L(s) = 1 | + (−0.620 − 1.27i)2-s + (0.573 + 0.331i)3-s + (−1.23 + 1.57i)4-s + (0.0650 − 0.934i)6-s + (−2.03 + 1.68i)7-s + (2.76 + 0.585i)8-s + (−1.28 − 2.21i)9-s + (−3.12 − 1.80i)11-s + (−1.22 + 0.496i)12-s + 5.83·13-s + (3.40 + 1.54i)14-s + (−0.971 − 3.88i)16-s + (0.684 − 1.18i)17-s + (−2.02 + 3.00i)18-s + (−2.04 − 3.54i)19-s + ⋯ |
L(s) = 1 | + (−0.438 − 0.898i)2-s + (0.331 + 0.191i)3-s + (−0.615 + 0.788i)4-s + (0.0265 − 0.381i)6-s + (−0.770 + 0.637i)7-s + (0.978 + 0.207i)8-s + (−0.426 − 0.739i)9-s + (−0.943 − 0.544i)11-s + (−0.354 + 0.143i)12-s + 1.61·13-s + (0.911 + 0.412i)14-s + (−0.242 − 0.970i)16-s + (0.165 − 0.287i)17-s + (−0.477 + 0.707i)18-s + (−0.469 − 0.813i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.738 + 0.673i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.738 + 0.673i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.285729 - 0.737475i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.285729 - 0.737475i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.620 + 1.27i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (2.03 - 1.68i)T \) |
good | 3 | \( 1 + (-0.573 - 0.331i)T + (1.5 + 2.59i)T^{2} \) |
| 11 | \( 1 + (3.12 + 1.80i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 5.83T + 13T^{2} \) |
| 17 | \( 1 + (-0.684 + 1.18i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (2.04 + 3.54i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (1.62 + 2.81i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 5.19T + 29T^{2} \) |
| 31 | \( 1 + (-4.43 + 7.67i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-9.34 + 5.39i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 0.832iT - 41T^{2} \) |
| 43 | \( 1 + 3.10T + 43T^{2} \) |
| 47 | \( 1 + (5.97 - 3.44i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (6.42 + 3.70i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-3.73 + 6.47i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.28 + 0.742i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.26 + 2.19i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 3.52iT - 71T^{2} \) |
| 73 | \( 1 + (2.58 - 4.47i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (9.82 - 5.67i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 6.49iT - 83T^{2} \) |
| 89 | \( 1 + (8.13 - 4.69i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 0.343T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.968106652607310298697819688357, −9.344123424437625998849397204821, −8.574888188759009550894524100691, −8.011508001712259674764775494879, −6.49010927264666948406840380177, −5.65013881125378594423071659042, −4.14041216721309526865843081583, −3.22935961226930815207683154368, −2.44178935386521456764638294788, −0.47115492514589251852561660454,
1.55388527622813467851299932056, 3.29165165744332642723050566868, 4.49379686767415125941674438980, 5.68981677399078270175759229384, 6.39712973245534738703483324314, 7.46715655163999318036708260363, 8.097128222365775733343409713842, 8.785832420454092609994871072873, 9.961062148349370251789283395818, 10.42890295161667587150906133402