L(s) = 1 | + (−1.5 + 2.59i)3-s + (−0.5 − 2.59i)7-s + (−3 − 5.19i)9-s + (1 − 1.73i)11-s + 6·13-s + (1 − 1.73i)17-s + (7.5 + 2.59i)21-s + (−4.5 − 7.79i)23-s + 9·27-s + 3·29-s + (−1 + 1.73i)31-s + (3 + 5.19i)33-s + (4 + 6.92i)37-s + (−9 + 15.5i)39-s + 5·41-s + ⋯ |
L(s) = 1 | + (−0.866 + 1.49i)3-s + (−0.188 − 0.981i)7-s + (−1 − 1.73i)9-s + (0.301 − 0.522i)11-s + 1.66·13-s + (0.242 − 0.420i)17-s + (1.63 + 0.566i)21-s + (−0.938 − 1.62i)23-s + 1.73·27-s + 0.557·29-s + (−0.179 + 0.311i)31-s + (0.522 + 0.904i)33-s + (0.657 + 1.13i)37-s + (−1.44 + 2.49i)39-s + 0.780·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.991 - 0.126i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.991 - 0.126i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.07337 + 0.0681167i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.07337 + 0.0681167i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (0.5 + 2.59i)T \) |
good | 3 | \( 1 + (1.5 - 2.59i)T + (-1.5 - 2.59i)T^{2} \) |
| 11 | \( 1 + (-1 + 1.73i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 6T + 13T^{2} \) |
| 17 | \( 1 + (-1 + 1.73i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (4.5 + 7.79i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 3T + 29T^{2} \) |
| 31 | \( 1 + (1 - 1.73i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-4 - 6.92i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 5T + 41T^{2} \) |
| 43 | \( 1 + T + 43T^{2} \) |
| 47 | \( 1 + (-4 - 6.92i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-2 + 3.46i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-4 + 6.92i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (3.5 + 6.06i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (1.5 - 2.59i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 8T + 71T^{2} \) |
| 73 | \( 1 + (-7 + 12.1i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (2 + 3.46i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - T + 83T^{2} \) |
| 89 | \( 1 + (6.5 + 11.2i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 10T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.54802795130702890349441450560, −9.862395671494668382720977579197, −8.945986645573651820304592625124, −8.063316455681579894919765870180, −6.48513338097050374821343449940, −6.06971771051922446566618561723, −4.80540911759818867226455012828, −4.06500472574838242289754385963, −3.29358468842960578616381354387, −0.75743476891547149038775290396,
1.23548129594604909976814531111, 2.26010940022169707386274187625, 3.86366605373192957546620990107, 5.60967500654854610223777264096, 5.88680034764386969265989558344, 6.79159175558741715181563945776, 7.72564588396874043121645627425, 8.501938853220002993874118682912, 9.486373957961796894308117388180, 10.73933745385851493502417177774