L(s) = 1 | + (−0.285 − 1.38i)2-s + (−1.29 − 2.24i)3-s + (−1.83 + 0.791i)4-s + (−2.74 + 2.44i)6-s + (0.603 − 2.57i)7-s + (1.62 + 2.31i)8-s + (−1.87 + 3.23i)9-s + (−3.12 + 1.80i)11-s + (4.16 + 3.10i)12-s + 0.818i·13-s + (−3.74 − 0.100i)14-s + (2.74 − 2.90i)16-s + (−6.40 + 3.69i)17-s + (5.02 + 1.66i)18-s + (−1.65 + 2.86i)19-s + ⋯ |
L(s) = 1 | + (−0.202 − 0.979i)2-s + (−0.749 − 1.29i)3-s + (−0.918 + 0.395i)4-s + (−1.11 + 0.996i)6-s + (0.228 − 0.973i)7-s + (0.573 + 0.819i)8-s + (−0.623 + 1.07i)9-s + (−0.940 + 0.543i)11-s + (1.20 + 0.895i)12-s + 0.226i·13-s + (−0.999 − 0.0267i)14-s + (0.686 − 0.727i)16-s + (−1.55 + 0.896i)17-s + (1.18 + 0.392i)18-s + (−0.379 + 0.656i)19-s + ⋯ |
Λ(s)=(=(700s/2ΓC(s)L(s)(0.839−0.542i)Λ(2−s)
Λ(s)=(=(700s/2ΓC(s+1/2)L(s)(0.839−0.542i)Λ(1−s)
Degree: |
2 |
Conductor: |
700
= 22⋅52⋅7
|
Sign: |
0.839−0.542i
|
Analytic conductor: |
5.58952 |
Root analytic conductor: |
2.36421 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ700(551,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 700, ( :1/2), 0.839−0.542i)
|
Particular Values
L(1) |
≈ |
0.0782375+0.0230730i |
L(21) |
≈ |
0.0782375+0.0230730i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.285+1.38i)T |
| 5 | 1 |
| 7 | 1+(−0.603+2.57i)T |
good | 3 | 1+(1.29+2.24i)T+(−1.5+2.59i)T2 |
| 11 | 1+(3.12−1.80i)T+(5.5−9.52i)T2 |
| 13 | 1−0.818iT−13T2 |
| 17 | 1+(6.40−3.69i)T+(8.5−14.7i)T2 |
| 19 | 1+(1.65−2.86i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−2.19−1.26i)T+(11.5+19.9i)T2 |
| 29 | 1−2.04T+29T2 |
| 31 | 1+(−0.955−1.65i)T+(−15.5+26.8i)T2 |
| 37 | 1+(−3.58+6.20i)T+(−18.5−32.0i)T2 |
| 41 | 1−2.65iT−41T2 |
| 43 | 1+2.39iT−43T2 |
| 47 | 1+(−0.667+1.15i)T+(−23.5−40.7i)T2 |
| 53 | 1+(0.905+1.56i)T+(−26.5+45.8i)T2 |
| 59 | 1+(−0.955−1.65i)T+(−29.5+51.0i)T2 |
| 61 | 1+(8.46+4.88i)T+(30.5+52.8i)T2 |
| 67 | 1+(8.02−4.63i)T+(33.5−58.0i)T2 |
| 71 | 1−1.38iT−71T2 |
| 73 | 1+(6.40−3.69i)T+(36.5−63.2i)T2 |
| 79 | 1+(−6.70−3.87i)T+(39.5+68.4i)T2 |
| 83 | 1+10.4T+83T2 |
| 89 | 1+(−9.19−5.30i)T+(44.5+77.0i)T2 |
| 97 | 1+7.32iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.78533865934138978758871078987, −10.02030265666431763261175748987, −8.740834115982041560187400129272, −7.84353711955032593741451426772, −7.18143657517573119109013869672, −6.17887440451359413579161697720, −4.93703815883524410958874646378, −4.00438915953378249908170777007, −2.34884787402766119329566969672, −1.39665161026020432350178332210,
0.05216694723263177385890307820, 2.83153165793376765578690330858, 4.50187091487278627424846641118, 4.92545968432631411043060869969, 5.78717150538435654247947067448, 6.57354695378038961254524633951, 7.86578791857027914882602087724, 8.864412163142602567491151821995, 9.285218709643996299509484001421, 10.35062235677126706803270671185