L(s) = 1 | + (−0.620 − 1.27i)2-s + (0.573 + 0.331i)3-s + (−1.23 + 1.57i)4-s + (0.0650 − 0.934i)6-s + (−2.03 + 1.68i)7-s + (2.76 + 0.585i)8-s + (−1.28 − 2.21i)9-s + (−3.12 − 1.80i)11-s + (−1.22 + 0.496i)12-s + 5.83·13-s + (3.40 + 1.54i)14-s + (−0.971 − 3.88i)16-s + (0.684 − 1.18i)17-s + (−2.02 + 3.00i)18-s + (−2.04 − 3.54i)19-s + ⋯ |
L(s) = 1 | + (−0.438 − 0.898i)2-s + (0.331 + 0.191i)3-s + (−0.615 + 0.788i)4-s + (0.0265 − 0.381i)6-s + (−0.770 + 0.637i)7-s + (0.978 + 0.207i)8-s + (−0.426 − 0.739i)9-s + (−0.943 − 0.544i)11-s + (−0.354 + 0.143i)12-s + 1.61·13-s + (0.911 + 0.412i)14-s + (−0.242 − 0.970i)16-s + (0.165 − 0.287i)17-s + (−0.477 + 0.707i)18-s + (−0.469 − 0.813i)19-s + ⋯ |
Λ(s)=(=(700s/2ΓC(s)L(s)(−0.738+0.673i)Λ(2−s)
Λ(s)=(=(700s/2ΓC(s+1/2)L(s)(−0.738+0.673i)Λ(1−s)
Degree: |
2 |
Conductor: |
700
= 22⋅52⋅7
|
Sign: |
−0.738+0.673i
|
Analytic conductor: |
5.58952 |
Root analytic conductor: |
2.36421 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ700(199,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 700, ( :1/2), −0.738+0.673i)
|
Particular Values
L(1) |
≈ |
0.285729−0.737475i |
L(21) |
≈ |
0.285729−0.737475i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.620+1.27i)T |
| 5 | 1 |
| 7 | 1+(2.03−1.68i)T |
good | 3 | 1+(−0.573−0.331i)T+(1.5+2.59i)T2 |
| 11 | 1+(3.12+1.80i)T+(5.5+9.52i)T2 |
| 13 | 1−5.83T+13T2 |
| 17 | 1+(−0.684+1.18i)T+(−8.5−14.7i)T2 |
| 19 | 1+(2.04+3.54i)T+(−9.5+16.4i)T2 |
| 23 | 1+(1.62+2.81i)T+(−11.5+19.9i)T2 |
| 29 | 1+5.19T+29T2 |
| 31 | 1+(−4.43+7.67i)T+(−15.5−26.8i)T2 |
| 37 | 1+(−9.34+5.39i)T+(18.5−32.0i)T2 |
| 41 | 1+0.832iT−41T2 |
| 43 | 1+3.10T+43T2 |
| 47 | 1+(5.97−3.44i)T+(23.5−40.7i)T2 |
| 53 | 1+(6.42+3.70i)T+(26.5+45.8i)T2 |
| 59 | 1+(−3.73+6.47i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−1.28+0.742i)T+(30.5−52.8i)T2 |
| 67 | 1+(−1.26+2.19i)T+(−33.5−58.0i)T2 |
| 71 | 1−3.52iT−71T2 |
| 73 | 1+(2.58−4.47i)T+(−36.5−63.2i)T2 |
| 79 | 1+(9.82−5.67i)T+(39.5−68.4i)T2 |
| 83 | 1−6.49iT−83T2 |
| 89 | 1+(8.13−4.69i)T+(44.5−77.0i)T2 |
| 97 | 1−0.343T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.968106652607310298697819688357, −9.344123424437625998849397204821, −8.574888188759009550894524100691, −8.011508001712259674764775494879, −6.49010927264666948406840380177, −5.65013881125378594423071659042, −4.14041216721309526865843081583, −3.22935961226930815207683154368, −2.44178935386521456764638294788, −0.47115492514589251852561660454,
1.55388527622813467851299932056, 3.29165165744332642723050566868, 4.49379686767415125941674438980, 5.68981677399078270175759229384, 6.39712973245534738703483324314, 7.46715655163999318036708260363, 8.097128222365775733343409713842, 8.785832420454092609994871072873, 9.961062148349370251789283395818, 10.42890295161667587150906133402