47024i
\(724\) −11.7815 18.1172i −0.437854 0.673320i
\(725\) 27.6113 15.7546i 1.02546 0.585112i
\(726\) 7.84456 + 26.4526i 0.291139 + 0.981748i
\(727\) 15.7313 + 15.7313i 0.583441 + 0.583441i 0.935847 0.352406i \(-0.114636\pi\)
−0.352406 + 0.935847i \(0.614636\pi\)
\(728\) 0 0
\(729\) 36.3365i 1.34580i
\(730\) −1.82443 6.21005i −0.0675250 0.229844i
\(731\) 3.85480 2.22557i 0.142575 0.0823157i
\(732\) 60.3207 + 12.7824i 2.22952 + 0.472451i
\(733\) 27.6619 7.41199i 1.02172 0.273768i 0.291199 0.956663i \(-0.405946\pi\)
0.730517 + 0.682895i \(0.239279\pi\)
\(734\) 15.5895 + 14.7847i 0.575420 + 0.545713i
\(735\) 0 0
\(736\) 8.69661 11.3702i 0.320561 0.419110i
\(737\) −1.57843 5.89079i −0.0581423 0.216990i
\(738\) 46.0452 28.2362i 1.69495 1.03939i
\(739\) 4.43514 + 7.68188i 0.163149 + 0.282583i 0.935996 0.352009i \(-0.114502\pi\)
−0.772847 + 0.634592i \(0.781168\pi\)
\(740\) 17.0446 5.50193i 0.626573 0.202255i
\(741\) −56.9635 −2.09261
\(742\) 0 0
\(743\) 10.5849 10.5849i 0.388323 0.388323i −0.485766 0.874089i \(-0.661459\pi\)
0.874089 + 0.485766i \(0.161459\pi\)
\(744\) 29.8846 10.6141i 1.09562 0.389130i
\(745\) 12.2654 + 21.3697i 0.449371 + 0.782927i
\(746\) 10.6422 44.3885i 0.389637 1.62518i
\(747\) −1.11459 + 0.298652i −0.0407806 + 0.0109271i
\(748\) 8.42768 + 7.57884i 0.308147 + 0.277110i
\(749\) 0 0
\(750\) −29.2316 28.1493i −1.06739 1.02787i
\(751\) −26.2007 15.1270i −0.956078 0.551992i −0.0611139 0.998131i \(-0.519465\pi\)
−0.894964 + 0.446139i \(0.852799\pi\)
\(752\) 0.504845 3.21331i 0.0184098 0.117177i
\(753\) 3.73521 13.9400i 0.136119 0.508002i
\(754\) 10.6499 + 35.9124i 0.387846 + 1.30785i
\(755\) −37.0058 0.0941429i −1.34678 0.00342621i
\(756\) 0 0
\(757\) −18.0236 + 18.0236i −0.655078 + 0.655078i −0.954211 0.299133i \(-0.903302\pi\)
0.299133 + 0.954211i \(0.403302\pi\)
\(758\) 19.7333 36.3712i 0.716747 1.32106i
\(759\) 5.98667 + 10.3692i 0.217302 + 0.376378i
\(760\) −27.7988 + 19.0397i −1.00837 + 0.690642i
\(761\) −12.9621 + 22.4510i −0.469875 + 0.813848i −0.999407 0.0344427i \(-0.989034\pi\)
0.529532 + 0.848290i \(0.322368\pi\)
\(762\) −46.2569 + 1.22566i −1.67571 + 0.0444010i
\(763\) 0 0
\(764\) 1.46440 + 27.6142i 0.0529803 + 0.999046i
\(765\) −6.32182 23.8357i −0.228566 0.861783i
\(766\) −15.5266 3.72251i −0.561000 0.134500i
\(767\) 4.55974 17.0172i 0.164643 0.614455i
\(768\) 18.7343 + 36.5434i 0.676018 + 1.31865i
\(769\) 43.7662i 1.57825i 0.614232 + 0.789125i \(0.289466\pi\)
−0.614232 + 0.789125i \(0.710534\pi\)
\(770\) 0 0
\(771\) 13.1540i 0.473731i
\(772\) −13.1168 + 4.27091i −0.472083 + 0.153714i
\(773\) 2.58809 9.65890i 0.0930873 0.347406i −0.903635 0.428303i \(-0.859112\pi\)
0.996723 + 0.0808964i \(0.0257783\pi\)
\(774\) −1.71271 + 7.14373i −0.0615621 + 0.256776i
\(775\) −18.8607 11.0175i −0.677495 0.395762i
\(776\) −0.508979 + 0.597063i −0.0182713 + 0.0214333i
\(777\) 0 0
\(778\) 1.44708 + 54.6132i 0.0518802 + 1.95798i
\(779\) −28.3588 + 49.1189i −1.01606 + 1.75987i
\(780\) 40.1534 25.9663i 1.43772 0.929742i
\(781\) −9.70762 16.8141i −0.347366 0.601655i
\(782\) −9.66964 5.24630i −0.345786 0.187607i
\(783\) −6.77890 + 6.77890i −0.242258 + 0.242258i
\(784\) 0 0
\(785\) 8.94490 + 8.99052i 0.319257 + 0.320886i
\(786\) −65.2532 + 19.3509i −2.32750 + 0.690225i
\(787\) 3.75602 14.0177i 0.133888 0.499675i −0.866112 0.499849i \(-0.833389\pi\)
1.00000 0.000173930i \(5.53638e-5\pi\)
\(788\) 21.7311 + 4.60498i 0.774139 + 0.164046i
\(789\) 17.5399 + 10.1267i 0.624439 + 0.360520i
\(790\) −0.599385 25.0252i −0.0213251 0.890358i
\(791\) 0 0
\(792\) −18.6470 + 1.48504i −0.662592 + 0.0527686i
\(793\) 48.3363 12.9517i 1.71647 0.459927i
\(794\) −11.8012 2.82933i −0.418808 0.100409i
\(795\) 13.4559 7.72317i 0.477230 0.273912i
\(796\) −15.6670 + 30.7956i −0.555303 + 1.09152i
\(797\) 16.4978 16.4978i 0.584382 0.584382i −0.351723 0.936104i \(-0.614404\pi\)
0.936104 + 0.351723i \(0.114404\pi\)
\(798\) 0 0
\(799\) −2.49978 −0.0884360
\(800\) 10.9162 26.0928i 0.385947 0.922521i
\(801\) −7.78228 13.4793i −0.274973 0.476268i
\(802\) 1.72005 + 2.80491i 0.0607370 + 0.0990447i
\(803\) 0.976597 + 3.64471i 0.0344633 + 0.128619i
\(804\) −16.9575 + 0.899273i −0.598046 + 0.0317149i
\(805\) 0 0
\(806\) 17.7109 18.6750i 0.623839 0.657798i
\(807\) −11.3921 + 3.05251i −0.401021 + 0.107453i
\(808\) −11.7893 17.1193i −0.414746 0.602256i
\(809\) 9.19342 5.30782i 0.323223 0.186613i −0.329605 0.944119i \(-0.606916\pi\)
0.652828 + 0.757506i \(0.273582\pi\)
\(810\) −19.1312 10.4428i −0.672201 0.366921i
\(811\) 51.1988i 1.79783i −0.438122 0.898916i \(-0.644356\pi\)
0.438122 0.898916i \(-0.355644\pi\)
\(812\) 0 0
\(813\) −52.0190 52.0190i −1.82439 1.82439i
\(814\) −10.0105 + 2.96862i −0.350867 + 0.104050i
\(815\) −1.73475 + 6.40890i −0.0607655 + 0.224494i
\(816\) 25.5094 18.5821i 0.893007 0.650505i
\(817\) −1.99652 7.45113i −0.0698495 0.260682i
\(818\) 0.00704177 + 0.265759i 0.000246210 + 0.00929205i
\(819\) 0 0
\(820\) −2.40037 47.5509i −0.0838246 1.66055i
\(821\) 2.15663 3.73539i 0.0752668 0.130366i −0.825935 0.563765i \(-0.809352\pi\)
0.901202 + 0.433399i \(0.142686\pi\)
\(822\) 55.8385 34.2417i 1.94759 1.19432i
\(823\) −25.5920 6.85735i −0.892080 0.239032i −0.216468 0.976290i \(-0.569454\pi\)
−0.675612 + 0.737257i \(0.736121\pi\)
\(824\) 12.9121 + 36.3549i 0.449814 + 1.26648i
\(825\) 16.6433 + 16.8136i 0.579447 + 0.585374i
\(826\) 0 0
\(827\) 37.0665 + 37.0665i 1.28893 + 1.28893i 0.935438 + 0.353490i \(0.115005\pi\)
0.353490 + 0.935438i \(0.384995\pi\)
\(828\) 17.2642 5.62135i 0.599973 0.195355i
\(829\) −9.10301 + 5.25563i −0.316161 + 0.182535i −0.649680 0.760208i \(-0.725097\pi\)
0.333519 + 0.942743i \(0.391764\pi\)
\(830\) −0.239654 + 0.988501i −0.00831852 + 0.0343114i
\(831\) 11.9461 + 6.89709i 0.414406 + 0.239257i
\(832\) 26.9991 + 19.5392i 0.936026 + 0.677400i
\(833\) 0 0
\(834\) 5.96326 6.28787i 0.206491 0.217731i
\(835\) 9.05698 + 34.1484i 0.313430 + 1.18175i
\(836\) 16.4670 10.7084i 0.569524 0.370356i
\(837\) 6.36268 + 1.70487i 0.219926 + 0.0589291i
\(838\) 8.82549 16.2666i 0.304871 0.561920i
\(839\) −32.0936 −1.10799 −0.553996 0.832519i \(-0.686898\pi\)
−0.553996 + 0.832519i \(0.686898\pi\)
\(840\) 0 0
\(841\) −11.4237 −0.393921
\(842\) −2.24942 + 4.14599i −0.0775202 + 0.142880i
\(843\) −60.2066 16.1323i −2.07363 0.555626i
\(844\) −31.3101 + 20.3607i −1.07774 + 0.700843i
\(845\) 4.89071 8.42140i 0.168245 0.289705i
\(846\) 2.83898 2.99352i 0.0976061 0.102919i
\(847\) 0 0
\(848\) 8.41199 + 6.79461i 0.288869 + 0.233328i
\(849\) −22.6371 13.0695i −0.776902 0.448544i
\(850\) −21.1120 5.17533i −0.724134 0.177512i
\(851\) 8.77678 5.06728i 0.300864 0.173704i
\(852\) −51.4049 + 16.7378i −1.76110 + 0.573427i
\(853\) 14.4800 + 14.4800i 0.495785 + 0.495785i 0.910123 0.414338i \(-0.135987\pi\)
−0.414338 + 0.910123i \(0.635987\pi\)
\(854\) 0 0
\(855\) −42.7362 0.108721i −1.46155 0.00371818i
\(856\) −12.4477 + 4.42102i −0.425453 + 0.151107i
\(857\) 4.04846 + 1.08478i 0.138293 + 0.0370554i 0.327301 0.944920i \(-0.393861\pi\)
−0.189009 + 0.981975i \(0.560527\pi\)
\(858\) −23.7640 + 14.5728i −0.811289 + 0.497506i
\(859\) −17.7614 + 30.7636i −0.606010 + 1.04964i 0.385881 + 0.922549i \(0.373897\pi\)
−0.991891 + 0.127091i \(0.959436\pi\)
\(860\) 4.80387 + 4.34218i 0.163811 + 0.148067i
\(861\) 0 0
\(862\) 0.0903049 + 3.40814i 0.00307580 + 0.116082i
\(863\) −0.907912 3.38837i −0.0309057 0.115342i 0.948750 0.316028i \(-0.102349\pi\)
−0.979656 + 0.200687i \(0.935683\pi\)
\(864\) −1.10020 + 8.45839i −0.0374297 + 0.287760i
\(865\) 14.9829 + 4.05554i 0.509435 + 0.137893i
\(866\) 0.600196 0.177989i 0.0203955 0.00604831i
\(867\) 13.7023 + 13.7023i 0.465354 + 0.465354i
\(868\) 0 0
\(869\) 14.5932i 0.495039i
\(870\) 14.5456 + 49.5109i 0.493142 + 1.67858i
\(871\) −11.9352 + 6.89077i −0.404408 + 0.233485i
\(872\) −23.6001 + 16.2523i −0.799200 + 0.550373i
\(873\) −0.961210 + 0.257555i −0.0325320 + 0.00871693i
\(874\) −13.1194 + 13.8336i −0.443772 + 0.467929i
\(875\) 0 0
\(876\) 10.4919 0.556392i 0.354487 0.0187987i
\(877\) −5.75864 21.4915i −0.194455 0.725718i −0.992407 0.122996i \(-0.960750\pi\)
0.797952 0.602721i \(-0.205917\pi\)
\(878\) 16.6046 + 27.0774i 0.560379 + 0.913818i
\(879\) 35.5513 + 61.5767i 1.19912 + 2.07693i
\(880\) −6.72624 + 15.0546i −0.226741 + 0.507491i
\(881\) 35.9299 1.21051 0.605254 0.796032i \(-0.293071\pi\)
0.605254 + 0.796032i \(0.293071\pi\)
\(882\) 0 0
\(883\) −39.0358 + 39.0358i −1.31366 + 1.31366i −0.394964 + 0.918697i \(0.629243\pi\)
−0.918697 + 0.394964i \(0.870757\pi\)
\(884\) 11.6139 22.8286i 0.390617 0.767807i
\(885\) 6.34121 23.4272i 0.213158 0.787496i
\(886\) −23.9900 5.75161i −0.805960 0.193229i
\(887\) 28.2871 7.57952i 0.949789 0.254495i 0.249516 0.968371i \(-0.419728\pi\)
0.700273 + 0.713875i \(0.253062\pi\)
\(888\) 2.30811 + 28.9820i 0.0774552 + 0.972571i
\(889\) 0 0
\(890\) −13.7158 + 0.328511i −0.459756 + 0.0110117i
\(891\) 11.0039 + 6.35313i 0.368646 + 0.212838i
\(892\) −30.6449 6.49387i −1.02607 0.217431i
\(893\) −1.12126 + 4.18459i −0.0375215 + 0.140032i
\(894\) −38.3460 + 11.3715i −1.28248 + 0.380321i
\(895\) −0.0578884 + 22.7548i −0.00193500 + 0.760611i
\(896\) 0 0
\(897\) 19.1323 19.1323i 0.638810 0.638810i
\(898\) −30.2713 16.4238i −1.01017 0.548069i
\(899\) 13.8876 + 24.0541i 0.463178 + 0.802248i
\(900\) 30.1741 19.4043i 1.00580 0.646809i
\(901\) 4.15513 7.19690i 0.138428 0.239764i
\(902\) 0.735189 + 27.7463i 0.0244791 + 0.923851i
\(903\) 0 0
\(904\) −23.4524 19.9925i −0.780015 0.664939i
\(905\) −20.8940 12.1341i −0.694539 0.403351i
\(906\) 14.0050 58.4151i 0.465286 1.94071i
\(907\) −7.81783 + 29.1765i −0.259587 + 0.968791i 0.705894 + 0.708317i \(0.250545\pi\)
−0.965481 + 0.260474i \(0.916121\pi\)
\(908\) 4.99274 1.62567i 0.165690 0.0539498i
\(909\) 26.3643i 0.874449i
\(910\) 0 0
\(911\) 31.4256i 1.04118i 0.853808 + 0.520588i \(0.174287\pi\)
−0.853808 + 0.520588i \(0.825713\pi\)
\(912\) −19.6641 51.0371i −0.651144 1.69001i
\(913\) 0.153470 0.572757i 0.00507911 0.0189555i
\(914\) 19.1748 + 4.59716i 0.634246 + 0.152061i
\(915\) 66.6343 17.6730i 2.20286 0.584253i
\(916\) 0.215297 + 4.05984i 0.00711360 + 0.134141i
\(917\) 0 0
\(918\) 6.55291 0.173631i 0.216278 0.00573068i
\(919\) 25.4185 44.0262i 0.838480 1.45229i −0.0526848 0.998611i \(-0.516778\pi\)
0.891165 0.453679i \(-0.149889\pi\)
\(920\) 2.94193 15.7316i 0.0969924 0.518657i
\(921\) 37.6204 + 65.1604i 1.23963 + 2.14711i
\(922\) −10.7096 + 19.7393i −0.352703 + 0.650080i
\(923\) −31.0239 + 31.0239i −1.02116 + 1.02116i
\(924\) 0 0
\(925\) 14.2315 14.0874i 0.467928 0.463190i
\(926\) 12.0770 + 40.7247i 0.396874 + 1.33830i
\(927\) −12.6649 + 47.2660i −0.415969 + 1.55242i
\(928\) −28.4998 + 21.9391i −0.935550 + 0.720185i
\(929\) −35.1105 20.2711i −1.15194 0.665073i −0.202580 0.979266i \(-0.564933\pi\)
−0.949359 + 0.314193i \(0.898266\pi\)
\(930\) 24.4642 25.6649i 0.802214 0.841585i
\(931\) 0 0
\(932\) 20.7187 + 18.6319i 0.678663 + 0.610308i
\(933\) 10.7673 2.88508i 0.352504 0.0944532i
\(934\) −7.80630 + 32.5601i −0.255430 + 1.06540i
\(935\) 12.2319 + 3.31090i 0.400025 + 0.108278i
\(936\) 14.1477 + 39.8339i 0.462433 + 1.30201i
\(937\) −7.47390 + 7.47390i −0.244162 + 0.244162i −0.818569 0.574408i \(-0.805232\pi\)
0.574408 + 0.818569i \(0.305232\pi\)
\(938\) 0 0
\(939\) 20.1435 0.657357
\(940\) −1.11714 3.46082i −0.0364370 0.112879i
\(941\) −2.77299 4.80295i −0.0903968 0.156572i 0.817281 0.576239i \(-0.195480\pi\)
−0.907678 + 0.419667i \(0.862147\pi\)
\(942\) −17.5497 + 10.7620i −0.571802 + 0.350645i
\(943\) −6.97270 26.0225i −0.227062 0.847408i
\(944\) 16.8208 1.78907i 0.547470 0.0582294i
\(945\) 0 0
\(946\) −2.73910 2.59769i −0.0890559 0.0844583i
\(947\) −20.8206 + 5.57887i −0.676579 + 0.181289i −0.580717 0.814106i \(-0.697228\pi\)
−0.0958624 + 0.995395i \(0.530561\pi\)
\(948\) 39.7516 + 8.42364i 1.29107 + 0.273587i
\(949\) 7.38444 4.26341i 0.239709 0.138396i
\(950\) −18.1330 + 33.0197i −0.588312 + 1.07130i
\(951\) 6.22506i 0.201862i
\(952\) 0 0
\(953\) 32.3871 + 32.3871i 1.04912 + 1.04912i 0.998730 + 0.0503899i \(0.0160464\pi\)
0.0503899 + 0.998730i \(0.483954\pi\)
\(954\) 3.89944 + 13.1493i 0.126249 + 0.425723i
\(955\) 15.3903 + 26.8141i 0.498019 + 0.867684i
\(956\) −10.6078 16.3123i −0.343079 0.527578i
\(957\) −7.78612 29.0582i −0.251689 0.939318i
\(958\) 33.1708 0.878920i 1.07170 0.0283966i
\(959\) 0 0
\(960\) 37.1260 + 27.0122i 1.19824 + 0.871814i
\(961\) −5.95777 + 10.3192i −0.192186 + 0.332876i
\(962\) 12.3348 + 20.1145i 0.397689 + 0.648517i
\(963\) −16.1836 4.33638i −0.521508 0.139738i
\(964\) 14.4611 28.4251i 0.465759 0.915510i
\(965\) −10.9333 + 10.8778i −0.351955 + 0.350169i
\(966\) 0 0
\(967\) −10.6422 10.6422i −0.342230 0.342230i 0.514975 0.857205i \(-0.327801\pi\)
−0.857205 + 0.514975i \(0.827801\pi\)
\(968\) −9.23796 + 19.4143i −0.296919 + 0.624000i
\(969\) −36.4022 + 21.0168i −1.16941 + 0.675158i
\(970\) −0.206676 + 0.852476i −0.00663597 + 0.0273713i
\(971\) 10.1110 + 5.83760i 0.324478 + 0.187337i 0.653387 0.757024i \(-0.273348\pi\)
−0.328909 + 0.944362i \(0.606681\pi\)
\(972\) 29.7071 33.0344i 0.952857 1.05958i
\(973\) 0 0
\(974\) 8.43886 + 8.00320i 0.270399 + 0.256439i
\(975\) 26.9662 46.1628i 0.863609 1.47839i
\(976\) 28.2902 + 38.8365i 0.905546 + 1.24313i
\(977\) 29.7605 + 7.97429i 0.952121 + 0.255120i 0.701262 0.712903i \(-0.252620\pi\)
0.250859 + 0.968024i \(0.419287\pi\)
\(978\) −9.47324 5.13974i −0.302921 0.164351i
\(979\) 7.99822 0.255624
\(980\) 0 0
\(981\) −36.3449 −1.16040
\(982\) 31.7070 + 17.2027i 1.01181 + 0.548961i
\(983\) 45.1780 + 12.1054i 1.44095 + 0.386102i 0.892868 0.450319i \(-0.148690\pi\)
0.548086 + 0.836422i \(0.315357\pi\)
\(984\) 76.0049 + 14.0134i 2.42295 + 0.446732i
\(985\) 24.0057 6.36689i 0.764884 0.202866i
\(986\) 20.0557 + 19.0203i 0.638705 + 0.605731i
\(987\) 0 0
\(988\) −33.0053 29.6810i −1.05004 0.944277i
\(989\) 3.17318 + 1.83204i 0.100901 + 0.0582554i
\(990\) −17.8565 + 10.8877i −0.567516 + 0.346033i
\(991\) 43.4359 25.0777i 1.37979 0.796620i 0.387652 0.921806i \(-0.373286\pi\)
0.992133 + 0.125186i \(0.0399528\pi\)
\(992\) 22.8459 + 9.42155i 0.725359 + 0.299134i
\(993\) −23.2903 23.2903i −0.739094 0.739094i
\(994\) 0 0
\(995\) −0.0982746 + 38.6299i −0.00311551 + 1.22465i
\(996\) −1.47159 0.748663i −0.0466292 0.0237223i
\(997\) 28.0782 + 7.52352i 0.889245 + 0.238272i 0.674391 0.738374i \(-0.264406\pi\)
0.214853 + 0.976646i \(0.431073\pi\)
\(998\) 18.0804 + 29.4839i 0.572324 + 0.933296i
\(999\) −3.01941 + 5.22977i −0.0955299 + 0.165463i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 980.2.x.m.863.7 72
4.3 odd 2 inner 980.2.x.m.863.16 72
5.2 odd 4 inner 980.2.x.m.667.2 72
7.2 even 3 980.2.k.j.883.18 36
7.3 odd 6 140.2.w.b.123.5 yes 72
7.4 even 3 inner 980.2.x.m.263.5 72
7.5 odd 6 980.2.k.k.883.18 36
7.6 odd 2 140.2.w.b.23.7 72
20.7 even 4 inner 980.2.x.m.667.5 72
28.3 even 6 140.2.w.b.123.2 yes 72
28.11 odd 6 inner 980.2.x.m.263.2 72
28.19 even 6 980.2.k.k.883.10 36
28.23 odd 6 980.2.k.j.883.10 36
28.27 even 2 140.2.w.b.23.16 yes 72
35.2 odd 12 980.2.k.j.687.10 36
35.3 even 12 700.2.be.e.207.3 72
35.12 even 12 980.2.k.k.687.10 36
35.13 even 4 700.2.be.e.107.17 72
35.17 even 12 140.2.w.b.67.16 yes 72
35.24 odd 6 700.2.be.e.543.14 72
35.27 even 4 140.2.w.b.107.2 yes 72
35.32 odd 12 inner 980.2.x.m.67.16 72
35.34 odd 2 700.2.be.e.443.12 72
140.3 odd 12 700.2.be.e.207.12 72
140.27 odd 4 140.2.w.b.107.5 yes 72
140.47 odd 12 980.2.k.k.687.18 36
140.59 even 6 700.2.be.e.543.17 72
140.67 even 12 inner 980.2.x.m.67.7 72
140.83 odd 4 700.2.be.e.107.14 72
140.87 odd 12 140.2.w.b.67.7 yes 72
140.107 even 12 980.2.k.j.687.18 36
140.139 even 2 700.2.be.e.443.3 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.w.b.23.7 72 7.6 odd 2
140.2.w.b.23.16 yes 72 28.27 even 2
140.2.w.b.67.7 yes 72 140.87 odd 12
140.2.w.b.67.16 yes 72 35.17 even 12
140.2.w.b.107.2 yes 72 35.27 even 4
140.2.w.b.107.5 yes 72 140.27 odd 4
140.2.w.b.123.2 yes 72 28.3 even 6
140.2.w.b.123.5 yes 72 7.3 odd 6
700.2.be.e.107.14 72 140.83 odd 4
700.2.be.e.107.17 72 35.13 even 4
700.2.be.e.207.3 72 35.3 even 12
700.2.be.e.207.12 72 140.3 odd 12
700.2.be.e.443.3 72 140.139 even 2
700.2.be.e.443.12 72 35.34 odd 2
700.2.be.e.543.14 72 35.24 odd 6
700.2.be.e.543.17 72 140.59 even 6
980.2.k.j.687.10 36 35.2 odd 12
980.2.k.j.687.18 36 140.107 even 12
980.2.k.j.883.10 36 28.23 odd 6
980.2.k.j.883.18 36 7.2 even 3
980.2.k.k.687.10 36 35.12 even 12
980.2.k.k.687.18 36 140.47 odd 12
980.2.k.k.883.10 36 28.19 even 6
980.2.k.k.883.18 36 7.5 odd 6
980.2.x.m.67.7 72 140.67 even 12 inner
980.2.x.m.67.16 72 35.32 odd 12 inner
980.2.x.m.263.2 72 28.11 odd 6 inner
980.2.x.m.263.5 72 7.4 even 3 inner
980.2.x.m.667.2 72 5.2 odd 4 inner
980.2.x.m.667.5 72 20.7 even 4 inner
980.2.x.m.863.7 72 1.1 even 1 trivial
980.2.x.m.863.16 72 4.3 odd 2 inner