L(s) = 1 | + (−0.288 − 1.38i)2-s + (0.450 − 0.780i)3-s + (−1.83 + 0.798i)4-s + (−1.21 − 0.398i)6-s + (2.29 − 1.30i)7-s + (1.63 + 2.30i)8-s + (1.09 + 1.89i)9-s + (3.24 + 1.87i)11-s + (−0.202 + 1.79i)12-s + 2.41i·13-s + (−2.47 − 2.80i)14-s + (2.72 − 2.92i)16-s + (0.505 + 0.291i)17-s + (2.30 − 2.06i)18-s + (3.07 + 5.33i)19-s + ⋯ |
L(s) = 1 | + (−0.204 − 0.978i)2-s + (0.260 − 0.450i)3-s + (−0.916 + 0.399i)4-s + (−0.494 − 0.162i)6-s + (0.869 − 0.494i)7-s + (0.578 + 0.815i)8-s + (0.364 + 0.631i)9-s + (0.977 + 0.564i)11-s + (−0.0585 + 0.517i)12-s + 0.671i·13-s + (−0.661 − 0.750i)14-s + (0.680 − 0.732i)16-s + (0.122 + 0.0707i)17-s + (0.543 − 0.485i)18-s + (0.706 + 1.22i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.506 + 0.862i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.506 + 0.862i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.40383 - 0.803268i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.40383 - 0.803268i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.288 + 1.38i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (-2.29 + 1.30i)T \) |
good | 3 | \( 1 + (-0.450 + 0.780i)T + (-1.5 - 2.59i)T^{2} \) |
| 11 | \( 1 + (-3.24 - 1.87i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 2.41iT - 13T^{2} \) |
| 17 | \( 1 + (-0.505 - 0.291i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.07 - 5.33i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (3.73 - 2.15i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 0.435T + 29T^{2} \) |
| 31 | \( 1 + (-1.26 + 2.19i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (5.65 + 9.78i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 7.35iT - 41T^{2} \) |
| 43 | \( 1 + 5.80iT - 43T^{2} \) |
| 47 | \( 1 + (-5.78 - 10.0i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (1.55 - 2.69i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-1.73 + 3.00i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (8.99 - 5.19i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-8.52 - 4.92i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 9.96iT - 71T^{2} \) |
| 73 | \( 1 + (8.48 + 4.89i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-0.397 + 0.229i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 2.59T + 83T^{2} \) |
| 89 | \( 1 + (8.55 - 4.94i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 4.54iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.39295363427268366571405206908, −9.552315658691274286267401492955, −8.685078148088543470546396724485, −7.70458216584139071539264597139, −7.24505093422419116895140097668, −5.61994972933546055765557827627, −4.41969111333366381119231629663, −3.78140005486574857981845541544, −2.06334771878622122453001655337, −1.42747652266068465734193393270,
1.13199219369193030973908726704, 3.21440342933127530425380718191, 4.37439883188040736035252330151, 5.18473240947939256646899729109, 6.23258650267539193696138988422, 7.03984878064138429624432859154, 8.193359014806216574932042231883, 8.724924930497671790525700281345, 9.517320483380932721221831261726, 10.26868032315461018657650697784