Properties

Label 700.2.p.e.551.7
Level $700$
Weight $2$
Character 700.551
Analytic conductor $5.590$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [700,2,Mod(451,700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(700, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("700.451");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 700.p (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.58952814149\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 551.7
Character \(\chi\) \(=\) 700.551
Dual form 700.2.p.e.451.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.285823 - 1.38503i) q^{2} +(-1.29809 - 2.24836i) q^{3} +(-1.83661 + 0.791746i) q^{4} +(-2.74302 + 2.44053i) q^{6} +(0.603960 - 2.57589i) q^{7} +(1.62154 + 2.31746i) q^{8} +(-1.87009 + 3.23909i) q^{9} +(-3.12008 + 1.80138i) q^{11} +(4.16422 + 3.10161i) q^{12} +0.818282i q^{13} +(-3.74031 - 0.100253i) q^{14} +(2.74628 - 2.90826i) q^{16} +(-6.40537 + 3.69814i) q^{17} +(5.02075 + 1.66432i) q^{18} +(-1.65329 + 2.86358i) q^{19} +(-6.57554 + 1.98583i) q^{21} +(3.38675 + 3.80652i) q^{22} +(2.19550 + 1.26758i) q^{23} +(3.10559 - 6.65408i) q^{24} +(1.13334 - 0.233884i) q^{26} +1.92166 q^{27} +(0.930214 + 5.20910i) q^{28} +2.04334 q^{29} +(0.955727 + 1.65537i) q^{31} +(-4.81297 - 2.97243i) q^{32} +(8.10030 + 4.67671i) q^{33} +(6.95283 + 7.81461i) q^{34} +(0.870092 - 7.42959i) q^{36} +(3.58360 - 6.20697i) q^{37} +(4.43869 + 1.47138i) q^{38} +(1.83980 - 1.06221i) q^{39} +2.65824i q^{41} +(4.62987 + 8.53972i) q^{42} -2.39696i q^{43} +(4.30413 - 5.77873i) q^{44} +(1.12810 - 3.40314i) q^{46} +(0.667376 - 1.15593i) q^{47} +(-10.1037 - 2.39944i) q^{48} +(-6.27046 - 3.11147i) q^{49} +(16.6295 + 9.60106i) q^{51} +(-0.647871 - 1.50287i) q^{52} +(-0.905503 - 1.56838i) q^{53} +(-0.549253 - 2.66155i) q^{54} +(6.94888 - 2.77725i) q^{56} +8.58450 q^{57} +(-0.584034 - 2.83009i) q^{58} +(0.955727 + 1.65537i) q^{59} +(-8.46625 - 4.88799i) q^{61} +(2.01956 - 1.79685i) q^{62} +(7.21411 + 6.77344i) q^{63} +(-2.74124 + 7.51569i) q^{64} +(4.16213 - 12.5559i) q^{66} +(-8.02134 + 4.63112i) q^{67} +(8.83618 - 11.8635i) q^{68} -6.58172i q^{69} +1.38422i q^{71} +(-10.5389 + 0.918444i) q^{72} +(-6.40537 + 3.69814i) q^{73} +(-9.62111 - 3.18929i) q^{74} +(0.769222 - 6.56827i) q^{76} +(2.75576 + 9.12495i) q^{77} +(-1.99704 - 2.24457i) q^{78} +(6.70979 + 3.87390i) q^{79} +(3.11579 + 5.39670i) q^{81} +(3.68173 - 0.759784i) q^{82} -10.4973 q^{83} +(10.5044 - 8.85335i) q^{84} +(-3.31986 + 0.685105i) q^{86} +(-2.65245 - 4.59418i) q^{87} +(-9.23393 - 4.30966i) q^{88} +(9.19133 + 5.30662i) q^{89} +(2.10781 + 0.494210i) q^{91} +(-5.03589 - 0.589761i) q^{92} +(2.48125 - 4.29764i) q^{93} +(-1.79175 - 0.593945i) q^{94} +(-0.435416 + 14.6798i) q^{96} -7.32005i q^{97} +(-2.51724 + 9.57411i) q^{98} -13.4750i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 6 q^{4} - 4 q^{9} - 22 q^{14} + 18 q^{16} - 52 q^{21} + 48 q^{24} - 18 q^{26} - 28 q^{36} + 26 q^{44} - 22 q^{46} - 48 q^{54} - 16 q^{56} + 36 q^{61} - 36 q^{64} - 24 q^{66} - 14 q^{74} + 72 q^{81}+ \cdots + 60 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/700\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(477\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.285823 1.38503i −0.202107 0.979363i
\(3\) −1.29809 2.24836i −0.749454 1.29809i −0.948084 0.318019i \(-0.896983\pi\)
0.198630 0.980075i \(-0.436351\pi\)
\(4\) −1.83661 + 0.791746i −0.918305 + 0.395873i
\(5\) 0 0
\(6\) −2.74302 + 2.44053i −1.11983 + 0.996342i
\(7\) 0.603960 2.57589i 0.228275 0.973597i
\(8\) 1.62154 + 2.31746i 0.573300 + 0.819346i
\(9\) −1.87009 + 3.23909i −0.623364 + 1.07970i
\(10\) 0 0
\(11\) −3.12008 + 1.80138i −0.940738 + 0.543136i −0.890192 0.455586i \(-0.849430\pi\)
−0.0505467 + 0.998722i \(0.516096\pi\)
\(12\) 4.16422 + 3.10161i 1.20211 + 0.895357i
\(13\) 0.818282i 0.226951i 0.993541 + 0.113475i \(0.0361983\pi\)
−0.993541 + 0.113475i \(0.963802\pi\)
\(14\) −3.74031 0.100253i −0.999641 0.0267937i
\(15\) 0 0
\(16\) 2.74628 2.90826i 0.686569 0.727064i
\(17\) −6.40537 + 3.69814i −1.55353 + 0.896931i −0.555680 + 0.831396i \(0.687542\pi\)
−0.997850 + 0.0655347i \(0.979125\pi\)
\(18\) 5.02075 + 1.66432i 1.18340 + 0.392285i
\(19\) −1.65329 + 2.86358i −0.379291 + 0.656951i −0.990959 0.134163i \(-0.957165\pi\)
0.611668 + 0.791114i \(0.290499\pi\)
\(20\) 0 0
\(21\) −6.57554 + 1.98583i −1.43490 + 0.433344i
\(22\) 3.38675 + 3.80652i 0.722057 + 0.811553i
\(23\) 2.19550 + 1.26758i 0.457794 + 0.264308i 0.711116 0.703074i \(-0.248190\pi\)
−0.253322 + 0.967382i \(0.581523\pi\)
\(24\) 3.10559 6.65408i 0.633925 1.35826i
\(25\) 0 0
\(26\) 1.13334 0.233884i 0.222267 0.0458684i
\(27\) 1.92166 0.369823
\(28\) 0.930214 + 5.20910i 0.175794 + 0.984427i
\(29\) 2.04334 0.379439 0.189720 0.981838i \(-0.439242\pi\)
0.189720 + 0.981838i \(0.439242\pi\)
\(30\) 0 0
\(31\) 0.955727 + 1.65537i 0.171654 + 0.297313i 0.938998 0.343922i \(-0.111756\pi\)
−0.767345 + 0.641235i \(0.778422\pi\)
\(32\) −4.81297 2.97243i −0.850821 0.525456i
\(33\) 8.10030 + 4.67671i 1.41008 + 0.814111i
\(34\) 6.95283 + 7.81461i 1.19240 + 1.34019i
\(35\) 0 0
\(36\) 0.870092 7.42959i 0.145015 1.23827i
\(37\) 3.58360 6.20697i 0.589140 1.02042i −0.405206 0.914226i \(-0.632800\pi\)
0.994345 0.106195i \(-0.0338666\pi\)
\(38\) 4.43869 + 1.47138i 0.720051 + 0.238689i
\(39\) 1.83980 1.06221i 0.294603 0.170089i
\(40\) 0 0
\(41\) 2.65824i 0.415147i 0.978219 + 0.207573i \(0.0665566\pi\)
−0.978219 + 0.207573i \(0.933443\pi\)
\(42\) 4.62987 + 8.53972i 0.714405 + 1.31771i
\(43\) 2.39696i 0.365533i −0.983156 0.182766i \(-0.941495\pi\)
0.983156 0.182766i \(-0.0585052\pi\)
\(44\) 4.30413 5.77873i 0.648872 0.871177i
\(45\) 0 0
\(46\) 1.12810 3.40314i 0.166330 0.501766i
\(47\) 0.667376 1.15593i 0.0973468 0.168610i −0.813239 0.581930i \(-0.802298\pi\)
0.910586 + 0.413320i \(0.135631\pi\)
\(48\) −10.1037 2.39944i −1.45835 0.346330i
\(49\) −6.27046 3.11147i −0.895781 0.444496i
\(50\) 0 0
\(51\) 16.6295 + 9.60106i 2.32860 + 1.34442i
\(52\) −0.647871 1.50287i −0.0898436 0.208410i
\(53\) −0.905503 1.56838i −0.124380 0.215433i 0.797110 0.603834i \(-0.206361\pi\)
−0.921491 + 0.388401i \(0.873028\pi\)
\(54\) −0.549253 2.66155i −0.0747439 0.362191i
\(55\) 0 0
\(56\) 6.94888 2.77725i 0.928583 0.371126i
\(57\) 8.58450 1.13705
\(58\) −0.584034 2.83009i −0.0766874 0.371609i
\(59\) 0.955727 + 1.65537i 0.124425 + 0.215510i 0.921508 0.388359i \(-0.126958\pi\)
−0.797083 + 0.603870i \(0.793625\pi\)
\(60\) 0 0
\(61\) −8.46625 4.88799i −1.08399 0.625843i −0.152021 0.988377i \(-0.548578\pi\)
−0.931970 + 0.362534i \(0.881912\pi\)
\(62\) 2.01956 1.79685i 0.256485 0.228200i
\(63\) 7.21411 + 6.77344i 0.908892 + 0.853374i
\(64\) −2.74124 + 7.51569i −0.342655 + 0.939461i
\(65\) 0 0
\(66\) 4.16213 12.5559i 0.512323 1.54552i
\(67\) −8.02134 + 4.63112i −0.979963 + 0.565782i −0.902259 0.431195i \(-0.858092\pi\)
−0.0777041 + 0.996976i \(0.524759\pi\)
\(68\) 8.83618 11.8635i 1.07154 1.43866i
\(69\) 6.58172i 0.792346i
\(70\) 0 0
\(71\) 1.38422i 0.164277i 0.996621 + 0.0821385i \(0.0261750\pi\)
−0.996621 + 0.0821385i \(0.973825\pi\)
\(72\) −10.5389 + 0.918444i −1.24202 + 0.108240i
\(73\) −6.40537 + 3.69814i −0.749692 + 0.432835i −0.825583 0.564281i \(-0.809153\pi\)
0.0758908 + 0.997116i \(0.475820\pi\)
\(74\) −9.62111 3.18929i −1.11843 0.370748i
\(75\) 0 0
\(76\) 0.769222 6.56827i 0.0882358 0.753433i
\(77\) 2.75576 + 9.12495i 0.314048 + 1.03988i
\(78\) −1.99704 2.24457i −0.226121 0.254147i
\(79\) 6.70979 + 3.87390i 0.754910 + 0.435848i 0.827465 0.561517i \(-0.189782\pi\)
−0.0725552 + 0.997364i \(0.523115\pi\)
\(80\) 0 0
\(81\) 3.11579 + 5.39670i 0.346199 + 0.599634i
\(82\) 3.68173 0.759784i 0.406579 0.0839041i
\(83\) −10.4973 −1.15223 −0.576113 0.817370i \(-0.695431\pi\)
−0.576113 + 0.817370i \(0.695431\pi\)
\(84\) 10.5044 8.85335i 1.14613 0.965980i
\(85\) 0 0
\(86\) −3.31986 + 0.685105i −0.357989 + 0.0738768i
\(87\) −2.65245 4.59418i −0.284372 0.492547i
\(88\) −9.23393 4.30966i −0.984341 0.459411i
\(89\) 9.19133 + 5.30662i 0.974279 + 0.562500i 0.900538 0.434777i \(-0.143173\pi\)
0.0737410 + 0.997277i \(0.476506\pi\)
\(90\) 0 0
\(91\) 2.10781 + 0.494210i 0.220958 + 0.0518073i
\(92\) −5.03589 0.589761i −0.525027 0.0614868i
\(93\) 2.48125 4.29764i 0.257293 0.445645i
\(94\) −1.79175 0.593945i −0.184805 0.0612607i
\(95\) 0 0
\(96\) −0.435416 + 14.6798i −0.0444395 + 1.49825i
\(97\) 7.32005i 0.743239i −0.928385 0.371619i \(-0.878803\pi\)
0.928385 0.371619i \(-0.121197\pi\)
\(98\) −2.51724 + 9.57411i −0.254280 + 0.967131i
\(99\) 13.4750i 1.35428i
\(100\) 0 0
\(101\) −5.50608 + 3.17894i −0.547875 + 0.316316i −0.748265 0.663400i \(-0.769113\pi\)
0.200389 + 0.979716i \(0.435779\pi\)
\(102\) 8.54465 25.7766i 0.846047 2.55226i
\(103\) −0.511038 + 0.885144i −0.0503541 + 0.0872158i −0.890104 0.455758i \(-0.849368\pi\)
0.839750 + 0.542974i \(0.182702\pi\)
\(104\) −1.89634 + 1.32687i −0.185951 + 0.130111i
\(105\) 0 0
\(106\) −1.91343 + 1.70243i −0.185849 + 0.165354i
\(107\) 6.28003 + 3.62578i 0.607114 + 0.350517i 0.771835 0.635823i \(-0.219339\pi\)
−0.164721 + 0.986340i \(0.552672\pi\)
\(108\) −3.52933 + 1.52146i −0.339610 + 0.146403i
\(109\) −3.98588 6.90375i −0.381778 0.661259i 0.609538 0.792756i \(-0.291355\pi\)
−0.991316 + 0.131498i \(0.958021\pi\)
\(110\) 0 0
\(111\) −18.6074 −1.76613
\(112\) −5.83272 8.83059i −0.551140 0.834413i
\(113\) −7.61610 −0.716462 −0.358231 0.933633i \(-0.616620\pi\)
−0.358231 + 0.933633i \(0.616620\pi\)
\(114\) −2.45365 11.8898i −0.229805 1.11358i
\(115\) 0 0
\(116\) −3.75282 + 1.61781i −0.348441 + 0.150210i
\(117\) −2.65049 1.53026i −0.245038 0.141473i
\(118\) 2.01956 1.79685i 0.185916 0.165414i
\(119\) 5.65744 + 18.7331i 0.518616 + 1.71726i
\(120\) 0 0
\(121\) 0.989917 1.71459i 0.0899925 0.155872i
\(122\) −4.35016 + 13.1231i −0.393845 + 1.18811i
\(123\) 5.97668 3.45064i 0.538899 0.311134i
\(124\) −3.06593 2.28357i −0.275328 0.205071i
\(125\) 0 0
\(126\) 7.31946 11.9277i 0.652069 1.06261i
\(127\) 8.78136i 0.779220i 0.920980 + 0.389610i \(0.127390\pi\)
−0.920980 + 0.389610i \(0.872610\pi\)
\(128\) 11.1930 + 1.64855i 0.989327 + 0.145712i
\(129\) −5.38923 + 3.11147i −0.474495 + 0.273950i
\(130\) 0 0
\(131\) −6.69467 + 11.5955i −0.584916 + 1.01310i 0.409970 + 0.912099i \(0.365539\pi\)
−0.994886 + 0.101005i \(0.967794\pi\)
\(132\) −18.5799 2.17592i −1.61717 0.189389i
\(133\) 6.37777 + 5.98819i 0.553023 + 0.519242i
\(134\) 8.70692 + 9.78611i 0.752164 + 0.845391i
\(135\) 0 0
\(136\) −18.9568 8.84752i −1.62553 0.758668i
\(137\) 2.61208 + 4.52425i 0.223165 + 0.386533i 0.955767 0.294124i \(-0.0950278\pi\)
−0.732602 + 0.680657i \(0.761694\pi\)
\(138\) −9.11588 + 1.88121i −0.775995 + 0.160139i
\(139\) −21.9442 −1.86128 −0.930641 0.365933i \(-0.880750\pi\)
−0.930641 + 0.365933i \(0.880750\pi\)
\(140\) 0 0
\(141\) −3.46527 −0.291828
\(142\) 1.91719 0.395643i 0.160887 0.0332016i
\(143\) −1.47403 2.55310i −0.123265 0.213501i
\(144\) 4.28433 + 14.3342i 0.357027 + 1.19451i
\(145\) 0 0
\(146\) 6.95283 + 7.81461i 0.575421 + 0.646742i
\(147\) 1.14392 + 18.1373i 0.0943492 + 1.49594i
\(148\) −1.66733 + 14.2371i −0.137054 + 1.17028i
\(149\) −11.9749 + 20.7411i −0.981019 + 1.69917i −0.322575 + 0.946544i \(0.604548\pi\)
−0.658444 + 0.752630i \(0.728785\pi\)
\(150\) 0 0
\(151\) 6.06876 3.50380i 0.493869 0.285135i −0.232309 0.972642i \(-0.574628\pi\)
0.726178 + 0.687507i \(0.241295\pi\)
\(152\) −9.31711 + 0.811968i −0.755717 + 0.0658593i
\(153\) 27.6635i 2.23646i
\(154\) 11.8507 6.42492i 0.954953 0.517735i
\(155\) 0 0
\(156\) −2.53799 + 3.40751i −0.203202 + 0.272819i
\(157\) −5.56468 + 3.21277i −0.444110 + 0.256407i −0.705340 0.708870i \(-0.749205\pi\)
0.261229 + 0.965277i \(0.415872\pi\)
\(158\) 3.44765 10.4005i 0.274280 0.827419i
\(159\) −2.35085 + 4.07180i −0.186435 + 0.322915i
\(160\) 0 0
\(161\) 4.59114 4.88982i 0.361832 0.385372i
\(162\) 6.58403 5.85796i 0.517290 0.460245i
\(163\) −16.0033 9.23950i −1.25347 0.723693i −0.281676 0.959510i \(-0.590890\pi\)
−0.971798 + 0.235816i \(0.924224\pi\)
\(164\) −2.10465 4.88214i −0.164345 0.381231i
\(165\) 0 0
\(166\) 3.00036 + 14.5390i 0.232873 + 1.12845i
\(167\) 1.82894 0.141527 0.0707637 0.997493i \(-0.477456\pi\)
0.0707637 + 0.997493i \(0.477456\pi\)
\(168\) −15.2646 12.0185i −1.17769 0.927245i
\(169\) 12.3304 0.948493
\(170\) 0 0
\(171\) −6.18361 10.7103i −0.472873 0.819039i
\(172\) 1.89778 + 4.40228i 0.144704 + 0.335671i
\(173\) −13.2065 7.62476i −1.00407 0.579700i −0.0946193 0.995514i \(-0.530163\pi\)
−0.909450 + 0.415814i \(0.863497\pi\)
\(174\) −5.60494 + 4.98684i −0.424909 + 0.378051i
\(175\) 0 0
\(176\) −3.32973 + 14.0211i −0.250988 + 1.05688i
\(177\) 2.48125 4.29764i 0.186502 0.323031i
\(178\) 4.72273 14.2470i 0.353983 1.06786i
\(179\) 10.8572 6.26844i 0.811509 0.468525i −0.0359707 0.999353i \(-0.511452\pi\)
0.847480 + 0.530828i \(0.178119\pi\)
\(180\) 0 0
\(181\) 8.01839i 0.596002i −0.954566 0.298001i \(-0.903680\pi\)
0.954566 0.298001i \(-0.0963199\pi\)
\(182\) 0.0820350 3.06063i 0.00608084 0.226869i
\(183\) 25.3803i 1.87616i
\(184\) 0.622535 + 7.14341i 0.0458939 + 0.526619i
\(185\) 0 0
\(186\) −6.66156 2.20823i −0.488449 0.161915i
\(187\) 13.3235 23.0770i 0.974310 1.68755i
\(188\) −0.310508 + 2.65139i −0.0226461 + 0.193372i
\(189\) 1.16060 4.94998i 0.0844215 0.360058i
\(190\) 0 0
\(191\) 5.85379 + 3.37969i 0.423565 + 0.244546i 0.696602 0.717458i \(-0.254695\pi\)
−0.273036 + 0.962004i \(0.588028\pi\)
\(192\) 20.4564 3.59276i 1.47631 0.259285i
\(193\) 1.18001 + 2.04384i 0.0849392 + 0.147119i 0.905365 0.424634i \(-0.139597\pi\)
−0.820426 + 0.571753i \(0.806264\pi\)
\(194\) −10.1385 + 2.09224i −0.727901 + 0.150214i
\(195\) 0 0
\(196\) 13.9799 + 0.749953i 0.998564 + 0.0535681i
\(197\) −20.3205 −1.44777 −0.723887 0.689918i \(-0.757647\pi\)
−0.723887 + 0.689918i \(0.757647\pi\)
\(198\) −18.6632 + 3.85145i −1.32634 + 0.273711i
\(199\) −5.72909 9.92308i −0.406125 0.703429i 0.588327 0.808623i \(-0.299787\pi\)
−0.994452 + 0.105195i \(0.966453\pi\)
\(200\) 0 0
\(201\) 20.8249 + 12.0233i 1.46888 + 0.848056i
\(202\) 5.97668 + 6.71746i 0.420518 + 0.472639i
\(203\) 1.23410 5.26343i 0.0866166 0.369421i
\(204\) −38.1436 4.46706i −2.67058 0.312757i
\(205\) 0 0
\(206\) 1.37202 + 0.454808i 0.0955929 + 0.0316880i
\(207\) −8.21159 + 4.74097i −0.570745 + 0.329520i
\(208\) 2.37978 + 2.24723i 0.165008 + 0.155817i
\(209\) 11.9128i 0.824026i
\(210\) 0 0
\(211\) 22.0647i 1.51900i −0.650510 0.759498i \(-0.725445\pi\)
0.650510 0.759498i \(-0.274555\pi\)
\(212\) 2.90481 + 2.16357i 0.199503 + 0.148595i
\(213\) 3.11224 1.79685i 0.213247 0.123118i
\(214\) 3.22683 9.73436i 0.220582 0.665427i
\(215\) 0 0
\(216\) 3.11603 + 4.45336i 0.212019 + 0.303013i
\(217\) 4.84127 1.46208i 0.328647 0.0992522i
\(218\) −8.42263 + 7.49381i −0.570453 + 0.507545i
\(219\) 16.6295 + 9.60106i 1.12372 + 0.648780i
\(220\) 0 0
\(221\) −3.02612 5.24140i −0.203559 0.352575i
\(222\) 5.31841 + 25.7718i 0.356948 + 1.72969i
\(223\) 23.5776 1.57887 0.789436 0.613833i \(-0.210373\pi\)
0.789436 + 0.613833i \(0.210373\pi\)
\(224\) −10.5635 + 10.6025i −0.705804 + 0.708408i
\(225\) 0 0
\(226\) 2.17685 + 10.5485i 0.144802 + 0.701677i
\(227\) −10.4634 18.1231i −0.694478 1.20287i −0.970356 0.241678i \(-0.922302\pi\)
0.275879 0.961192i \(-0.411031\pi\)
\(228\) −15.7664 + 6.79674i −1.04415 + 0.450125i
\(229\) −4.48735 2.59077i −0.296533 0.171203i 0.344352 0.938841i \(-0.388099\pi\)
−0.640884 + 0.767638i \(0.721432\pi\)
\(230\) 0 0
\(231\) 16.9390 18.0410i 1.11450 1.18701i
\(232\) 3.31335 + 4.73536i 0.217532 + 0.310892i
\(233\) −10.3847 + 17.9868i −0.680324 + 1.17836i 0.294558 + 0.955634i \(0.404828\pi\)
−0.974882 + 0.222722i \(0.928506\pi\)
\(234\) −1.36189 + 4.10839i −0.0890294 + 0.268574i
\(235\) 0 0
\(236\) −3.06593 2.28357i −0.199575 0.148648i
\(237\) 20.1147i 1.30659i
\(238\) 24.3288 13.1901i 1.57700 0.854984i
\(239\) 21.1286i 1.36670i −0.730092 0.683349i \(-0.760523\pi\)
0.730092 0.683349i \(-0.239477\pi\)
\(240\) 0 0
\(241\) 1.57448 0.909029i 0.101421 0.0585557i −0.448431 0.893817i \(-0.648017\pi\)
0.549853 + 0.835262i \(0.314684\pi\)
\(242\) −2.65769 0.880996i −0.170843 0.0566326i
\(243\) 10.9716 19.0035i 0.703832 1.21907i
\(244\) 19.4192 + 2.27422i 1.24319 + 0.145592i
\(245\) 0 0
\(246\) −6.48750 7.29160i −0.413628 0.464896i
\(247\) −2.34322 1.35286i −0.149095 0.0860803i
\(248\) −2.28650 + 4.89910i −0.145193 + 0.311093i
\(249\) 13.6264 + 23.6017i 0.863540 + 1.49570i
\(250\) 0 0
\(251\) 14.0187 0.884856 0.442428 0.896804i \(-0.354117\pi\)
0.442428 + 0.896804i \(0.354117\pi\)
\(252\) −18.6123 6.72844i −1.17247 0.423852i
\(253\) −9.13352 −0.574220
\(254\) 12.1624 2.50991i 0.763140 0.157486i
\(255\) 0 0
\(256\) −0.915918 15.9738i −0.0572449 0.998360i
\(257\) −15.4780 8.93624i −0.965492 0.557427i −0.0676333 0.997710i \(-0.521545\pi\)
−0.897859 + 0.440283i \(0.854878\pi\)
\(258\) 5.84985 + 6.57491i 0.364196 + 0.409336i
\(259\) −13.8242 12.9797i −0.858991 0.806521i
\(260\) 0 0
\(261\) −3.82124 + 6.61858i −0.236529 + 0.409680i
\(262\) 17.9736 + 5.95805i 1.11041 + 0.368090i
\(263\) −18.9629 + 10.9482i −1.16930 + 0.675097i −0.953516 0.301343i \(-0.902565\pi\)
−0.215787 + 0.976440i \(0.569232\pi\)
\(264\) 2.29684 + 26.3556i 0.141361 + 1.62207i
\(265\) 0 0
\(266\) 6.47091 10.5450i 0.396757 0.646553i
\(267\) 27.5539i 1.68627i
\(268\) 11.0654 14.8564i 0.675928 0.907501i
\(269\) −2.49661 + 1.44142i −0.152221 + 0.0878847i −0.574176 0.818732i \(-0.694677\pi\)
0.421955 + 0.906617i \(0.361344\pi\)
\(270\) 0 0
\(271\) −8.47793 + 14.6842i −0.514997 + 0.892002i 0.484851 + 0.874597i \(0.338874\pi\)
−0.999849 + 0.0174049i \(0.994460\pi\)
\(272\) −6.83578 + 28.7846i −0.414480 + 1.74532i
\(273\) −1.62497 5.38065i −0.0983476 0.325652i
\(274\) 5.51963 4.91094i 0.333453 0.296681i
\(275\) 0 0
\(276\) 5.21105 + 12.0881i 0.313668 + 0.727616i
\(277\) 13.4258 + 23.2541i 0.806677 + 1.39720i 0.915153 + 0.403106i \(0.132069\pi\)
−0.108477 + 0.994099i \(0.534597\pi\)
\(278\) 6.27215 + 30.3933i 0.376179 + 1.82287i
\(279\) −7.14919 −0.428011
\(280\) 0 0
\(281\) 24.9497 1.48838 0.744188 0.667971i \(-0.232837\pi\)
0.744188 + 0.667971i \(0.232837\pi\)
\(282\) 0.990452 + 4.79950i 0.0589806 + 0.285806i
\(283\) −4.91910 8.52014i −0.292410 0.506470i 0.681969 0.731381i \(-0.261124\pi\)
−0.974379 + 0.224912i \(0.927791\pi\)
\(284\) −1.09595 2.54228i −0.0650328 0.150857i
\(285\) 0 0
\(286\) −3.11481 + 2.77132i −0.184183 + 0.163871i
\(287\) 6.84733 + 1.60547i 0.404185 + 0.0947678i
\(288\) 18.6287 10.0309i 1.09770 0.591079i
\(289\) 18.8525 32.6535i 1.10897 1.92079i
\(290\) 0 0
\(291\) −16.4581 + 9.50211i −0.964793 + 0.557024i
\(292\) 8.83618 11.8635i 0.517098 0.694257i
\(293\) 23.4039i 1.36727i 0.729823 + 0.683636i \(0.239602\pi\)
−0.729823 + 0.683636i \(0.760398\pi\)
\(294\) 24.7937 6.76841i 1.44600 0.394742i
\(295\) 0 0
\(296\) 20.1953 1.75999i 1.17383 0.102297i
\(297\) −5.99571 + 3.46163i −0.347907 + 0.200864i
\(298\) 32.1497 + 10.6573i 1.86238 + 0.617358i
\(299\) −1.03723 + 1.79654i −0.0599848 + 0.103897i
\(300\) 0 0
\(301\) −6.17431 1.44767i −0.355881 0.0834421i
\(302\) −6.58746 7.40395i −0.379066 0.426049i
\(303\) 14.2948 + 8.25311i 0.821215 + 0.474129i
\(304\) 3.78764 + 12.6724i 0.217236 + 0.726811i
\(305\) 0 0
\(306\) −38.3147 + 7.90685i −2.19031 + 0.452004i
\(307\) −2.18529 −0.124721 −0.0623606 0.998054i \(-0.519863\pi\)
−0.0623606 + 0.998054i \(0.519863\pi\)
\(308\) −12.2859 14.5771i −0.700053 0.830608i
\(309\) 2.65350 0.150952
\(310\) 0 0
\(311\) −14.4501 25.0282i −0.819388 1.41922i −0.906134 0.422991i \(-0.860980\pi\)
0.0867457 0.996230i \(-0.472353\pi\)
\(312\) 5.44492 + 2.54125i 0.308258 + 0.143870i
\(313\) 5.50189 + 3.17652i 0.310985 + 0.179548i 0.647367 0.762178i \(-0.275870\pi\)
−0.336382 + 0.941726i \(0.609203\pi\)
\(314\) 6.04030 + 6.78897i 0.340874 + 0.383124i
\(315\) 0 0
\(316\) −15.3904 1.80240i −0.865778 0.101393i
\(317\) −9.40153 + 16.2839i −0.528043 + 0.914597i 0.471423 + 0.881907i \(0.343741\pi\)
−0.999466 + 0.0326894i \(0.989593\pi\)
\(318\) 6.31149 + 2.09219i 0.353931 + 0.117324i
\(319\) −6.37538 + 3.68083i −0.356953 + 0.206087i
\(320\) 0 0
\(321\) 18.8264i 1.05079i
\(322\) −8.08480 4.96124i −0.450548 0.276479i
\(323\) 24.4564i 1.36079i
\(324\) −9.99530 7.44473i −0.555295 0.413596i
\(325\) 0 0
\(326\) −8.22287 + 24.8059i −0.455423 + 1.37387i
\(327\) −10.3481 + 17.9234i −0.572250 + 0.991167i
\(328\) −6.16035 + 4.31042i −0.340149 + 0.238003i
\(329\) −2.57448 2.41723i −0.141936 0.133266i
\(330\) 0 0
\(331\) −11.3353 6.54441i −0.623042 0.359713i 0.155010 0.987913i \(-0.450459\pi\)
−0.778052 + 0.628199i \(0.783792\pi\)
\(332\) 19.2794 8.31117i 1.05809 0.456135i
\(333\) 13.4033 + 23.2152i 0.734497 + 1.27219i
\(334\) −0.522752 2.53313i −0.0286037 0.138607i
\(335\) 0 0
\(336\) −12.2830 + 24.5770i −0.670091 + 1.34079i
\(337\) −11.7319 −0.639079 −0.319539 0.947573i \(-0.603528\pi\)
−0.319539 + 0.947573i \(0.603528\pi\)
\(338\) −3.52431 17.0780i −0.191697 0.928920i
\(339\) 9.88640 + 17.1238i 0.536956 + 0.930035i
\(340\) 0 0
\(341\) −5.96388 3.44325i −0.322962 0.186462i
\(342\) −13.0667 + 11.6257i −0.706566 + 0.628648i
\(343\) −11.8019 + 14.2729i −0.637245 + 0.770661i
\(344\) 5.55485 3.88675i 0.299498 0.209560i
\(345\) 0 0
\(346\) −6.78580 + 20.4707i −0.364807 + 1.10051i
\(347\) 3.82065 2.20585i 0.205103 0.118416i −0.393930 0.919140i \(-0.628885\pi\)
0.599034 + 0.800724i \(0.295552\pi\)
\(348\) 8.50894 + 6.33765i 0.456127 + 0.339734i
\(349\) 18.3479i 0.982142i −0.871120 0.491071i \(-0.836606\pi\)
0.871120 0.491071i \(-0.163394\pi\)
\(350\) 0 0
\(351\) 1.57246i 0.0839316i
\(352\) 20.3713 + 0.604231i 1.08579 + 0.0322056i
\(353\) 10.1742 5.87406i 0.541516 0.312645i −0.204177 0.978934i \(-0.565452\pi\)
0.745693 + 0.666289i \(0.232118\pi\)
\(354\) −6.66156 2.20823i −0.354058 0.117366i
\(355\) 0 0
\(356\) −21.0824 2.46899i −1.11736 0.130856i
\(357\) 34.7749 37.0373i 1.84048 1.96022i
\(358\) −11.7852 13.2459i −0.622868 0.700070i
\(359\) 0.171388 + 0.0989510i 0.00904552 + 0.00522243i 0.504516 0.863402i \(-0.331671\pi\)
−0.495470 + 0.868625i \(0.665004\pi\)
\(360\) 0 0
\(361\) 4.03326 + 6.98581i 0.212277 + 0.367674i
\(362\) −11.1057 + 2.29184i −0.583703 + 0.120456i
\(363\) −5.14002 −0.269781
\(364\) −4.26251 + 0.761178i −0.223416 + 0.0398966i
\(365\) 0 0
\(366\) 35.1524 7.25426i 1.83745 0.379186i
\(367\) 3.76412 + 6.51964i 0.196485 + 0.340323i 0.947386 0.320092i \(-0.103714\pi\)
−0.750901 + 0.660415i \(0.770381\pi\)
\(368\) 9.71590 2.90398i 0.506476 0.151380i
\(369\) −8.61028 4.97115i −0.448233 0.258787i
\(370\) 0 0
\(371\) −4.58686 + 1.38524i −0.238138 + 0.0719182i
\(372\) −1.15444 + 9.85761i −0.0598550 + 0.511093i
\(373\) 15.5696 26.9674i 0.806164 1.39632i −0.109339 0.994005i \(-0.534873\pi\)
0.915503 0.402312i \(-0.131793\pi\)
\(374\) −35.7704 11.8575i −1.84964 0.613137i
\(375\) 0 0
\(376\) 3.76100 0.327763i 0.193959 0.0169031i
\(377\) 1.67203i 0.0861140i
\(378\) −7.18760 0.192651i −0.369690 0.00990891i
\(379\) 16.3396i 0.839307i 0.907684 + 0.419654i \(0.137848\pi\)
−0.907684 + 0.419654i \(0.862152\pi\)
\(380\) 0 0
\(381\) 19.7437 11.3990i 1.01150 0.583990i
\(382\) 3.00782 9.07366i 0.153893 0.464249i
\(383\) −4.42434 + 7.66318i −0.226073 + 0.391570i −0.956641 0.291270i \(-0.905922\pi\)
0.730568 + 0.682840i \(0.239256\pi\)
\(384\) −10.8230 27.3058i −0.552307 1.39344i
\(385\) 0 0
\(386\) 2.49351 2.21853i 0.126916 0.112920i
\(387\) 7.76397 + 4.48253i 0.394665 + 0.227860i
\(388\) 5.79562 + 13.4441i 0.294228 + 0.682520i
\(389\) 4.67264 + 8.09325i 0.236912 + 0.410344i 0.959827 0.280594i \(-0.0905313\pi\)
−0.722915 + 0.690937i \(0.757198\pi\)
\(390\) 0 0
\(391\) −18.7507 −0.948263
\(392\) −2.95707 19.5769i −0.149354 0.988784i
\(393\) 34.7612 1.75347
\(394\) 5.80806 + 28.1445i 0.292606 + 1.41790i
\(395\) 0 0
\(396\) 10.6687 + 24.7483i 0.536125 + 1.24365i
\(397\) 17.5826 + 10.1513i 0.882446 + 0.509480i 0.871464 0.490459i \(-0.163171\pi\)
0.0109817 + 0.999940i \(0.496504\pi\)
\(398\) −12.1063 + 10.7712i −0.606831 + 0.539912i
\(399\) 5.18470 22.1128i 0.259559 1.10702i
\(400\) 0 0
\(401\) 5.54334 9.60135i 0.276821 0.479469i −0.693772 0.720195i \(-0.744052\pi\)
0.970593 + 0.240726i \(0.0773857\pi\)
\(402\) 10.7003 32.2796i 0.533684 1.60996i
\(403\) −1.35456 + 0.782054i −0.0674753 + 0.0389569i
\(404\) 7.59561 10.1979i 0.377896 0.507363i
\(405\) 0 0
\(406\) −7.64274 0.204851i −0.379303 0.0101666i
\(407\) 25.8216i 1.27993i
\(408\) 4.71530 + 54.1067i 0.233442 + 2.67868i
\(409\) −5.09812 + 2.94340i −0.252086 + 0.145542i −0.620719 0.784033i \(-0.713159\pi\)
0.368633 + 0.929575i \(0.379826\pi\)
\(410\) 0 0
\(411\) 6.78145 11.7458i 0.334504 0.579378i
\(412\) 0.237769 2.03028i 0.0117140 0.100025i
\(413\) 4.84127 1.46208i 0.238223 0.0719441i
\(414\) 8.91343 + 10.0182i 0.438071 + 0.492369i
\(415\) 0 0
\(416\) 2.43229 3.93837i 0.119253 0.193094i
\(417\) 28.4856 + 49.3385i 1.39495 + 2.41612i
\(418\) −16.4996 + 3.40495i −0.807020 + 0.166542i
\(419\) 16.7262 0.817126 0.408563 0.912730i \(-0.366030\pi\)
0.408563 + 0.912730i \(0.366030\pi\)
\(420\) 0 0
\(421\) −1.18823 −0.0579109 −0.0289555 0.999581i \(-0.509218\pi\)
−0.0289555 + 0.999581i \(0.509218\pi\)
\(422\) −30.5602 + 6.30659i −1.48765 + 0.307000i
\(423\) 2.49611 + 4.32339i 0.121365 + 0.210210i
\(424\) 2.16635 4.64165i 0.105207 0.225418i
\(425\) 0 0
\(426\) −3.37824 3.79696i −0.163676 0.183963i
\(427\) −17.7042 + 18.8560i −0.856767 + 0.912506i
\(428\) −14.4047 1.68696i −0.696276 0.0815421i
\(429\) −3.82687 + 6.62833i −0.184763 + 0.320019i
\(430\) 0 0
\(431\) 20.8669 12.0475i 1.00512 0.580307i 0.0953622 0.995443i \(-0.469599\pi\)
0.909760 + 0.415135i \(0.136266\pi\)
\(432\) 5.27740 5.58867i 0.253909 0.268885i
\(433\) 14.9805i 0.719916i 0.932968 + 0.359958i \(0.117209\pi\)
−0.932968 + 0.359958i \(0.882791\pi\)
\(434\) −3.40876 6.28741i −0.163626 0.301805i
\(435\) 0 0
\(436\) 12.7865 + 9.52369i 0.612363 + 0.456102i
\(437\) −7.25962 + 4.19134i −0.347275 + 0.200499i
\(438\) 8.54465 25.7766i 0.408279 1.23165i
\(439\) 8.66266 15.0042i 0.413446 0.716110i −0.581818 0.813319i \(-0.697658\pi\)
0.995264 + 0.0972091i \(0.0309916\pi\)
\(440\) 0 0
\(441\) 21.8047 14.4919i 1.03832 0.690090i
\(442\) −6.39456 + 5.68938i −0.304158 + 0.270616i
\(443\) 21.8520 + 12.6162i 1.03822 + 0.599416i 0.919328 0.393492i \(-0.128733\pi\)
0.118890 + 0.992907i \(0.462066\pi\)
\(444\) 34.1745 14.7323i 1.62185 0.699164i
\(445\) 0 0
\(446\) −6.73901 32.6556i −0.319101 1.54629i
\(447\) 62.1779 2.94091
\(448\) 17.7040 + 11.6003i 0.836436 + 0.548064i
\(449\) −7.06145 −0.333251 −0.166625 0.986020i \(-0.553287\pi\)
−0.166625 + 0.986020i \(0.553287\pi\)
\(450\) 0 0
\(451\) −4.78848 8.29390i −0.225481 0.390544i
\(452\) 13.9878 6.03001i 0.657931 0.283628i
\(453\) −15.7556 9.09653i −0.740265 0.427392i
\(454\) −22.1103 + 19.6720i −1.03769 + 0.923255i
\(455\) 0 0
\(456\) 13.9201 + 19.8942i 0.651867 + 0.931633i
\(457\) 9.44078 16.3519i 0.441621 0.764910i −0.556189 0.831056i \(-0.687737\pi\)
0.997810 + 0.0661459i \(0.0210703\pi\)
\(458\) −2.30571 + 6.95562i −0.107739 + 0.325015i
\(459\) −12.3089 + 7.10656i −0.574531 + 0.331706i
\(460\) 0 0
\(461\) 34.6087i 1.61189i 0.591992 + 0.805944i \(0.298342\pi\)
−0.591992 + 0.805944i \(0.701658\pi\)
\(462\) −29.8288 18.3044i −1.38776 0.851600i
\(463\) 15.0235i 0.698202i −0.937085 0.349101i \(-0.886487\pi\)
0.937085 0.349101i \(-0.113513\pi\)
\(464\) 5.61159 5.94257i 0.260511 0.275877i
\(465\) 0 0
\(466\) 27.8804 + 9.24206i 1.29154 + 0.428130i
\(467\) −12.7195 + 22.0309i −0.588590 + 1.01947i 0.405828 + 0.913950i \(0.366983\pi\)
−0.994417 + 0.105518i \(0.966350\pi\)
\(468\) 6.07950 + 0.711981i 0.281025 + 0.0329113i
\(469\) 7.08472 + 23.4591i 0.327142 + 1.08324i
\(470\) 0 0
\(471\) 14.4470 + 8.34096i 0.665681 + 0.384331i
\(472\) −2.28650 + 4.89910i −0.105245 + 0.225499i
\(473\) 4.31782 + 7.47869i 0.198534 + 0.343871i
\(474\) −27.8595 + 5.74925i −1.27963 + 0.264072i
\(475\) 0 0
\(476\) −25.2223 29.9261i −1.15606 1.37166i
\(477\) 6.77350 0.310137
\(478\) −29.2638 + 6.03905i −1.33849 + 0.276220i
\(479\) −10.2844 17.8131i −0.469905 0.813900i 0.529502 0.848308i \(-0.322379\pi\)
−0.999408 + 0.0344084i \(0.989045\pi\)
\(480\) 0 0
\(481\) 5.07906 + 2.93239i 0.231585 + 0.133706i
\(482\) −1.70906 1.92089i −0.0778453 0.0874939i
\(483\) −16.9538 3.97510i −0.771426 0.180873i
\(484\) −0.460576 + 3.93279i −0.0209353 + 0.178763i
\(485\) 0 0
\(486\) −29.4563 9.76443i −1.33616 0.442924i
\(487\) −25.1658 + 14.5295i −1.14037 + 0.658394i −0.946522 0.322638i \(-0.895430\pi\)
−0.193849 + 0.981031i \(0.562097\pi\)
\(488\) −2.40060 27.5462i −0.108670 1.24696i
\(489\) 47.9749i 2.16950i
\(490\) 0 0
\(491\) 9.51815i 0.429548i −0.976664 0.214774i \(-0.931098\pi\)
0.976664 0.214774i \(-0.0689015\pi\)
\(492\) −8.24481 + 11.0695i −0.371705 + 0.499051i
\(493\) −13.0884 + 7.55657i −0.589470 + 0.340331i
\(494\) −1.20400 + 3.63210i −0.0541706 + 0.163416i
\(495\) 0 0
\(496\) 7.43893 + 1.76660i 0.334018 + 0.0793226i
\(497\) 3.56561 + 0.836015i 0.159940 + 0.0375004i
\(498\) 28.7943 25.6189i 1.29030 1.14801i
\(499\) −17.4855 10.0953i −0.782760 0.451927i 0.0546477 0.998506i \(-0.482596\pi\)
−0.837407 + 0.546579i \(0.815930\pi\)
\(500\) 0 0
\(501\) −2.37413 4.11211i −0.106068 0.183716i
\(502\) −4.00688 19.4164i −0.178836 0.866595i
\(503\) 13.3134 0.593616 0.296808 0.954937i \(-0.404078\pi\)
0.296808 + 0.954937i \(0.404078\pi\)
\(504\) −3.99925 + 27.7018i −0.178141 + 1.23394i
\(505\) 0 0
\(506\) 2.61057 + 12.6502i 0.116054 + 0.562370i
\(507\) −16.0060 27.7233i −0.710853 1.23123i
\(508\) −6.95261 16.1279i −0.308472 0.715562i
\(509\) −12.4294 7.17613i −0.550925 0.318077i 0.198570 0.980087i \(-0.436370\pi\)
−0.749495 + 0.662010i \(0.769704\pi\)
\(510\) 0 0
\(511\) 5.65744 + 18.7331i 0.250270 + 0.828703i
\(512\) −21.8623 + 5.83424i −0.966188 + 0.257839i
\(513\) −3.17706 + 5.50282i −0.140270 + 0.242956i
\(514\) −7.95298 + 23.9917i −0.350791 + 1.05823i
\(515\) 0 0
\(516\) 7.43442 9.98147i 0.327282 0.439410i
\(517\) 4.80879i 0.211490i
\(518\) −14.0260 + 22.8568i −0.616269 + 1.00427i
\(519\) 39.5906i 1.73783i
\(520\) 0 0
\(521\) −31.9571 + 18.4505i −1.40007 + 0.808330i −0.994399 0.105690i \(-0.966295\pi\)
−0.405669 + 0.914020i \(0.632961\pi\)
\(522\) 10.2591 + 3.40079i 0.449030 + 0.148848i
\(523\) −9.07509 + 15.7185i −0.396826 + 0.687323i −0.993332 0.115285i \(-0.963222\pi\)
0.596506 + 0.802608i \(0.296555\pi\)
\(524\) 3.11481 26.5969i 0.136071 1.16189i
\(525\) 0 0
\(526\) 20.5837 + 23.1349i 0.897490 + 1.00873i
\(527\) −12.2436 7.06883i −0.533338 0.307923i
\(528\) 35.8467 10.7142i 1.56003 0.466276i
\(529\) −8.28651 14.3526i −0.360283 0.624028i
\(530\) 0 0
\(531\) −7.14919 −0.310248
\(532\) −16.4546 5.94841i −0.713397 0.257896i
\(533\) −2.17519 −0.0942178
\(534\) −38.1630 + 7.87554i −1.65147 + 0.340808i
\(535\) 0 0
\(536\) −23.7393 11.0796i −1.02538 0.478566i
\(537\) −28.1874 16.2740i −1.21638 0.702276i
\(538\) 2.70999 + 3.04588i 0.116836 + 0.131317i
\(539\) 25.1693 1.58743i 1.08412 0.0683756i
\(540\) 0 0
\(541\) 9.37629 16.2402i 0.403118 0.698221i −0.590982 0.806685i \(-0.701260\pi\)
0.994100 + 0.108463i \(0.0345930\pi\)
\(542\) 22.7612 + 7.54509i 0.977678 + 0.324090i
\(543\) −18.0283 + 10.4086i −0.773667 + 0.446677i
\(544\) 41.8213 + 1.24046i 1.79307 + 0.0531842i
\(545\) 0 0
\(546\) −6.98790 + 3.78854i −0.299055 + 0.162135i
\(547\) 34.1580i 1.46049i −0.683185 0.730246i \(-0.739406\pi\)
0.683185 0.730246i \(-0.260594\pi\)
\(548\) −8.37943 6.24119i −0.357952 0.266610i
\(549\) 31.6653 18.2820i 1.35144 0.780256i
\(550\) 0 0
\(551\) −3.37824 + 5.85128i −0.143918 + 0.249273i
\(552\) 15.2529 10.6725i 0.649206 0.454252i
\(553\) 14.0312 14.9440i 0.596667 0.635485i
\(554\) 28.3702 25.2416i 1.20534 1.07241i
\(555\) 0 0
\(556\) 40.3029 17.3742i 1.70923 0.736831i
\(557\) −20.2183 35.0192i −0.856679 1.48381i −0.875079 0.483980i \(-0.839191\pi\)
0.0184005 0.999831i \(-0.494143\pi\)
\(558\) 2.04340 + 9.90183i 0.0865041 + 0.419178i
\(559\) 1.96139 0.0829579
\(560\) 0 0
\(561\) −69.1805 −2.92080
\(562\) −7.13120 34.5561i −0.300811 1.45766i
\(563\) −0.159465 0.276201i −0.00672065 0.0116405i 0.862646 0.505809i \(-0.168806\pi\)
−0.869366 + 0.494168i \(0.835473\pi\)
\(564\) 6.36435 2.74361i 0.267987 0.115527i
\(565\) 0 0
\(566\) −10.3946 + 9.24835i −0.436920 + 0.388737i
\(567\) 15.7831 4.76655i 0.662830 0.200176i
\(568\) −3.20788 + 2.24457i −0.134600 + 0.0941800i
\(569\) 15.3058 26.5104i 0.641651 1.11137i −0.343413 0.939184i \(-0.611583\pi\)
0.985064 0.172188i \(-0.0550836\pi\)
\(570\) 0 0
\(571\) 7.35081 4.24399i 0.307622 0.177606i −0.338240 0.941060i \(-0.609832\pi\)
0.645862 + 0.763454i \(0.276498\pi\)
\(572\) 4.72864 + 3.52200i 0.197714 + 0.147262i
\(573\) 17.5486i 0.733103i
\(574\) 0.266495 9.94264i 0.0111233 0.414998i
\(575\) 0 0
\(576\) −19.2177 22.9342i −0.800735 0.955591i
\(577\) −2.91419 + 1.68251i −0.121319 + 0.0700438i −0.559432 0.828876i \(-0.688981\pi\)
0.438112 + 0.898920i \(0.355647\pi\)
\(578\) −50.6145 16.7781i −2.10529 0.697879i
\(579\) 3.06354 5.30620i 0.127316 0.220518i
\(580\) 0 0
\(581\) −6.33993 + 27.0399i −0.263025 + 1.12180i
\(582\) 17.8648 + 20.0791i 0.740520 + 0.832305i
\(583\) 5.65048 + 3.26230i 0.234019 + 0.135111i
\(584\) −18.9568 8.84752i −0.784439 0.366113i
\(585\) 0 0
\(586\) 32.4151 6.68938i 1.33906 0.276336i
\(587\) −2.02359 −0.0835225 −0.0417613 0.999128i \(-0.513297\pi\)
−0.0417613 + 0.999128i \(0.513297\pi\)
\(588\) −16.4610 32.4054i −0.678842 1.33638i
\(589\) −6.32038 −0.260427
\(590\) 0 0
\(591\) 26.3779 + 45.6878i 1.08504 + 1.87935i
\(592\) −8.20992 27.4681i −0.337426 1.12893i
\(593\) −23.2318 13.4129i −0.954016 0.550802i −0.0596901 0.998217i \(-0.519011\pi\)
−0.894326 + 0.447415i \(0.852345\pi\)
\(594\) 6.50817 + 7.31483i 0.267033 + 0.300131i
\(595\) 0 0
\(596\) 5.57151 47.5743i 0.228218 1.94872i
\(597\) −14.8738 + 25.7622i −0.608744 + 1.05438i
\(598\) 2.78473 + 0.923107i 0.113876 + 0.0377487i
\(599\) −32.0964 + 18.5309i −1.31143 + 0.757152i −0.982332 0.187146i \(-0.940076\pi\)
−0.329093 + 0.944297i \(0.606743\pi\)
\(600\) 0 0
\(601\) 1.27911i 0.0521761i 0.999660 + 0.0260880i \(0.00830503\pi\)
−0.999660 + 0.0260880i \(0.991695\pi\)
\(602\) −0.240301 + 8.96537i −0.00979396 + 0.365401i
\(603\) 34.6425i 1.41075i
\(604\) −8.37184 + 11.2400i −0.340645 + 0.457351i
\(605\) 0 0
\(606\) 7.34501 22.1576i 0.298371 0.900093i
\(607\) 11.3045 19.5800i 0.458836 0.794727i −0.540064 0.841624i \(-0.681600\pi\)
0.998900 + 0.0468970i \(0.0149333\pi\)
\(608\) 16.4690 8.86805i 0.667907 0.359647i
\(609\) −13.4361 + 4.05773i −0.544458 + 0.164428i
\(610\) 0 0
\(611\) 0.945877 + 0.546102i 0.0382661 + 0.0220929i
\(612\) 21.9024 + 50.8070i 0.885353 + 2.05375i
\(613\) 1.50973 + 2.61492i 0.0609773 + 0.105616i 0.894903 0.446262i \(-0.147245\pi\)
−0.833925 + 0.551877i \(0.813912\pi\)
\(614\) 0.624606 + 3.02669i 0.0252071 + 0.122147i
\(615\) 0 0
\(616\) −16.6781 + 21.1828i −0.671982 + 0.853479i
\(617\) 14.3344 0.577081 0.288540 0.957468i \(-0.406830\pi\)
0.288540 + 0.957468i \(0.406830\pi\)
\(618\) −0.758431 3.67517i −0.0305086 0.147837i
\(619\) −10.8987 18.8771i −0.438055 0.758733i 0.559485 0.828841i \(-0.310999\pi\)
−0.997539 + 0.0701078i \(0.977666\pi\)
\(620\) 0 0
\(621\) 4.21901 + 2.43584i 0.169303 + 0.0977471i
\(622\) −30.5347 + 27.1674i −1.22433 + 1.08931i
\(623\) 19.2205 20.4709i 0.770052 0.820150i
\(624\) 1.96342 8.26771i 0.0785997 0.330973i
\(625\) 0 0
\(626\) 2.82701 8.52821i 0.112990 0.340856i
\(627\) −26.7843 + 15.4639i −1.06966 + 0.617570i
\(628\) 7.67646 10.3064i 0.306324 0.411271i
\(629\) 53.0106i 2.11367i
\(630\) 0 0
\(631\) 15.1512i 0.603160i 0.953441 + 0.301580i \(0.0975140\pi\)
−0.953441 + 0.301580i \(0.902486\pi\)
\(632\) 1.90256 + 21.8313i 0.0756797 + 0.868404i
\(633\) −49.6094 + 28.6420i −1.97180 + 1.13842i
\(634\) 25.2409 + 8.36708i 1.00244 + 0.332299i
\(635\) 0 0
\(636\) 1.09378 9.33959i 0.0433710 0.370339i
\(637\) 2.54606 5.13101i 0.100879 0.203298i
\(638\) 6.92029 + 7.77803i 0.273977 + 0.307935i
\(639\) −4.48363 2.58863i −0.177370 0.102404i
\(640\) 0 0
\(641\) −14.9960 25.9739i −0.592308 1.02591i −0.993921 0.110098i \(-0.964884\pi\)
0.401613 0.915809i \(-0.368450\pi\)
\(642\) −26.0751 + 5.38101i −1.02910 + 0.212372i
\(643\) 1.63196 0.0643583 0.0321792 0.999482i \(-0.489755\pi\)
0.0321792 + 0.999482i \(0.489755\pi\)
\(644\) −4.56063 + 12.6157i −0.179714 + 0.497129i
\(645\) 0 0
\(646\) −33.8728 + 6.99020i −1.33271 + 0.275026i
\(647\) −16.3832 28.3765i −0.644090 1.11560i −0.984511 0.175323i \(-0.943903\pi\)
0.340421 0.940273i \(-0.389430\pi\)
\(648\) −7.45428 + 15.9717i −0.292832 + 0.627426i
\(649\) −5.96388 3.44325i −0.234103 0.135159i
\(650\) 0 0
\(651\) −9.57170 8.98703i −0.375145 0.352229i
\(652\) 36.7071 + 4.29883i 1.43756 + 0.168355i
\(653\) 11.2646 19.5109i 0.440819 0.763521i −0.556932 0.830558i \(-0.688021\pi\)
0.997750 + 0.0670377i \(0.0213548\pi\)
\(654\) 27.7822 + 9.20948i 1.08637 + 0.360119i
\(655\) 0 0
\(656\) 7.73083 + 7.30025i 0.301838 + 0.285027i
\(657\) 27.6635i 1.07925i
\(658\) −2.61208 + 4.25663i −0.101830 + 0.165941i
\(659\) 19.2525i 0.749969i 0.927031 + 0.374985i \(0.122352\pi\)
−0.927031 + 0.374985i \(0.877648\pi\)
\(660\) 0 0
\(661\) 30.1079 17.3828i 1.17106 0.676113i 0.217132 0.976142i \(-0.430330\pi\)
0.953930 + 0.300030i \(0.0969966\pi\)
\(662\) −5.82433 + 17.5702i −0.226369 + 0.682885i
\(663\) −7.85638 + 13.6077i −0.305117 + 0.528477i
\(664\) −17.0217 24.3270i −0.660570 0.944071i
\(665\) 0 0
\(666\) 28.3228 25.1994i 1.09749 0.976458i
\(667\) 4.48617 + 2.59009i 0.173705 + 0.100289i
\(668\) −3.35904 + 1.44805i −0.129965 + 0.0560268i
\(669\) −30.6059 53.0110i −1.18329 2.04952i
\(670\) 0 0
\(671\) 35.2205 1.35967
\(672\) 37.5506 + 9.98759i 1.44855 + 0.385280i
\(673\) −42.6368 −1.64353 −0.821764 0.569827i \(-0.807010\pi\)
−0.821764 + 0.569827i \(0.807010\pi\)
\(674\) 3.35325 + 16.2491i 0.129162 + 0.625890i
\(675\) 0 0
\(676\) −22.6462 + 9.76255i −0.871007 + 0.375483i
\(677\) −1.54611 0.892648i −0.0594219 0.0343073i 0.469995 0.882669i \(-0.344256\pi\)
−0.529417 + 0.848362i \(0.677589\pi\)
\(678\) 20.8911 18.5873i 0.802319 0.713842i
\(679\) −18.8557 4.42102i −0.723615 0.169663i
\(680\) 0 0
\(681\) −27.1648 + 47.0509i −1.04096 + 1.80299i
\(682\) −3.06439 + 9.24431i −0.117341 + 0.353983i
\(683\) 7.45237 4.30263i 0.285157 0.164636i −0.350599 0.936526i \(-0.614022\pi\)
0.635756 + 0.771890i \(0.280689\pi\)
\(684\) 19.8367 + 14.7749i 0.758477 + 0.564931i
\(685\) 0 0
\(686\) 23.1416 + 12.2665i 0.883549 + 0.468338i
\(687\) 13.4523i 0.513236i
\(688\) −6.97097 6.58271i −0.265766 0.250963i
\(689\) 1.28338 0.740957i 0.0488927 0.0282282i
\(690\) 0 0
\(691\) −20.1511 + 34.9027i −0.766583 + 1.32776i 0.172822 + 0.984953i \(0.444711\pi\)
−0.939405 + 0.342808i \(0.888622\pi\)
\(692\) 30.2920 + 3.54755i 1.15153 + 0.134858i
\(693\) −34.7101 8.13834i −1.31853 0.309150i
\(694\) −4.14720 4.66123i −0.157426 0.176938i
\(695\) 0 0
\(696\) 6.34578 13.5966i 0.240536 0.515377i
\(697\) −9.83053 17.0270i −0.372358 0.644943i
\(698\) −25.4124 + 5.24425i −0.961874 + 0.198498i
\(699\) 53.9212 2.03949
\(700\) 0 0
\(701\) 37.3051 1.40899 0.704497 0.709707i \(-0.251172\pi\)
0.704497 + 0.709707i \(0.251172\pi\)
\(702\) 2.17790 0.449444i 0.0821995 0.0169632i
\(703\) 11.8495 + 20.5239i 0.446911 + 0.774072i
\(704\) −4.98570 28.3875i −0.187906 1.06990i
\(705\) 0 0
\(706\) −11.0438 12.4126i −0.415637 0.467154i
\(707\) 4.86315 + 16.1030i 0.182898 + 0.605617i
\(708\) −1.15444 + 9.85761i −0.0433866 + 0.370472i
\(709\) −4.02866 + 6.97784i −0.151299 + 0.262058i −0.931705 0.363215i \(-0.881679\pi\)
0.780406 + 0.625273i \(0.215012\pi\)
\(710\) 0 0
\(711\) −25.0958 + 14.4891i −0.941168 + 0.543383i
\(712\) 2.60620 + 29.9054i 0.0976714 + 1.12075i
\(713\) 4.84582i 0.181477i
\(714\) −61.2371 37.5782i −2.29174 1.40633i
\(715\) 0 0
\(716\) −14.9775 + 20.1089i −0.559737 + 0.751503i
\(717\) −47.5049 + 27.4269i −1.77410 + 1.02428i
\(718\) 0.0880634 0.265660i 0.00328650 0.00991434i
\(719\) −5.87241 + 10.1713i −0.219004 + 0.379326i −0.954504 0.298199i \(-0.903614\pi\)
0.735500 + 0.677525i \(0.236947\pi\)
\(720\) 0 0
\(721\) 1.97139 + 1.85097i 0.0734184 + 0.0689338i
\(722\) 8.52275 7.58289i 0.317184 0.282206i
\(723\) −4.08766 2.36001i −0.152022 0.0877697i
\(724\) 6.34853 + 14.7267i 0.235941 + 0.547312i
\(725\) 0 0
\(726\) 1.46913 + 7.11908i 0.0545247 + 0.264214i
\(727\) 33.3549 1.23706 0.618532 0.785760i \(-0.287728\pi\)
0.618532 + 0.785760i \(0.287728\pi\)
\(728\) 2.27258 + 5.68614i 0.0842273 + 0.210742i
\(729\) −38.2742 −1.41756
\(730\) 0 0
\(731\) 8.86429 + 15.3534i 0.327857 + 0.567866i
\(732\) −20.0947 46.6137i −0.742722 1.72289i
\(733\) 9.95934 + 5.75003i 0.367856 + 0.212382i 0.672522 0.740077i \(-0.265211\pi\)
−0.304665 + 0.952460i \(0.598545\pi\)
\(734\) 7.95403 7.07688i 0.293588 0.261212i
\(735\) 0 0
\(736\) −6.79912 12.6268i −0.250619 0.465429i
\(737\) 16.6848 28.8989i 0.614593 1.06451i
\(738\) −4.42417 + 13.3463i −0.162856 + 0.491286i
\(739\) 9.70301 5.60203i 0.356931 0.206074i −0.310803 0.950474i \(-0.600598\pi\)
0.667734 + 0.744400i \(0.267265\pi\)
\(740\) 0 0
\(741\) 7.02455i 0.258053i
\(742\) 3.22963 + 5.95700i 0.118564 + 0.218688i
\(743\) 43.7950i 1.60668i 0.595520 + 0.803341i \(0.296946\pi\)
−0.595520 + 0.803341i \(0.703054\pi\)
\(744\) 13.9830 1.21859i 0.512643 0.0446759i
\(745\) 0 0
\(746\) −41.8007 13.8565i −1.53043 0.507322i
\(747\) 19.6309 34.0017i 0.718256 1.24406i
\(748\) −6.19898 + 52.9322i −0.226657 + 1.93539i
\(749\) 13.1325 13.9869i 0.479852 0.511069i
\(750\) 0 0
\(751\) −44.5322 25.7107i −1.62500 0.938196i −0.985554 0.169364i \(-0.945829\pi\)
−0.639450 0.768832i \(-0.720838\pi\)
\(752\) −1.52894 5.11541i −0.0557547 0.186540i
\(753\) −18.1976 31.5192i −0.663159 1.14862i
\(754\) 2.31581 0.477905i 0.0843369 0.0174043i
\(755\) 0 0
\(756\) 1.78755 + 10.0101i 0.0650126 + 0.364064i
\(757\) −18.1453 −0.659502 −0.329751 0.944068i \(-0.606965\pi\)
−0.329751 + 0.944068i \(0.606965\pi\)
\(758\) 22.6308 4.67022i 0.821987 0.169630i
\(759\) 11.8562 + 20.5355i 0.430352 + 0.745391i
\(760\) 0 0
\(761\) −28.4860 16.4464i −1.03262 0.596181i −0.114883 0.993379i \(-0.536649\pi\)
−0.917733 + 0.397198i \(0.869983\pi\)
\(762\) −21.4312 24.0875i −0.776370 0.872598i
\(763\) −20.1906 + 6.09762i −0.730950 + 0.220749i
\(764\) −13.4270 1.57246i −0.485771 0.0568895i
\(765\) 0 0
\(766\) 11.8783 + 3.93753i 0.429181 + 0.142269i
\(767\) −1.35456 + 0.782054i −0.0489102 + 0.0282383i
\(768\) −34.7259 + 22.7948i −1.25306 + 0.822535i
\(769\) 20.8502i 0.751876i −0.926645 0.375938i \(-0.877321\pi\)
0.926645 0.375938i \(-0.122679\pi\)
\(770\) 0 0
\(771\) 46.4003i 1.67107i
\(772\) −3.78543 2.81947i −0.136241 0.101475i
\(773\) 7.52368 4.34380i 0.270608 0.156236i −0.358556 0.933508i \(-0.616731\pi\)
0.629164 + 0.777273i \(0.283397\pi\)
\(774\) 3.98932 12.0345i 0.143393 0.432572i
\(775\) 0 0
\(776\) 16.9639 11.8697i 0.608970 0.426099i
\(777\) −11.2381 + 47.9306i −0.403165 + 1.71950i
\(778\) 9.87384 8.78497i 0.353994 0.314957i
\(779\) −7.61208 4.39484i −0.272731 0.157461i
\(780\) 0 0
\(781\) −2.49351 4.31888i −0.0892247 0.154542i
\(782\) 5.35937 + 25.9703i 0.191651 + 0.928694i
\(783\) 3.92660 0.140325
\(784\) −26.2694 + 9.69115i −0.938193 + 0.346113i
\(785\) 0 0
\(786\) −9.93555 48.1453i −0.354389 1.71729i
\(787\) 18.6062 + 32.2270i 0.663241 + 1.14877i 0.979759 + 0.200180i \(0.0641528\pi\)
−0.316518 + 0.948586i \(0.602514\pi\)
\(788\) 37.3208 16.0887i 1.32950 0.573135i
\(789\) 49.2312 + 28.4237i 1.75268 + 1.01191i
\(790\) 0 0
\(791\) −4.59982 + 19.6183i −0.163551 + 0.697545i
\(792\) 31.2277 21.8501i 1.10963 0.776411i
\(793\) 3.99976 6.92778i 0.142036 0.246013i
\(794\) 9.03437 27.2539i 0.320618 0.967205i
\(795\) 0 0
\(796\) 18.3787 + 13.6889i 0.651415 + 0.485189i
\(797\) 21.3900i 0.757671i −0.925464 0.378835i \(-0.876325\pi\)
0.925464 0.378835i \(-0.123675\pi\)
\(798\) −32.1087 0.860619i −1.13664 0.0304656i
\(799\) 9.87221i 0.349254i
\(800\) 0 0
\(801\) −34.3773 + 19.8477i −1.21466 + 0.701285i
\(802\) −14.8826 4.93341i −0.525522 0.174205i
\(803\) 13.3235 23.0770i 0.470176 0.814368i
\(804\) −47.7666 5.59403i −1.68460 0.197286i
\(805\) 0 0
\(806\) 1.47033 + 1.65257i 0.0517902 + 0.0582094i
\(807\) 6.48166 + 3.74219i 0.228165 + 0.131731i
\(808\) −16.2954 7.60536i −0.573269 0.267556i
\(809\) 12.1707 + 21.0803i 0.427900 + 0.741144i 0.996686 0.0813411i \(-0.0259203\pi\)
−0.568787 + 0.822485i \(0.692587\pi\)
\(810\) 0 0
\(811\) 31.3778 1.10183 0.550913 0.834563i \(-0.314280\pi\)
0.550913 + 0.834563i \(0.314280\pi\)
\(812\) 1.90075 + 10.6440i 0.0667031 + 0.373530i
\(813\) 44.0206 1.54387
\(814\) 35.7637 7.38041i 1.25352 0.258683i
\(815\) 0 0
\(816\) 73.5917 21.9958i 2.57622 0.770006i
\(817\) 6.86389 + 3.96287i 0.240137 + 0.138643i
\(818\) 5.53386 + 6.21976i 0.193487 + 0.217469i
\(819\) −5.54259 + 5.90317i −0.193674 + 0.206274i
\(820\) 0 0
\(821\) −0.0785681 + 0.136084i −0.00274204 + 0.00474936i −0.867393 0.497623i \(-0.834206\pi\)
0.864651 + 0.502373i \(0.167539\pi\)
\(822\) −18.2066 6.03528i −0.635027 0.210505i
\(823\) 16.1904 9.34753i 0.564362 0.325835i −0.190532 0.981681i \(-0.561021\pi\)
0.754894 + 0.655846i \(0.227688\pi\)
\(824\) −2.87995 + 0.250982i −0.100328 + 0.00874338i
\(825\) 0 0
\(826\) −3.40876 6.28741i −0.118606 0.218767i
\(827\) 35.2960i 1.22736i −0.789554 0.613681i \(-0.789688\pi\)
0.789554 0.613681i \(-0.210312\pi\)
\(828\) 11.3279 15.2088i 0.393670 0.528542i
\(829\) 14.2590 8.23245i 0.495237 0.285925i −0.231508 0.972833i \(-0.574366\pi\)
0.726744 + 0.686908i \(0.241033\pi\)
\(830\) 0 0
\(831\) 34.8558 60.3720i 1.20913 2.09428i
\(832\) −6.14996 2.24311i −0.213211 0.0777659i
\(833\) 51.6713 3.25893i 1.79030 0.112915i
\(834\) 60.1934 53.5555i 2.08433 1.85447i
\(835\) 0 0
\(836\) 9.43191 + 21.8792i 0.326209 + 0.756707i
\(837\) 1.83658 + 3.18105i 0.0634814 + 0.109953i
\(838\) −4.78072 23.1662i −0.165147 0.800264i
\(839\) 54.8000 1.89191 0.945953 0.324303i \(-0.105130\pi\)
0.945953 + 0.324303i \(0.105130\pi\)
\(840\) 0 0
\(841\) −24.8248 −0.856026
\(842\) 0.339624 + 1.64574i 0.0117042 + 0.0567158i
\(843\) −32.3871 56.0960i −1.11547 1.93205i
\(844\) 17.4696 + 40.5243i 0.601329 + 1.39490i
\(845\) 0 0
\(846\) 5.27458 4.69291i 0.181344 0.161346i
\(847\) −3.81872 3.58546i −0.131213 0.123198i
\(848\) −7.04801 1.67376i −0.242030 0.0574773i
\(849\) −12.7709 + 22.1199i −0.438297 + 0.759152i
\(850\) 0 0
\(851\) 15.7356 9.08496i 0.539410 0.311428i
\(852\) −4.29332 + 5.76422i −0.147087 + 0.197479i
\(853\) 38.9225i 1.33268i −0.745648 0.666340i \(-0.767860\pi\)
0.745648 0.666340i \(-0.232140\pi\)
\(854\) 31.1764 + 19.1314i 1.06683 + 0.654662i
\(855\) 0 0
\(856\) 1.78070 + 20.4331i 0.0608631 + 0.698388i
\(857\) −25.4206 + 14.6766i −0.868350 + 0.501342i −0.866800 0.498657i \(-0.833827\pi\)
−0.00155047 + 0.999999i \(0.500494\pi\)
\(858\) 10.2742 + 3.40580i 0.350757 + 0.116272i
\(859\) −23.6874 + 41.0277i −0.808202 + 1.39985i 0.105905 + 0.994376i \(0.466226\pi\)
−0.914108 + 0.405471i \(0.867107\pi\)
\(860\) 0 0
\(861\) −5.27880 17.4793i −0.179901 0.595694i
\(862\) −22.6504 25.4578i −0.771474 0.867095i
\(863\) −20.5257 11.8505i −0.698704 0.403397i 0.108161 0.994133i \(-0.465504\pi\)
−0.806865 + 0.590737i \(0.798837\pi\)
\(864\) −9.24887 5.71198i −0.314653 0.194326i
\(865\) 0 0
\(866\) 20.7484 4.28176i 0.705060 0.145500i
\(867\) −97.8892 −3.32449
\(868\) −7.73394 + 6.51832i −0.262507 + 0.221246i
\(869\) −27.9134 −0.946897
\(870\) 0 0
\(871\) −3.78957 6.56372i −0.128405 0.222403i
\(872\) 9.53591 20.4318i 0.322927 0.691908i
\(873\) 23.7103 + 13.6892i 0.802474 + 0.463308i
\(874\) 7.88009 + 8.85680i 0.266548 + 0.299586i
\(875\) 0 0
\(876\) −38.1436 4.46706i −1.28875 0.150928i
\(877\) 16.6020 28.7555i 0.560610 0.971004i −0.436834 0.899542i \(-0.643900\pi\)
0.997443 0.0714621i \(-0.0227665\pi\)
\(878\) −23.2572 7.70951i −0.784893 0.260183i
\(879\) 52.6205 30.3805i 1.77485 1.02471i
\(880\) 0 0
\(881\) 19.2043i 0.647008i −0.946227 0.323504i \(-0.895139\pi\)
0.946227 0.323504i \(-0.104861\pi\)
\(882\) −26.3040 26.0580i −0.885700 0.877420i
\(883\) 8.57526i 0.288581i −0.989535 0.144290i \(-0.953910\pi\)
0.989535 0.144290i \(-0.0460899\pi\)
\(884\) 9.70767 + 7.23049i 0.326504 + 0.243188i
\(885\) 0 0
\(886\) 11.2281 33.8716i 0.377214 1.13794i
\(887\) −7.37543 + 12.7746i −0.247643 + 0.428930i −0.962871 0.269961i \(-0.912989\pi\)
0.715229 + 0.698891i \(0.246323\pi\)
\(888\) −30.1725 43.1219i −1.01252 1.44707i
\(889\) 22.6199 + 5.30359i 0.758646 + 0.177877i
\(890\) 0 0
\(891\) −19.4430 11.2254i −0.651365 0.376066i
\(892\) −43.3028 + 18.6674i −1.44989 + 0.625032i
\(893\) 2.20673 + 3.82218i 0.0738455 + 0.127904i
\(894\) −17.7719 86.1182i −0.594380 2.88022i
\(895\) 0 0
\(896\) 11.0066 27.8362i 0.367704 0.929943i
\(897\) 5.38571 0.179824
\(898\) 2.01832 + 9.78032i 0.0673524 + 0.326373i
\(899\) 1.95288 + 3.38248i 0.0651321 + 0.112812i
\(900\) 0 0
\(901\) 11.6002 + 6.69736i 0.386457 + 0.223121i
\(902\) −10.1186 + 9.00277i −0.336914 + 0.299760i
\(903\) 4.75995 + 15.7613i 0.158401 + 0.524503i
\(904\) −12.3498 17.6500i −0.410747 0.587030i
\(905\) 0 0
\(906\) −8.09563 + 24.4220i −0.268959 + 0.811367i
\(907\) 41.2134 23.7946i 1.36847 0.790085i 0.377736 0.925914i \(-0.376703\pi\)
0.990732 + 0.135828i \(0.0433695\pi\)
\(908\) 33.5660 + 25.0007i 1.11393 + 0.829678i
\(909\) 23.7796i 0.788720i
\(910\) 0 0
\(911\) 34.7074i 1.14991i 0.818186 + 0.574954i \(0.194980\pi\)
−0.818186 + 0.574954i \(0.805020\pi\)
\(912\) 23.5754 24.9659i 0.780660 0.826705i
\(913\) 32.7523 18.9095i 1.08394 0.625814i
\(914\) −25.3463 8.40200i −0.838380 0.277914i
\(915\) 0 0
\(916\) 10.2928 + 1.20540i 0.340082 + 0.0398276i
\(917\) 25.8255 + 24.2480i 0.852833 + 0.800739i
\(918\) 13.3610 + 15.0170i 0.440977 + 0.495635i
\(919\) −44.9270 25.9386i −1.48200 0.855635i −0.482212 0.876055i \(-0.660167\pi\)
−0.999792 + 0.0204194i \(0.993500\pi\)
\(920\) 0 0
\(921\) 2.83671 + 4.91333i 0.0934729 + 0.161900i
\(922\) 47.9340 9.89195i 1.57862 0.325774i
\(923\) −1.13269 −0.0372828
\(924\) −16.8264 + 46.5456i −0.553549 + 1.53124i
\(925\) 0 0
\(926\) −20.8080 + 4.29406i −0.683794 + 0.141112i
\(927\) −1.91138 3.31060i −0.0627778 0.108734i
\(928\) −9.83454 6.07369i −0.322835 0.199379i
\(929\) −37.9198 21.8930i −1.24411 0.718286i −0.274180 0.961678i \(-0.588406\pi\)
−0.969928 + 0.243393i \(0.921740\pi\)
\(930\) 0 0
\(931\) 19.2769 12.8118i 0.631774 0.419891i
\(932\) 4.83166 41.2568i 0.158266 1.35141i
\(933\) −37.5151 + 64.9780i −1.22819 + 2.12728i
\(934\) 34.1489 + 11.3200i 1.11739 + 0.370402i
\(935\) 0 0
\(936\) −0.751546 8.62379i −0.0245651 0.281877i
\(937\) 14.2224i 0.464624i 0.972641 + 0.232312i \(0.0746290\pi\)
−0.972641 + 0.232312i \(0.925371\pi\)
\(938\) 30.4666 16.5177i 0.994771 0.539322i
\(939\) 16.4937i 0.538251i
\(940\) 0 0
\(941\) 4.80070 2.77169i 0.156498 0.0903544i −0.419706 0.907660i \(-0.637867\pi\)
0.576204 + 0.817306i \(0.304533\pi\)
\(942\) 7.42320 22.3935i 0.241861 0.729619i
\(943\) −3.36951 + 5.83617i −0.109726 + 0.190052i
\(944\) 7.43893 + 1.76660i 0.242116 + 0.0574979i
\(945\) 0 0
\(946\) 9.12407 8.11789i 0.296649 0.263935i
\(947\) 51.5945 + 29.7881i 1.67660 + 0.967983i 0.963805 + 0.266607i \(0.0859024\pi\)
0.712791 + 0.701377i \(0.247431\pi\)
\(948\) 15.9257 + 36.9429i 0.517244 + 1.19985i
\(949\) −3.02612 5.24140i −0.0982321 0.170143i
\(950\) 0 0
\(951\) 48.8163 1.58298
\(952\) −34.2394 + 43.4872i −1.10971 + 1.40943i
\(953\) −12.2577 −0.397065 −0.198532 0.980094i \(-0.563617\pi\)
−0.198532 + 0.980094i \(0.563617\pi\)
\(954\) −1.93602 9.38149i −0.0626809 0.303737i
\(955\) 0 0
\(956\) 16.7285 + 38.8051i 0.541039 + 1.25505i
\(957\) 16.5517 + 9.55612i 0.535040 + 0.308906i
\(958\) −21.7321 + 19.3355i −0.702133 + 0.624703i
\(959\) 13.2316 3.99597i 0.427270 0.129037i
\(960\) 0 0
\(961\) 13.6732 23.6826i 0.441070 0.763956i
\(962\) 2.60974 7.87279i 0.0841414 0.253829i
\(963\) −23.4885 + 13.5611i −0.756906 + 0.437000i
\(964\) −2.17200 + 2.91612i −0.0699553 + 0.0939220i
\(965\) 0 0
\(966\) −0.659836 + 24.6177i −0.0212299 + 0.792062i
\(967\) 53.4551i 1.71900i 0.511137 + 0.859499i \(0.329225\pi\)
−0.511137 + 0.859499i \(0.670775\pi\)
\(968\) 5.57867 0.486170i 0.179305 0.0156261i
\(969\) −54.9869 + 31.7467i −1.76643 + 1.01985i
\(970\) 0 0
\(971\) 11.1284 19.2749i 0.357126 0.618561i −0.630353 0.776308i \(-0.717090\pi\)
0.987479 + 0.157748i \(0.0504232\pi\)
\(972\) −5.10475 + 43.5887i −0.163735 + 1.39811i
\(973\) −13.2534 + 56.5259i −0.424885 + 1.81214i
\(974\) 27.3167 + 30.7025i 0.875284 + 0.983772i
\(975\) 0 0
\(976\) −37.4662 + 11.1982i −1.19926 + 0.358447i
\(977\) 15.8974 + 27.5351i 0.508603 + 0.880926i 0.999950 + 0.00996251i \(0.00317122\pi\)
−0.491347 + 0.870964i \(0.663495\pi\)
\(978\) 66.4466 13.7123i 2.12473 0.438472i
\(979\) −38.2369 −1.22206
\(980\) 0 0
\(981\) 29.8158 0.951947
\(982\) −13.1829 + 2.72051i −0.420684 + 0.0868148i
\(983\) 10.2927 + 17.8275i 0.328287 + 0.568609i 0.982172 0.187985i \(-0.0601955\pi\)
−0.653885 + 0.756594i \(0.726862\pi\)
\(984\) 17.6881 + 8.25538i 0.563877 + 0.263172i
\(985\) 0 0
\(986\) 14.2070 + 15.9679i 0.452444 + 0.508522i
\(987\) −2.09288 + 8.92616i −0.0666172 + 0.284123i
\(988\) 5.37470 + 0.629440i 0.170992 + 0.0200252i
\(989\) 3.03832 5.26253i 0.0966131 0.167339i
\(990\) 0 0
\(991\) −32.2836 + 18.6390i −1.02552 + 0.592086i −0.915699 0.401865i \(-0.868362\pi\)
−0.109824 + 0.993951i \(0.535029\pi\)
\(992\) 0.320577 10.8081i 0.0101783 0.343156i
\(993\) 33.9810i 1.07836i
\(994\) 0.138772 5.17743i 0.00440158 0.164218i
\(995\) 0 0
\(996\) −43.7130 32.5584i −1.38510 1.03165i
\(997\) 10.9485 6.32111i 0.346742 0.200191i −0.316508 0.948590i \(-0.602510\pi\)
0.663249 + 0.748399i \(0.269177\pi\)
\(998\) −8.98449 + 27.1034i −0.284399 + 0.857944i
\(999\) 6.88644 11.9277i 0.217877 0.377375i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 700.2.p.e.551.7 32
4.3 odd 2 inner 700.2.p.e.551.15 32
5.2 odd 4 140.2.s.b.19.15 yes 32
5.3 odd 4 140.2.s.b.19.2 32
5.4 even 2 inner 700.2.p.e.551.10 32
7.3 odd 6 inner 700.2.p.e.451.15 32
20.3 even 4 140.2.s.b.19.7 yes 32
20.7 even 4 140.2.s.b.19.10 yes 32
20.19 odd 2 inner 700.2.p.e.551.2 32
28.3 even 6 inner 700.2.p.e.451.7 32
35.2 odd 12 980.2.c.d.979.5 32
35.3 even 12 140.2.s.b.59.10 yes 32
35.12 even 12 980.2.c.d.979.6 32
35.13 even 4 980.2.s.e.19.2 32
35.17 even 12 140.2.s.b.59.7 yes 32
35.18 odd 12 980.2.s.e.619.10 32
35.23 odd 12 980.2.c.d.979.28 32
35.24 odd 6 inner 700.2.p.e.451.2 32
35.27 even 4 980.2.s.e.19.15 32
35.32 odd 12 980.2.s.e.619.7 32
35.33 even 12 980.2.c.d.979.27 32
140.3 odd 12 140.2.s.b.59.15 yes 32
140.23 even 12 980.2.c.d.979.7 32
140.27 odd 4 980.2.s.e.19.10 32
140.47 odd 12 980.2.c.d.979.25 32
140.59 even 6 inner 700.2.p.e.451.10 32
140.67 even 12 980.2.s.e.619.2 32
140.83 odd 4 980.2.s.e.19.7 32
140.87 odd 12 140.2.s.b.59.2 yes 32
140.103 odd 12 980.2.c.d.979.8 32
140.107 even 12 980.2.c.d.979.26 32
140.123 even 12 980.2.s.e.619.15 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.s.b.19.2 32 5.3 odd 4
140.2.s.b.19.7 yes 32 20.3 even 4
140.2.s.b.19.10 yes 32 20.7 even 4
140.2.s.b.19.15 yes 32 5.2 odd 4
140.2.s.b.59.2 yes 32 140.87 odd 12
140.2.s.b.59.7 yes 32 35.17 even 12
140.2.s.b.59.10 yes 32 35.3 even 12
140.2.s.b.59.15 yes 32 140.3 odd 12
700.2.p.e.451.2 32 35.24 odd 6 inner
700.2.p.e.451.7 32 28.3 even 6 inner
700.2.p.e.451.10 32 140.59 even 6 inner
700.2.p.e.451.15 32 7.3 odd 6 inner
700.2.p.e.551.2 32 20.19 odd 2 inner
700.2.p.e.551.7 32 1.1 even 1 trivial
700.2.p.e.551.10 32 5.4 even 2 inner
700.2.p.e.551.15 32 4.3 odd 2 inner
980.2.c.d.979.5 32 35.2 odd 12
980.2.c.d.979.6 32 35.12 even 12
980.2.c.d.979.7 32 140.23 even 12
980.2.c.d.979.8 32 140.103 odd 12
980.2.c.d.979.25 32 140.47 odd 12
980.2.c.d.979.26 32 140.107 even 12
980.2.c.d.979.27 32 35.33 even 12
980.2.c.d.979.28 32 35.23 odd 12
980.2.s.e.19.2 32 35.13 even 4
980.2.s.e.19.7 32 140.83 odd 4
980.2.s.e.19.10 32 140.27 odd 4
980.2.s.e.19.15 32 35.27 even 4
980.2.s.e.619.2 32 140.67 even 12
980.2.s.e.619.7 32 35.32 odd 12
980.2.s.e.619.10 32 35.18 odd 12
980.2.s.e.619.15 32 140.123 even 12