Properties

Label 700.2.t.c.199.7
Level $700$
Weight $2$
Character 700.199
Analytic conductor $5.590$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [700,2,Mod(199,700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(700, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("700.199");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 700.t (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.58952814149\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 199.7
Character \(\chi\) \(=\) 700.199
Dual form 700.2.t.c.299.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.620297 - 1.27092i) q^{2} +(0.573616 + 0.331177i) q^{3} +(-1.23046 + 1.57669i) q^{4} +(0.0650866 - 0.934447i) q^{6} +(-2.03775 + 1.68748i) q^{7} +(2.76710 + 0.585797i) q^{8} +(-1.28064 - 2.21814i) q^{9} +(-3.12892 - 1.80648i) q^{11} +(-1.22798 + 0.496915i) q^{12} +5.83027 q^{13} +(3.40866 + 1.54307i) q^{14} +(-0.971925 - 3.88012i) q^{16} +(0.684063 - 1.18483i) q^{17} +(-2.02469 + 3.00350i) q^{18} +(-2.04788 - 3.54704i) q^{19} +(-1.72774 + 0.293111i) q^{21} +(-0.355029 + 5.09715i) q^{22} +(-1.62259 - 2.81042i) q^{23} +(1.39325 + 1.25242i) q^{24} +(-3.61650 - 7.40979i) q^{26} -3.68354i q^{27} +(-0.153273 - 5.28928i) q^{28} -5.19327 q^{29} +(4.43405 - 7.67999i) q^{31} +(-4.32843 + 3.64207i) q^{32} +(-1.19653 - 2.07245i) q^{33} +(-1.93014 - 0.134439i) q^{34} +(5.07311 + 0.710155i) q^{36} +(9.34942 - 5.39789i) q^{37} +(-3.23770 + 4.80291i) q^{38} +(3.34434 + 1.93085i) q^{39} -0.832730i q^{41} +(1.44423 + 2.01400i) q^{42} -3.10642 q^{43} +(6.69828 - 2.71054i) q^{44} +(-2.56532 + 3.80548i) q^{46} +(-5.97212 + 3.44801i) q^{47} +(0.727497 - 2.54758i) q^{48} +(1.30481 - 6.87732i) q^{49} +(0.784778 - 0.453092i) q^{51} +(-7.17393 + 9.19255i) q^{52} +(-6.42376 - 3.70876i) q^{53} +(-4.68148 + 2.28489i) q^{54} +(-6.62717 + 3.47572i) q^{56} -2.71285i q^{57} +(3.22137 + 6.60021i) q^{58} +(3.73928 - 6.47663i) q^{59} +(1.28652 - 0.742772i) q^{61} +(-12.5111 - 0.871427i) q^{62} +(6.35269 + 2.35894i) q^{63} +(7.31368 + 3.24192i) q^{64} +(-1.89171 + 2.80623i) q^{66} +(1.26880 - 2.19763i) q^{67} +(1.02640 + 2.53645i) q^{68} -2.14947i q^{69} +3.52502i q^{71} +(-2.24429 - 6.88801i) q^{72} +(-2.58492 + 4.47721i) q^{73} +(-12.6597 - 8.53405i) q^{74} +(8.11244 + 1.13561i) q^{76} +(9.42434 - 1.59884i) q^{77} +(0.379472 - 5.44808i) q^{78} +(-9.82082 + 5.67005i) q^{79} +(-2.62202 + 4.54148i) q^{81} +(-1.05833 + 0.516540i) q^{82} +6.49145i q^{83} +(1.66377 - 3.08478i) q^{84} +(1.92690 + 3.94800i) q^{86} +(-2.97894 - 1.71989i) q^{87} +(-7.59979 - 6.83162i) q^{88} +(-8.13303 + 4.69560i) q^{89} +(-11.8806 + 9.83847i) q^{91} +(6.42771 + 0.899777i) q^{92} +(5.08688 - 2.93691i) q^{93} +(8.08662 + 5.45128i) q^{94} +(-3.68903 + 0.655668i) q^{96} +0.343189 q^{97} +(-9.54987 + 2.60767i) q^{98} +9.25383i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 2 q^{4} + 16 q^{9} - 14 q^{12} - 8 q^{13} - 2 q^{14} - 14 q^{16} + 54 q^{18} - 12 q^{21} - 36 q^{24} + 30 q^{26} + 32 q^{28} + 40 q^{29} + 60 q^{32} - 24 q^{33} + 60 q^{36} - 60 q^{37} - 46 q^{38}+ \cdots - 124 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/700\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(477\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.620297 1.27092i −0.438616 0.898674i
\(3\) 0.573616 + 0.331177i 0.331177 + 0.191205i 0.656364 0.754445i \(-0.272094\pi\)
−0.325186 + 0.945650i \(0.605427\pi\)
\(4\) −1.23046 + 1.57669i −0.615231 + 0.788347i
\(5\) 0 0
\(6\) 0.0650866 0.934447i 0.0265715 0.381486i
\(7\) −2.03775 + 1.68748i −0.770195 + 0.637808i
\(8\) 2.76710 + 0.585797i 0.978318 + 0.207111i
\(9\) −1.28064 2.21814i −0.426881 0.739380i
\(10\) 0 0
\(11\) −3.12892 1.80648i −0.943404 0.544674i −0.0523781 0.998627i \(-0.516680\pi\)
−0.891026 + 0.453953i \(0.850013\pi\)
\(12\) −1.22798 + 0.496915i −0.354487 + 0.143447i
\(13\) 5.83027 1.61703 0.808513 0.588478i \(-0.200273\pi\)
0.808513 + 0.588478i \(0.200273\pi\)
\(14\) 3.40866 + 1.54307i 0.911002 + 0.412402i
\(15\) 0 0
\(16\) −0.971925 3.88012i −0.242981 0.970031i
\(17\) 0.684063 1.18483i 0.165910 0.287364i −0.771068 0.636752i \(-0.780277\pi\)
0.936978 + 0.349389i \(0.113611\pi\)
\(18\) −2.02469 + 3.00350i −0.477224 + 0.707931i
\(19\) −2.04788 3.54704i −0.469817 0.813747i 0.529588 0.848255i \(-0.322347\pi\)
−0.999404 + 0.0345086i \(0.989013\pi\)
\(20\) 0 0
\(21\) −1.72774 + 0.293111i −0.377024 + 0.0639622i
\(22\) −0.355029 + 5.09715i −0.0756925 + 1.08672i
\(23\) −1.62259 2.81042i −0.338334 0.586012i 0.645785 0.763519i \(-0.276530\pi\)
−0.984120 + 0.177507i \(0.943197\pi\)
\(24\) 1.39325 + 1.25242i 0.284396 + 0.255650i
\(25\) 0 0
\(26\) −3.61650 7.40979i −0.709254 1.45318i
\(27\) 3.68354i 0.708898i
\(28\) −0.153273 5.28928i −0.0289658 0.999580i
\(29\) −5.19327 −0.964365 −0.482183 0.876071i \(-0.660156\pi\)
−0.482183 + 0.876071i \(0.660156\pi\)
\(30\) 0 0
\(31\) 4.43405 7.67999i 0.796378 1.37937i −0.125582 0.992083i \(-0.540080\pi\)
0.921960 0.387284i \(-0.126587\pi\)
\(32\) −4.32843 + 3.64207i −0.765166 + 0.643833i
\(33\) −1.19653 2.07245i −0.208289 0.360768i
\(34\) −1.93014 0.134439i −0.331017 0.0230562i
\(35\) 0 0
\(36\) 5.07311 + 0.710155i 0.845518 + 0.118359i
\(37\) 9.34942 5.39789i 1.53704 0.887408i 0.538026 0.842928i \(-0.319170\pi\)
0.999010 0.0444796i \(-0.0141630\pi\)
\(38\) −3.23770 + 4.80291i −0.525224 + 0.779135i
\(39\) 3.34434 + 1.93085i 0.535522 + 0.309184i
\(40\) 0 0
\(41\) 0.832730i 0.130051i −0.997884 0.0650253i \(-0.979287\pi\)
0.997884 0.0650253i \(-0.0207128\pi\)
\(42\) 1.44423 + 2.01400i 0.222850 + 0.310767i
\(43\) −3.10642 −0.473725 −0.236862 0.971543i \(-0.576119\pi\)
−0.236862 + 0.971543i \(0.576119\pi\)
\(44\) 6.69828 2.71054i 1.00980 0.408629i
\(45\) 0 0
\(46\) −2.56532 + 3.80548i −0.378235 + 0.561087i
\(47\) −5.97212 + 3.44801i −0.871124 + 0.502943i −0.867721 0.497051i \(-0.834416\pi\)
−0.00340208 + 0.999994i \(0.501083\pi\)
\(48\) 0.727497 2.54758i 0.105005 0.367712i
\(49\) 1.30481 6.87732i 0.186402 0.982474i
\(50\) 0 0
\(51\) 0.784778 0.453092i 0.109891 0.0634456i
\(52\) −7.17393 + 9.19255i −0.994845 + 1.27478i
\(53\) −6.42376 3.70876i −0.882371 0.509437i −0.0109318 0.999940i \(-0.503480\pi\)
−0.871440 + 0.490503i \(0.836813\pi\)
\(54\) −4.68148 + 2.28489i −0.637069 + 0.310934i
\(55\) 0 0
\(56\) −6.62717 + 3.47572i −0.885592 + 0.464463i
\(57\) 2.71285i 0.359326i
\(58\) 3.22137 + 6.60021i 0.422986 + 0.866650i
\(59\) 3.73928 6.47663i 0.486813 0.843185i −0.513072 0.858346i \(-0.671493\pi\)
0.999885 + 0.0151606i \(0.00482595\pi\)
\(60\) 0 0
\(61\) 1.28652 0.742772i 0.164722 0.0951022i −0.415373 0.909651i \(-0.636349\pi\)
0.580095 + 0.814549i \(0.303016\pi\)
\(62\) −12.5111 0.871427i −1.58891 0.110671i
\(63\) 6.35269 + 2.35894i 0.800364 + 0.297199i
\(64\) 7.31368 + 3.24192i 0.914210 + 0.405240i
\(65\) 0 0
\(66\) −1.89171 + 2.80623i −0.232854 + 0.345423i
\(67\) 1.26880 2.19763i 0.155009 0.268484i −0.778053 0.628198i \(-0.783793\pi\)
0.933062 + 0.359715i \(0.117126\pi\)
\(68\) 1.02640 + 2.53645i 0.124470 + 0.307589i
\(69\) 2.14947i 0.258765i
\(70\) 0 0
\(71\) 3.52502i 0.418342i 0.977879 + 0.209171i \(0.0670766\pi\)
−0.977879 + 0.209171i \(0.932923\pi\)
\(72\) −2.24429 6.88801i −0.264492 0.811760i
\(73\) −2.58492 + 4.47721i −0.302542 + 0.524018i −0.976711 0.214559i \(-0.931169\pi\)
0.674169 + 0.738577i \(0.264502\pi\)
\(74\) −12.6597 8.53405i −1.47166 0.992063i
\(75\) 0 0
\(76\) 8.11244 + 1.13561i 0.930561 + 0.130264i
\(77\) 9.42434 1.59884i 1.07400 0.182205i
\(78\) 0.379472 5.44808i 0.0429668 0.616873i
\(79\) −9.82082 + 5.67005i −1.10493 + 0.637931i −0.937511 0.347955i \(-0.886876\pi\)
−0.167417 + 0.985886i \(0.553543\pi\)
\(80\) 0 0
\(81\) −2.62202 + 4.54148i −0.291336 + 0.504609i
\(82\) −1.05833 + 0.516540i −0.116873 + 0.0570423i
\(83\) 6.49145i 0.712529i 0.934385 + 0.356264i \(0.115950\pi\)
−0.934385 + 0.356264i \(0.884050\pi\)
\(84\) 1.66377 3.08478i 0.181532 0.336577i
\(85\) 0 0
\(86\) 1.92690 + 3.94800i 0.207783 + 0.425724i
\(87\) −2.97894 1.71989i −0.319376 0.184392i
\(88\) −7.59979 6.83162i −0.810141 0.728253i
\(89\) −8.13303 + 4.69560i −0.862099 + 0.497733i −0.864715 0.502264i \(-0.832501\pi\)
0.00261566 + 0.999997i \(0.499167\pi\)
\(90\) 0 0
\(91\) −11.8806 + 9.83847i −1.24543 + 1.03135i
\(92\) 6.42771 + 0.899777i 0.670135 + 0.0938083i
\(93\) 5.08688 2.93691i 0.527485 0.304544i
\(94\) 8.08662 + 5.45128i 0.834071 + 0.562257i
\(95\) 0 0
\(96\) −3.68903 + 0.655668i −0.376510 + 0.0669189i
\(97\) 0.343189 0.0348455 0.0174228 0.999848i \(-0.494454\pi\)
0.0174228 + 0.999848i \(0.494454\pi\)
\(98\) −9.54987 + 2.60767i −0.964683 + 0.263415i
\(99\) 9.25383i 0.930045i
\(100\) 0 0
\(101\) 3.92859 + 2.26817i 0.390910 + 0.225692i 0.682554 0.730835i \(-0.260869\pi\)
−0.291645 + 0.956527i \(0.594202\pi\)
\(102\) −1.06264 0.716337i −0.105217 0.0709279i
\(103\) 5.31577 3.06906i 0.523778 0.302404i −0.214701 0.976680i \(-0.568878\pi\)
0.738479 + 0.674276i \(0.235544\pi\)
\(104\) 16.1329 + 3.41536i 1.58196 + 0.334903i
\(105\) 0 0
\(106\) −0.728886 + 10.4646i −0.0707957 + 1.01641i
\(107\) 3.83398 + 6.64066i 0.370645 + 0.641976i 0.989665 0.143399i \(-0.0458032\pi\)
−0.619020 + 0.785375i \(0.712470\pi\)
\(108\) 5.80782 + 4.53246i 0.558858 + 0.436136i
\(109\) 0.647616 1.12170i 0.0620304 0.107440i −0.833342 0.552757i \(-0.813576\pi\)
0.895373 + 0.445317i \(0.146909\pi\)
\(110\) 0 0
\(111\) 7.15064 0.678709
\(112\) 8.52817 + 6.26660i 0.805837 + 0.592138i
\(113\) 7.10591i 0.668468i −0.942490 0.334234i \(-0.891522\pi\)
0.942490 0.334234i \(-0.108478\pi\)
\(114\) −3.44781 + 1.68277i −0.322917 + 0.157606i
\(115\) 0 0
\(116\) 6.39012 8.18819i 0.593308 0.760254i
\(117\) −7.46649 12.9323i −0.690278 1.19560i
\(118\) −10.5507 0.734884i −0.971273 0.0676516i
\(119\) 0.605436 + 3.56873i 0.0555002 + 0.327145i
\(120\) 0 0
\(121\) 1.02675 + 1.77837i 0.0933405 + 0.161670i
\(122\) −1.74203 1.17432i −0.157716 0.106318i
\(123\) 0.275781 0.477667i 0.0248664 0.0430698i
\(124\) 6.65307 + 16.4411i 0.597463 + 1.47645i
\(125\) 0 0
\(126\) −0.942541 9.53699i −0.0839682 0.849623i
\(127\) 17.0178 1.51008 0.755041 0.655677i \(-0.227617\pi\)
0.755041 + 0.655677i \(0.227617\pi\)
\(128\) −0.416448 11.3060i −0.0368091 0.999322i
\(129\) −1.78189 1.02878i −0.156887 0.0905787i
\(130\) 0 0
\(131\) 0.603066 + 1.04454i 0.0526901 + 0.0912619i 0.891167 0.453674i \(-0.149887\pi\)
−0.838477 + 0.544936i \(0.816554\pi\)
\(132\) 4.73991 + 0.663512i 0.412556 + 0.0577513i
\(133\) 10.1586 + 3.77220i 0.880865 + 0.327091i
\(134\) −3.58005 0.249359i −0.309269 0.0215414i
\(135\) 0 0
\(136\) 2.58694 2.87782i 0.221828 0.246771i
\(137\) −1.85754 1.07245i −0.158701 0.0916258i 0.418547 0.908195i \(-0.362540\pi\)
−0.577247 + 0.816570i \(0.695873\pi\)
\(138\) −2.73179 + 1.33331i −0.232546 + 0.113499i
\(139\) −3.39555 −0.288007 −0.144004 0.989577i \(-0.545998\pi\)
−0.144004 + 0.989577i \(0.545998\pi\)
\(140\) 0 0
\(141\) −4.56761 −0.384662
\(142\) 4.48000 2.18656i 0.375954 0.183492i
\(143\) −18.2424 10.5323i −1.52551 0.880753i
\(144\) −7.36197 + 7.12492i −0.613497 + 0.593743i
\(145\) 0 0
\(146\) 7.29359 + 0.508017i 0.603622 + 0.0420438i
\(147\) 3.02607 3.51281i 0.249586 0.289732i
\(148\) −2.99329 + 21.3831i −0.246047 + 1.75768i
\(149\) −9.54319 16.5293i −0.781808 1.35413i −0.930887 0.365307i \(-0.880964\pi\)
0.149079 0.988825i \(-0.452369\pi\)
\(150\) 0 0
\(151\) 8.31900 + 4.80298i 0.676990 + 0.390861i 0.798720 0.601703i \(-0.205511\pi\)
−0.121730 + 0.992563i \(0.538844\pi\)
\(152\) −3.58885 11.0147i −0.291095 0.893407i
\(153\) −3.50416 −0.283295
\(154\) −7.87789 10.9858i −0.634818 0.885261i
\(155\) 0 0
\(156\) −7.15944 + 2.89715i −0.573214 + 0.231958i
\(157\) −8.23118 + 14.2568i −0.656919 + 1.13782i 0.324490 + 0.945889i \(0.394807\pi\)
−0.981409 + 0.191928i \(0.938526\pi\)
\(158\) 13.2980 + 8.96433i 1.05793 + 0.713164i
\(159\) −2.45651 4.25481i −0.194814 0.337428i
\(160\) 0 0
\(161\) 8.04896 + 2.98881i 0.634347 + 0.235552i
\(162\) 7.39828 + 0.515309i 0.581264 + 0.0404865i
\(163\) 3.57806 + 6.19738i 0.280255 + 0.485416i 0.971447 0.237255i \(-0.0762476\pi\)
−0.691192 + 0.722671i \(0.742914\pi\)
\(164\) 1.31296 + 1.02464i 0.102525 + 0.0800112i
\(165\) 0 0
\(166\) 8.25009 4.02663i 0.640331 0.312527i
\(167\) 13.7127i 1.06112i −0.847646 0.530562i \(-0.821981\pi\)
0.847646 0.530562i \(-0.178019\pi\)
\(168\) −4.95253 0.201036i −0.382096 0.0155103i
\(169\) 20.9920 1.61477
\(170\) 0 0
\(171\) −5.24522 + 9.08498i −0.401112 + 0.694746i
\(172\) 3.82233 4.89787i 0.291450 0.373459i
\(173\) −1.96219 3.39862i −0.149183 0.258392i 0.781743 0.623601i \(-0.214331\pi\)
−0.930926 + 0.365209i \(0.880998\pi\)
\(174\) −0.338012 + 4.85283i −0.0256246 + 0.367892i
\(175\) 0 0
\(176\) −3.96830 + 13.8963i −0.299122 + 1.04748i
\(177\) 4.28982 2.47673i 0.322443 0.186162i
\(178\) 11.0126 + 7.42373i 0.825431 + 0.556432i
\(179\) 17.8002 + 10.2769i 1.33045 + 0.768134i 0.985368 0.170440i \(-0.0545188\pi\)
0.345079 + 0.938574i \(0.387852\pi\)
\(180\) 0 0
\(181\) 13.0603i 0.970762i −0.874303 0.485381i \(-0.838681\pi\)
0.874303 0.485381i \(-0.161319\pi\)
\(182\) 19.8734 + 8.99649i 1.47311 + 0.666864i
\(183\) 0.983957 0.0727362
\(184\) −2.84355 8.72722i −0.209629 0.643379i
\(185\) 0 0
\(186\) −6.88795 4.64325i −0.505049 0.340459i
\(187\) −4.28075 + 2.47149i −0.313039 + 0.180733i
\(188\) 1.91202 13.6588i 0.139449 0.996174i
\(189\) 6.21591 + 7.50612i 0.452141 + 0.545990i
\(190\) 0 0
\(191\) 10.8038 6.23755i 0.781733 0.451334i −0.0553113 0.998469i \(-0.517615\pi\)
0.837044 + 0.547136i \(0.184282\pi\)
\(192\) 3.12160 + 4.28174i 0.225282 + 0.309008i
\(193\) 16.5103 + 9.53225i 1.18844 + 0.686147i 0.957952 0.286928i \(-0.0926341\pi\)
0.230489 + 0.973075i \(0.425967\pi\)
\(194\) −0.212879 0.436165i −0.0152838 0.0313148i
\(195\) 0 0
\(196\) 9.23790 + 10.5196i 0.659850 + 0.751397i
\(197\) 1.93188i 0.137641i 0.997629 + 0.0688203i \(0.0219235\pi\)
−0.997629 + 0.0688203i \(0.978076\pi\)
\(198\) 11.7609 5.74013i 0.835807 0.407933i
\(199\) 10.2823 17.8094i 0.728892 1.26248i −0.228460 0.973553i \(-0.573369\pi\)
0.957352 0.288924i \(-0.0932976\pi\)
\(200\) 0 0
\(201\) 1.45561 0.840398i 0.102671 0.0592771i
\(202\) 0.445766 6.39986i 0.0313640 0.450293i
\(203\) 10.5826 8.76354i 0.742750 0.615080i
\(204\) −0.251253 + 1.79487i −0.0175912 + 0.125666i
\(205\) 0 0
\(206\) −7.19788 4.85217i −0.501500 0.338067i
\(207\) −4.15593 + 7.19828i −0.288857 + 0.500315i
\(208\) −5.66658 22.6222i −0.392907 1.56857i
\(209\) 14.7979i 1.02359i
\(210\) 0 0
\(211\) 9.98398i 0.687326i 0.939093 + 0.343663i \(0.111668\pi\)
−0.939093 + 0.343663i \(0.888332\pi\)
\(212\) 13.7518 5.56481i 0.944476 0.382193i
\(213\) −1.16741 + 2.02200i −0.0799893 + 0.138545i
\(214\) 6.06151 8.99186i 0.414357 0.614671i
\(215\) 0 0
\(216\) 2.15781 10.1927i 0.146820 0.693528i
\(217\) 3.92439 + 23.1322i 0.266405 + 1.57032i
\(218\) −1.82731 0.127277i −0.123761 0.00862026i
\(219\) −2.96550 + 1.71213i −0.200390 + 0.115695i
\(220\) 0 0
\(221\) 3.98827 6.90789i 0.268280 0.464675i
\(222\) −4.43552 9.08787i −0.297693 0.609938i
\(223\) 16.8179i 1.12621i 0.826384 + 0.563106i \(0.190394\pi\)
−0.826384 + 0.563106i \(0.809606\pi\)
\(224\) 2.67433 14.7258i 0.178686 0.983906i
\(225\) 0 0
\(226\) −9.03103 + 4.40778i −0.600735 + 0.293201i
\(227\) 17.1766 + 9.91692i 1.14005 + 0.658209i 0.946443 0.322870i \(-0.104648\pi\)
0.193608 + 0.981079i \(0.437981\pi\)
\(228\) 4.27733 + 3.33806i 0.283273 + 0.221069i
\(229\) −12.0664 + 6.96655i −0.797371 + 0.460363i −0.842551 0.538616i \(-0.818947\pi\)
0.0451798 + 0.998979i \(0.485614\pi\)
\(230\) 0 0
\(231\) 5.93545 + 2.20401i 0.390524 + 0.145013i
\(232\) −14.3703 3.04220i −0.943455 0.199730i
\(233\) −8.85568 + 5.11283i −0.580155 + 0.334953i −0.761195 0.648523i \(-0.775387\pi\)
0.181040 + 0.983476i \(0.442054\pi\)
\(234\) −11.8045 + 17.5112i −0.771684 + 1.14474i
\(235\) 0 0
\(236\) 5.61061 + 13.8649i 0.365220 + 0.902531i
\(237\) −7.51117 −0.487903
\(238\) 4.16001 2.98313i 0.269653 0.193368i
\(239\) 17.0835i 1.10504i −0.833501 0.552518i \(-0.813667\pi\)
0.833501 0.552518i \(-0.186333\pi\)
\(240\) 0 0
\(241\) −16.0074 9.24185i −1.03112 0.595320i −0.113818 0.993502i \(-0.536308\pi\)
−0.917307 + 0.398182i \(0.869641\pi\)
\(242\) 1.62328 2.40803i 0.104348 0.154794i
\(243\) −12.5782 + 7.26203i −0.806892 + 0.465859i
\(244\) −0.411889 + 2.94240i −0.0263685 + 0.188368i
\(245\) 0 0
\(246\) −0.778142 0.0541995i −0.0496125 0.00345564i
\(247\) −11.9397 20.6802i −0.759706 1.31585i
\(248\) 16.7684 18.6539i 1.06479 1.18452i
\(249\) −2.14982 + 3.72360i −0.136239 + 0.235973i
\(250\) 0 0
\(251\) −16.5313 −1.04344 −0.521722 0.853116i \(-0.674710\pi\)
−0.521722 + 0.853116i \(0.674710\pi\)
\(252\) −11.5361 + 7.11366i −0.726704 + 0.448119i
\(253\) 11.7247i 0.737128i
\(254\) −10.5561 21.6282i −0.662347 1.35707i
\(255\) 0 0
\(256\) −14.1107 + 7.54238i −0.881920 + 0.471399i
\(257\) −3.09749 5.36502i −0.193216 0.334660i 0.753098 0.657908i \(-0.228559\pi\)
−0.946314 + 0.323248i \(0.895225\pi\)
\(258\) −0.202186 + 2.90279i −0.0125876 + 0.180720i
\(259\) −9.94290 + 26.7765i −0.617822 + 1.66381i
\(260\) 0 0
\(261\) 6.65072 + 11.5194i 0.411669 + 0.713032i
\(262\) 0.953445 1.41437i 0.0589040 0.0873802i
\(263\) 10.5768 18.3196i 0.652194 1.12963i −0.330396 0.943842i \(-0.607182\pi\)
0.982589 0.185790i \(-0.0594844\pi\)
\(264\) −2.09688 6.43561i −0.129054 0.396084i
\(265\) 0 0
\(266\) −1.50722 15.2507i −0.0924137 0.935078i
\(267\) −6.22031 −0.380677
\(268\) 1.90378 + 4.70462i 0.116292 + 0.287380i
\(269\) 26.8352 + 15.4933i 1.63617 + 0.944642i 0.982135 + 0.188177i \(0.0602578\pi\)
0.654033 + 0.756466i \(0.273076\pi\)
\(270\) 0 0
\(271\) −11.5190 19.9516i −0.699732 1.21197i −0.968559 0.248783i \(-0.919969\pi\)
0.268827 0.963188i \(-0.413364\pi\)
\(272\) −5.26215 1.50268i −0.319065 0.0911134i
\(273\) −10.0732 + 1.70892i −0.609657 + 0.103428i
\(274\) −0.210770 + 3.02602i −0.0127331 + 0.182809i
\(275\) 0 0
\(276\) 3.38905 + 2.64484i 0.203997 + 0.159201i
\(277\) −6.01508 3.47281i −0.361411 0.208661i 0.308288 0.951293i \(-0.400244\pi\)
−0.669700 + 0.742632i \(0.733577\pi\)
\(278\) 2.10625 + 4.31547i 0.126325 + 0.258825i
\(279\) −22.7137 −1.35984
\(280\) 0 0
\(281\) −4.24391 −0.253170 −0.126585 0.991956i \(-0.540402\pi\)
−0.126585 + 0.991956i \(0.540402\pi\)
\(282\) 2.83327 + 5.80505i 0.168719 + 0.345686i
\(283\) −7.38891 4.26599i −0.439225 0.253587i 0.264044 0.964511i \(-0.414944\pi\)
−0.703269 + 0.710924i \(0.748277\pi\)
\(284\) −5.55787 4.33740i −0.329799 0.257377i
\(285\) 0 0
\(286\) −2.06992 + 29.7178i −0.122397 + 1.75725i
\(287\) 1.40522 + 1.69689i 0.0829473 + 0.100164i
\(288\) 13.6218 + 4.93688i 0.802672 + 0.290909i
\(289\) 7.56412 + 13.1014i 0.444948 + 0.770673i
\(290\) 0 0
\(291\) 0.196859 + 0.113656i 0.0115401 + 0.00666265i
\(292\) −3.87855 9.58467i −0.226975 0.560900i
\(293\) −25.2319 −1.47406 −0.737032 0.675857i \(-0.763773\pi\)
−0.737032 + 0.675857i \(0.763773\pi\)
\(294\) −6.34156 1.66690i −0.369847 0.0972154i
\(295\) 0 0
\(296\) 29.0329 9.45964i 1.68750 0.549831i
\(297\) −6.65425 + 11.5255i −0.386119 + 0.668777i
\(298\) −15.0877 + 22.3817i −0.874010 + 1.29654i
\(299\) −9.46017 16.3855i −0.547096 0.947597i
\(300\) 0 0
\(301\) 6.33009 5.24203i 0.364861 0.302145i
\(302\) 0.943933 13.5520i 0.0543172 0.779832i
\(303\) 1.50234 + 2.60212i 0.0863070 + 0.149488i
\(304\) −11.7726 + 11.3935i −0.675203 + 0.653462i
\(305\) 0 0
\(306\) 2.17362 + 4.45350i 0.124258 + 0.254590i
\(307\) 29.2635i 1.67016i 0.550132 + 0.835078i \(0.314577\pi\)
−0.550132 + 0.835078i \(0.685423\pi\)
\(308\) −9.07541 + 16.8266i −0.517119 + 0.958785i
\(309\) 4.06561 0.231285
\(310\) 0 0
\(311\) 11.3730 19.6987i 0.644906 1.11701i −0.339417 0.940636i \(-0.610230\pi\)
0.984323 0.176374i \(-0.0564369\pi\)
\(312\) 8.12302 + 7.30197i 0.459876 + 0.413392i
\(313\) −3.29240 5.70261i −0.186098 0.322331i 0.757848 0.652431i \(-0.226251\pi\)
−0.943946 + 0.330100i \(0.892917\pi\)
\(314\) 23.2250 + 1.61768i 1.31066 + 0.0912910i
\(315\) 0 0
\(316\) 3.14421 22.4612i 0.176876 1.26354i
\(317\) −12.2298 + 7.06086i −0.686892 + 0.396577i −0.802447 0.596724i \(-0.796469\pi\)
0.115555 + 0.993301i \(0.463135\pi\)
\(318\) −3.88374 + 5.76127i −0.217789 + 0.323076i
\(319\) 16.2493 + 9.38153i 0.909786 + 0.525265i
\(320\) 0 0
\(321\) 5.07891i 0.283477i
\(322\) −1.19421 12.0835i −0.0665509 0.673388i
\(323\) −5.60352 −0.311788
\(324\) −3.93422 9.72224i −0.218568 0.540125i
\(325\) 0 0
\(326\) 5.65690 8.39163i 0.313306 0.464770i
\(327\) 0.742966 0.428952i 0.0410861 0.0237211i
\(328\) 0.487811 2.30425i 0.0269349 0.127231i
\(329\) 6.35122 17.1040i 0.350154 0.942974i
\(330\) 0 0
\(331\) −17.5997 + 10.1612i −0.967368 + 0.558510i −0.898433 0.439111i \(-0.855293\pi\)
−0.0689349 + 0.997621i \(0.521960\pi\)
\(332\) −10.2350 7.98748i −0.561720 0.438370i
\(333\) −23.9466 13.8255i −1.31226 0.757635i
\(334\) −17.4278 + 8.50598i −0.953605 + 0.465426i
\(335\) 0 0
\(336\) 2.81654 + 6.41896i 0.153655 + 0.350183i
\(337\) 15.7704i 0.859067i 0.903051 + 0.429533i \(0.141322\pi\)
−0.903051 + 0.429533i \(0.858678\pi\)
\(338\) −13.0213 26.6792i −0.708266 1.45115i
\(339\) 2.35332 4.07607i 0.127815 0.221381i
\(340\) 0 0
\(341\) −27.7475 + 16.0200i −1.50261 + 0.867534i
\(342\) 14.7999 + 1.03085i 0.800285 + 0.0557418i
\(343\) 8.94647 + 16.2161i 0.483064 + 0.875585i
\(344\) −8.59578 1.81973i −0.463453 0.0981134i
\(345\) 0 0
\(346\) −3.10222 + 4.60194i −0.166776 + 0.247402i
\(347\) −1.52392 + 2.63950i −0.0818082 + 0.141696i −0.904027 0.427476i \(-0.859403\pi\)
0.822218 + 0.569172i \(0.192736\pi\)
\(348\) 6.37722 2.58061i 0.341855 0.138335i
\(349\) 8.40462i 0.449889i 0.974372 + 0.224944i \(0.0722201\pi\)
−0.974372 + 0.224944i \(0.927780\pi\)
\(350\) 0 0
\(351\) 21.4761i 1.14631i
\(352\) 20.1226 3.57649i 1.07254 0.190628i
\(353\) 0.216411 0.374834i 0.0115184 0.0199504i −0.860209 0.509942i \(-0.829667\pi\)
0.871727 + 0.489992i \(0.163000\pi\)
\(354\) −5.80869 3.91570i −0.308728 0.208117i
\(355\) 0 0
\(356\) 2.60385 18.6011i 0.138004 0.985854i
\(357\) −0.834594 + 2.24759i −0.0441714 + 0.118955i
\(358\) 2.01973 28.9973i 0.106746 1.53255i
\(359\) 23.3662 13.4905i 1.23322 0.712002i 0.265522 0.964105i \(-0.414456\pi\)
0.967700 + 0.252103i \(0.0811222\pi\)
\(360\) 0 0
\(361\) 1.11234 1.92663i 0.0585442 0.101402i
\(362\) −16.5985 + 8.10125i −0.872399 + 0.425792i
\(363\) 1.36014i 0.0713888i
\(364\) −0.893621 30.8379i −0.0468385 1.61635i
\(365\) 0 0
\(366\) −0.610346 1.25053i −0.0319033 0.0653661i
\(367\) −18.0317 10.4106i −0.941248 0.543430i −0.0508965 0.998704i \(-0.516208\pi\)
−0.890351 + 0.455274i \(0.849541\pi\)
\(368\) −9.32773 + 9.02738i −0.486241 + 0.470585i
\(369\) −1.84711 + 1.06643i −0.0961568 + 0.0555161i
\(370\) 0 0
\(371\) 19.3485 3.28247i 1.00452 0.170417i
\(372\) −1.62860 + 11.6342i −0.0844392 + 0.603206i
\(373\) 15.2953 8.83072i 0.791958 0.457237i −0.0486931 0.998814i \(-0.515506\pi\)
0.840652 + 0.541576i \(0.182172\pi\)
\(374\) 5.79640 + 3.90742i 0.299725 + 0.202048i
\(375\) 0 0
\(376\) −18.5453 + 6.04253i −0.956400 + 0.311619i
\(377\) −30.2781 −1.55940
\(378\) 5.68395 12.5559i 0.292351 0.645808i
\(379\) 15.0551i 0.773331i −0.922220 0.386665i \(-0.873627\pi\)
0.922220 0.386665i \(-0.126373\pi\)
\(380\) 0 0
\(381\) 9.76166 + 5.63590i 0.500105 + 0.288736i
\(382\) −14.6290 9.86155i −0.748483 0.504561i
\(383\) −26.2843 + 15.1753i −1.34307 + 0.775420i −0.987256 0.159138i \(-0.949129\pi\)
−0.355811 + 0.934558i \(0.615795\pi\)
\(384\) 3.50542 6.62324i 0.178885 0.337991i
\(385\) 0 0
\(386\) 1.87338 26.8961i 0.0953527 1.36898i
\(387\) 3.97822 + 6.89047i 0.202224 + 0.350262i
\(388\) −0.422281 + 0.541104i −0.0214381 + 0.0274704i
\(389\) −3.13909 + 5.43706i −0.159158 + 0.275670i −0.934565 0.355792i \(-0.884211\pi\)
0.775407 + 0.631462i \(0.217545\pi\)
\(390\) 0 0
\(391\) −4.43983 −0.224532
\(392\) 7.63925 18.2659i 0.385841 0.922565i
\(393\) 0.798887i 0.0402985i
\(394\) 2.45526 1.19834i 0.123694 0.0603715i
\(395\) 0 0
\(396\) −14.5905 11.3865i −0.733198 0.572193i
\(397\) −4.86104 8.41956i −0.243968 0.422566i 0.717873 0.696174i \(-0.245116\pi\)
−0.961841 + 0.273609i \(0.911783\pi\)
\(398\) −29.0124 2.02079i −1.45426 0.101293i
\(399\) 4.57789 + 5.52810i 0.229181 + 0.276751i
\(400\) 0 0
\(401\) −3.49372 6.05130i −0.174468 0.302188i 0.765509 0.643425i \(-0.222487\pi\)
−0.939977 + 0.341238i \(0.889154\pi\)
\(402\) −1.97099 1.32867i −0.0983040 0.0662679i
\(403\) 25.8517 44.7764i 1.28776 2.23047i
\(404\) −8.41020 + 3.40329i −0.418423 + 0.169320i
\(405\) 0 0
\(406\) −17.7021 8.01355i −0.878539 0.397706i
\(407\) −39.0048 −1.93339
\(408\) 2.43698 0.794030i 0.120649 0.0393103i
\(409\) −1.94474 1.12280i −0.0961611 0.0555186i 0.451148 0.892449i \(-0.351015\pi\)
−0.547309 + 0.836930i \(0.684348\pi\)
\(410\) 0 0
\(411\) −0.710344 1.23035i −0.0350387 0.0606888i
\(412\) −1.70189 + 12.1577i −0.0838459 + 0.598967i
\(413\) 3.30948 + 19.5077i 0.162849 + 0.959910i
\(414\) 11.7263 + 0.816769i 0.576318 + 0.0401420i
\(415\) 0 0
\(416\) −25.2359 + 21.2342i −1.23729 + 1.04109i
\(417\) −1.94774 1.12453i −0.0953814 0.0550685i
\(418\) 18.8069 9.17907i 0.919873 0.448963i
\(419\) −18.3565 −0.896775 −0.448388 0.893839i \(-0.648002\pi\)
−0.448388 + 0.893839i \(0.648002\pi\)
\(420\) 0 0
\(421\) 2.27310 0.110784 0.0553921 0.998465i \(-0.482359\pi\)
0.0553921 + 0.998465i \(0.482359\pi\)
\(422\) 12.6888 6.19304i 0.617682 0.301472i
\(423\) 15.2963 + 8.83133i 0.743732 + 0.429394i
\(424\) −15.6026 14.0255i −0.757730 0.681140i
\(425\) 0 0
\(426\) 3.29394 + 0.229431i 0.159592 + 0.0111160i
\(427\) −1.36818 + 3.68456i −0.0662110 + 0.178308i
\(428\) −15.1879 2.12606i −0.734133 0.102767i
\(429\) −6.97610 12.0830i −0.336809 0.583371i
\(430\) 0 0
\(431\) 11.1379 + 6.43048i 0.536494 + 0.309745i 0.743657 0.668561i \(-0.233090\pi\)
−0.207163 + 0.978307i \(0.566423\pi\)
\(432\) −14.2926 + 3.58013i −0.687653 + 0.172249i
\(433\) 33.6307 1.61619 0.808094 0.589054i \(-0.200499\pi\)
0.808094 + 0.589054i \(0.200499\pi\)
\(434\) 26.9649 19.3364i 1.29436 0.928179i
\(435\) 0 0
\(436\) 0.971716 + 2.40131i 0.0465368 + 0.115002i
\(437\) −6.64577 + 11.5108i −0.317910 + 0.550637i
\(438\) 4.01547 + 2.70688i 0.191867 + 0.129340i
\(439\) 12.4435 + 21.5528i 0.593896 + 1.02866i 0.993702 + 0.112058i \(0.0357442\pi\)
−0.399806 + 0.916600i \(0.630922\pi\)
\(440\) 0 0
\(441\) −16.9258 + 5.91313i −0.805992 + 0.281578i
\(442\) −11.2533 0.783818i −0.535263 0.0372824i
\(443\) 3.97386 + 6.88293i 0.188804 + 0.327018i 0.944852 0.327498i \(-0.106206\pi\)
−0.756048 + 0.654516i \(0.772872\pi\)
\(444\) −8.79859 + 11.2744i −0.417563 + 0.535058i
\(445\) 0 0
\(446\) 21.3742 10.4321i 1.01210 0.493976i
\(447\) 12.6420i 0.597944i
\(448\) −20.3741 + 5.73550i −0.962586 + 0.270977i
\(449\) −14.3027 −0.674988 −0.337494 0.941328i \(-0.609579\pi\)
−0.337494 + 0.941328i \(0.609579\pi\)
\(450\) 0 0
\(451\) −1.50431 + 2.60554i −0.0708352 + 0.122690i
\(452\) 11.2038 + 8.74356i 0.526985 + 0.411262i
\(453\) 3.18127 + 5.51013i 0.149469 + 0.258888i
\(454\) 1.94898 27.9815i 0.0914702 1.31324i
\(455\) 0 0
\(456\) 1.58918 7.50673i 0.0744202 0.351535i
\(457\) 19.2073 11.0893i 0.898478 0.518737i 0.0217719 0.999763i \(-0.493069\pi\)
0.876706 + 0.481026i \(0.159736\pi\)
\(458\) 16.3387 + 11.0141i 0.763456 + 0.514655i
\(459\) −4.36438 2.51977i −0.203712 0.117613i
\(460\) 0 0
\(461\) 32.8587i 1.53038i 0.643803 + 0.765192i \(0.277356\pi\)
−0.643803 + 0.765192i \(0.722644\pi\)
\(462\) −0.880635 8.91061i −0.0409708 0.414559i
\(463\) −3.31392 −0.154011 −0.0770055 0.997031i \(-0.524536\pi\)
−0.0770055 + 0.997031i \(0.524536\pi\)
\(464\) 5.04746 + 20.1505i 0.234323 + 0.935464i
\(465\) 0 0
\(466\) 11.9911 + 8.08337i 0.555479 + 0.374455i
\(467\) 30.4264 17.5667i 1.40797 0.812890i 0.412775 0.910833i \(-0.364560\pi\)
0.995192 + 0.0979429i \(0.0312263\pi\)
\(468\) 29.5776 + 4.14039i 1.36722 + 0.191390i
\(469\) 1.12297 + 6.61930i 0.0518538 + 0.305651i
\(470\) 0 0
\(471\) −9.44307 + 5.45196i −0.435114 + 0.251213i
\(472\) 14.1410 15.7310i 0.650890 0.724079i
\(473\) 9.71973 + 5.61169i 0.446914 + 0.258026i
\(474\) 4.65916 + 9.54608i 0.214002 + 0.438466i
\(475\) 0 0
\(476\) −6.37176 3.43660i −0.292049 0.157516i
\(477\) 18.9984i 0.869877i
\(478\) −21.7117 + 10.5968i −0.993068 + 0.484687i
\(479\) 11.1633 19.3354i 0.510065 0.883459i −0.489867 0.871797i \(-0.662955\pi\)
0.999932 0.0116615i \(-0.00371206\pi\)
\(480\) 0 0
\(481\) 54.5097 31.4712i 2.48543 1.43496i
\(482\) −1.81631 + 26.0767i −0.0827306 + 1.18776i
\(483\) 3.62719 + 4.38007i 0.165043 + 0.199300i
\(484\) −4.06732 0.569361i −0.184878 0.0258800i
\(485\) 0 0
\(486\) 17.0317 + 11.4812i 0.772572 + 0.520799i
\(487\) −3.59259 + 6.22255i −0.162796 + 0.281971i −0.935870 0.352344i \(-0.885385\pi\)
0.773074 + 0.634315i \(0.218718\pi\)
\(488\) 3.99504 1.30168i 0.180847 0.0589245i
\(489\) 4.73989i 0.214345i
\(490\) 0 0
\(491\) 5.80059i 0.261777i −0.991397 0.130889i \(-0.958217\pi\)
0.991397 0.130889i \(-0.0417830\pi\)
\(492\) 0.413796 + 1.02257i 0.0186554 + 0.0461012i
\(493\) −3.55252 + 6.15314i −0.159997 + 0.277124i
\(494\) −18.8766 + 28.0023i −0.849301 + 1.25988i
\(495\) 0 0
\(496\) −34.1089 9.74027i −1.53153 0.437351i
\(497\) −5.94840 7.18308i −0.266822 0.322205i
\(498\) 6.06591 + 0.422506i 0.271820 + 0.0189329i
\(499\) −34.3466 + 19.8300i −1.53757 + 0.887715i −0.538587 + 0.842570i \(0.681042\pi\)
−0.998980 + 0.0451448i \(0.985625\pi\)
\(500\) 0 0
\(501\) 4.54135 7.86585i 0.202892 0.351420i
\(502\) 10.2543 + 21.0099i 0.457672 + 0.937716i
\(503\) 8.22384i 0.366683i 0.983049 + 0.183341i \(0.0586914\pi\)
−0.983049 + 0.183341i \(0.941309\pi\)
\(504\) 16.1967 + 10.2488i 0.721457 + 0.456518i
\(505\) 0 0
\(506\) 14.9012 7.27283i 0.662438 0.323317i
\(507\) 12.0414 + 6.95209i 0.534776 + 0.308753i
\(508\) −20.9397 + 26.8318i −0.929050 + 1.19047i
\(509\) 28.2081 16.2860i 1.25030 0.721863i 0.279134 0.960252i \(-0.409953\pi\)
0.971170 + 0.238389i \(0.0766194\pi\)
\(510\) 0 0
\(511\) −2.28781 13.4854i −0.101207 0.596560i
\(512\) 18.3386 + 13.2550i 0.810459 + 0.585796i
\(513\) −13.0657 + 7.54347i −0.576864 + 0.333052i
\(514\) −4.89712 + 7.26456i −0.216003 + 0.320426i
\(515\) 0 0
\(516\) 3.81462 1.54363i 0.167929 0.0679544i
\(517\) 24.9150 1.09576
\(518\) 40.1983 3.97280i 1.76621 0.174555i
\(519\) 2.59934i 0.114098i
\(520\) 0 0
\(521\) −4.88783 2.82199i −0.214140 0.123634i 0.389094 0.921198i \(-0.372788\pi\)
−0.603234 + 0.797564i \(0.706121\pi\)
\(522\) 10.5148 15.5980i 0.460219 0.682704i
\(523\) −2.36780 + 1.36705i −0.103537 + 0.0597770i −0.550874 0.834588i \(-0.685706\pi\)
0.447338 + 0.894365i \(0.352372\pi\)
\(524\) −2.38897 0.334418i −0.104363 0.0146091i
\(525\) 0 0
\(526\) −29.8434 2.07867i −1.30123 0.0906342i
\(527\) −6.06633 10.5072i −0.264254 0.457701i
\(528\) −6.87843 + 6.65696i −0.299345 + 0.289707i
\(529\) 6.23437 10.7982i 0.271060 0.469489i
\(530\) 0 0
\(531\) −19.1547 −0.831245
\(532\) −18.4474 + 11.3755i −0.799797 + 0.493191i
\(533\) 4.85504i 0.210295i
\(534\) 3.85844 + 7.90550i 0.166971 + 0.342104i
\(535\) 0 0
\(536\) 4.79828 5.33781i 0.207254 0.230558i
\(537\) 6.80697 + 11.7900i 0.293743 + 0.508777i
\(538\) 3.04491 43.7157i 0.131275 1.88472i
\(539\) −16.5064 + 19.1614i −0.710980 + 0.825341i
\(540\) 0 0
\(541\) −14.1500 24.5085i −0.608355 1.05370i −0.991512 0.130018i \(-0.958497\pi\)
0.383157 0.923683i \(-0.374837\pi\)
\(542\) −18.2116 + 27.0157i −0.782254 + 1.16042i
\(543\) 4.32526 7.49157i 0.185615 0.321494i
\(544\) 1.35431 + 7.61987i 0.0580657 + 0.326699i
\(545\) 0 0
\(546\) 8.42026 + 11.7421i 0.360354 + 0.502517i
\(547\) 20.7596 0.887616 0.443808 0.896122i \(-0.353627\pi\)
0.443808 + 0.896122i \(0.353627\pi\)
\(548\) 3.97656 1.60916i 0.169870 0.0687400i
\(549\) −3.29514 1.90245i −0.140633 0.0811946i
\(550\) 0 0
\(551\) 10.6352 + 18.4207i 0.453075 + 0.784749i
\(552\) 1.25915 5.94779i 0.0535930 0.253155i
\(553\) 10.4442 28.1266i 0.444133 1.19606i
\(554\) −0.682514 + 9.79885i −0.0289973 + 0.416313i
\(555\) 0 0
\(556\) 4.17810 5.35375i 0.177191 0.227049i
\(557\) 16.2445 + 9.37876i 0.688301 + 0.397391i 0.802975 0.596012i \(-0.203249\pi\)
−0.114674 + 0.993403i \(0.536582\pi\)
\(558\) 14.0893 + 28.8673i 0.596446 + 1.22205i
\(559\) −18.1113 −0.766025
\(560\) 0 0
\(561\) −3.27401 −0.138229
\(562\) 2.63248 + 5.39365i 0.111045 + 0.227518i
\(563\) −28.9028 16.6870i −1.21811 0.703274i −0.253594 0.967311i \(-0.581613\pi\)
−0.964513 + 0.264037i \(0.914946\pi\)
\(564\) 5.62027 7.20171i 0.236656 0.303247i
\(565\) 0 0
\(566\) −0.838399 + 12.0369i −0.0352405 + 0.505948i
\(567\) −2.32064 13.6790i −0.0974579 0.574464i
\(568\) −2.06494 + 9.75407i −0.0866431 + 0.409272i
\(569\) 6.51501 + 11.2843i 0.273124 + 0.473064i 0.969660 0.244457i \(-0.0786099\pi\)
−0.696536 + 0.717521i \(0.745277\pi\)
\(570\) 0 0
\(571\) 28.5406 + 16.4779i 1.19439 + 0.689579i 0.959298 0.282395i \(-0.0911290\pi\)
0.235088 + 0.971974i \(0.424462\pi\)
\(572\) 39.0528 15.8032i 1.63288 0.660763i
\(573\) 8.26295 0.345190
\(574\) 1.28496 2.83849i 0.0536331 0.118476i
\(575\) 0 0
\(576\) −2.17519 20.3745i −0.0906330 0.848938i
\(577\) 18.1937 31.5124i 0.757414 1.31188i −0.186751 0.982407i \(-0.559796\pi\)
0.944165 0.329473i \(-0.106871\pi\)
\(578\) 11.9588 17.7402i 0.497422 0.737893i
\(579\) 6.31373 + 10.9357i 0.262390 + 0.454472i
\(580\) 0 0
\(581\) −10.9542 13.2279i −0.454457 0.548786i
\(582\) 0.0223370 0.320692i 0.000925898 0.0132931i
\(583\) 13.3996 + 23.2088i 0.554955 + 0.961210i
\(584\) −9.77547 + 10.8747i −0.404512 + 0.449997i
\(585\) 0 0
\(586\) 15.6513 + 32.0677i 0.646549 + 1.32470i
\(587\) 28.4245i 1.17321i 0.809875 + 0.586603i \(0.199535\pi\)
−0.809875 + 0.586603i \(0.800465\pi\)
\(588\) 1.81516 + 9.09357i 0.0748561 + 0.375013i
\(589\) −36.3217 −1.49661
\(590\) 0 0
\(591\) −0.639794 + 1.10816i −0.0263176 + 0.0455835i
\(592\) −30.0314 31.0306i −1.23428 1.27535i
\(593\) −3.78574 6.55710i −0.155462 0.269268i 0.777765 0.628555i \(-0.216353\pi\)
−0.933227 + 0.359287i \(0.883020\pi\)
\(594\) 18.7756 + 1.30777i 0.770371 + 0.0536583i
\(595\) 0 0
\(596\) 37.8042 + 5.29198i 1.54852 + 0.216768i
\(597\) 11.7962 6.81052i 0.482785 0.278736i
\(598\) −14.9565 + 22.1870i −0.611616 + 0.907292i
\(599\) 41.0937 + 23.7255i 1.67904 + 0.969397i 0.962272 + 0.272090i \(0.0877147\pi\)
0.716772 + 0.697307i \(0.245619\pi\)
\(600\) 0 0
\(601\) 13.3242i 0.543506i −0.962367 0.271753i \(-0.912397\pi\)
0.962367 0.271753i \(-0.0876034\pi\)
\(602\) −10.5887 4.79341i −0.431564 0.195365i
\(603\) −6.49954 −0.264682
\(604\) −17.8090 + 7.20663i −0.724639 + 0.293234i
\(605\) 0 0
\(606\) 2.37519 3.52344i 0.0964854 0.143130i
\(607\) 13.0610 7.54080i 0.530132 0.306072i −0.210938 0.977499i \(-0.567652\pi\)
0.741070 + 0.671428i \(0.234319\pi\)
\(608\) 21.7827 + 7.89460i 0.883405 + 0.320168i
\(609\) 8.97261 1.52221i 0.363588 0.0616829i
\(610\) 0 0
\(611\) −34.8191 + 20.1028i −1.40863 + 0.813272i
\(612\) 4.31174 5.52499i 0.174292 0.223334i
\(613\) −4.50739 2.60234i −0.182052 0.105108i 0.406205 0.913782i \(-0.366852\pi\)
−0.588256 + 0.808675i \(0.700185\pi\)
\(614\) 37.1915 18.1521i 1.50093 0.732558i
\(615\) 0 0
\(616\) 27.0147 + 1.09660i 1.08845 + 0.0441831i
\(617\) 35.7404i 1.43885i −0.694569 0.719426i \(-0.744405\pi\)
0.694569 0.719426i \(-0.255595\pi\)
\(618\) −2.52189 5.16706i −0.101445 0.207850i
\(619\) 19.1219 33.1200i 0.768573 1.33121i −0.169764 0.985485i \(-0.554301\pi\)
0.938337 0.345722i \(-0.112366\pi\)
\(620\) 0 0
\(621\) −10.3523 + 5.97690i −0.415423 + 0.239845i
\(622\) −32.0901 2.23515i −1.28670 0.0896215i
\(623\) 8.64929 23.2928i 0.346526 0.933205i
\(624\) 4.24151 14.8531i 0.169796 0.594599i
\(625\) 0 0
\(626\) −5.20528 + 7.72169i −0.208045 + 0.308621i
\(627\) −4.90071 + 8.48828i −0.195716 + 0.338989i
\(628\) −12.3505 30.5205i −0.492838 1.21790i
\(629\) 14.7700i 0.588918i
\(630\) 0 0
\(631\) 12.0334i 0.479042i −0.970891 0.239521i \(-0.923010\pi\)
0.970891 0.239521i \(-0.0769904\pi\)
\(632\) −30.4967 + 9.93659i −1.21309 + 0.395256i
\(633\) −3.30647 + 5.72697i −0.131420 + 0.227627i
\(634\) 16.5599 + 11.1632i 0.657676 + 0.443347i
\(635\) 0 0
\(636\) 9.73118 + 1.36221i 0.385866 + 0.0540152i
\(637\) 7.60740 40.0966i 0.301416 1.58869i
\(638\) 1.84376 26.4709i 0.0729952 1.04799i
\(639\) 7.81897 4.51429i 0.309314 0.178582i
\(640\) 0 0
\(641\) −11.4676 + 19.8625i −0.452944 + 0.784522i −0.998567 0.0535086i \(-0.982960\pi\)
0.545624 + 0.838030i \(0.316293\pi\)
\(642\) 6.45488 3.15044i 0.254754 0.124338i
\(643\) 1.23955i 0.0488833i −0.999701 0.0244416i \(-0.992219\pi\)
0.999701 0.0244416i \(-0.00778079\pi\)
\(644\) −14.6164 + 9.01312i −0.575966 + 0.355167i
\(645\) 0 0
\(646\) 3.47585 + 7.12162i 0.136756 + 0.280196i
\(647\) 12.2469 + 7.07077i 0.481477 + 0.277981i 0.721032 0.692902i \(-0.243668\pi\)
−0.239555 + 0.970883i \(0.577002\pi\)
\(648\) −9.91579 + 11.0307i −0.389529 + 0.433329i
\(649\) −23.3998 + 13.5099i −0.918523 + 0.530309i
\(650\) 0 0
\(651\) −5.40978 + 14.5687i −0.212026 + 0.570992i
\(652\) −14.1740 1.98414i −0.555098 0.0777049i
\(653\) 14.8017 8.54579i 0.579237 0.334423i −0.181593 0.983374i \(-0.558125\pi\)
0.760830 + 0.648951i \(0.224792\pi\)
\(654\) −1.00602 0.678171i −0.0393386 0.0265186i
\(655\) 0 0
\(656\) −3.23110 + 0.809351i −0.126153 + 0.0315999i
\(657\) 13.2414 0.516598
\(658\) −25.6774 + 2.53770i −1.00101 + 0.0989298i
\(659\) 3.45765i 0.134691i −0.997730 0.0673455i \(-0.978547\pi\)
0.997730 0.0673455i \(-0.0214530\pi\)
\(660\) 0 0
\(661\) 13.1317 + 7.58160i 0.510765 + 0.294890i 0.733148 0.680069i \(-0.238050\pi\)
−0.222383 + 0.974959i \(0.571384\pi\)
\(662\) 23.8311 + 16.0648i 0.926222 + 0.624377i
\(663\) 4.57547 2.64165i 0.177697 0.102593i
\(664\) −3.80267 + 17.9625i −0.147572 + 0.697079i
\(665\) 0 0
\(666\) −2.71715 + 39.0100i −0.105287 + 1.51161i
\(667\) 8.42657 + 14.5952i 0.326278 + 0.565130i
\(668\) 21.6208 + 16.8730i 0.836533 + 0.652836i
\(669\) −5.56972 + 9.64704i −0.215338 + 0.372976i
\(670\) 0 0
\(671\) −5.36721 −0.207199
\(672\) 6.41087 7.56125i 0.247305 0.291682i
\(673\) 11.2116i 0.432175i 0.976374 + 0.216087i \(0.0693296\pi\)
−0.976374 + 0.216087i \(0.930670\pi\)
\(674\) 20.0428 9.78232i 0.772021 0.376801i
\(675\) 0 0
\(676\) −25.8299 + 33.0980i −0.993458 + 1.27300i
\(677\) 1.83818 + 3.18383i 0.0706471 + 0.122364i 0.899185 0.437568i \(-0.144160\pi\)
−0.828538 + 0.559933i \(0.810827\pi\)
\(678\) −6.64010 0.462500i −0.255011 0.0177622i
\(679\) −0.699331 + 0.579125i −0.0268379 + 0.0222248i
\(680\) 0 0
\(681\) 6.56852 + 11.3770i 0.251706 + 0.435968i
\(682\) 37.5719 + 25.3276i 1.43870 + 0.969845i
\(683\) −21.0938 + 36.5356i −0.807133 + 1.39800i 0.107708 + 0.994183i \(0.465649\pi\)
−0.914841 + 0.403814i \(0.867684\pi\)
\(684\) −7.87019 19.4488i −0.300924 0.743645i
\(685\) 0 0
\(686\) 15.0598 21.4290i 0.574986 0.818163i
\(687\) −9.22865 −0.352095
\(688\) 3.01921 + 12.0533i 0.115106 + 0.459528i
\(689\) −37.4523 21.6231i −1.42682 0.823773i
\(690\) 0 0
\(691\) 11.5615 + 20.0251i 0.439820 + 0.761790i 0.997675 0.0681478i \(-0.0217089\pi\)
−0.557855 + 0.829938i \(0.688376\pi\)
\(692\) 7.77298 + 1.08809i 0.295485 + 0.0413631i
\(693\) −15.6157 18.8569i −0.593190 0.716316i
\(694\) 4.29987 + 0.299497i 0.163221 + 0.0113688i
\(695\) 0 0
\(696\) −7.23552 6.50417i −0.274262 0.246540i
\(697\) −0.986645 0.569640i −0.0373718 0.0215766i
\(698\) 10.6816 5.21336i 0.404304 0.197329i
\(699\) −6.77301 −0.256179
\(700\) 0 0
\(701\) 29.3192 1.10737 0.553686 0.832725i \(-0.313221\pi\)
0.553686 + 0.832725i \(0.313221\pi\)
\(702\) −27.2943 + 13.3215i −1.03016 + 0.502789i
\(703\) −38.2931 22.1085i −1.44425 0.833839i
\(704\) −17.0274 23.3557i −0.641746 0.880252i
\(705\) 0 0
\(706\) −0.610622 0.0425314i −0.0229811 0.00160069i
\(707\) −11.8330 + 2.00747i −0.445025 + 0.0754986i
\(708\) −1.37342 + 9.81126i −0.0516163 + 0.368730i
\(709\) 1.67720 + 2.90499i 0.0629884 + 0.109099i 0.895800 0.444458i \(-0.146604\pi\)
−0.832811 + 0.553557i \(0.813270\pi\)
\(710\) 0 0
\(711\) 25.1539 + 14.5226i 0.943346 + 0.544641i
\(712\) −25.2556 + 8.22890i −0.946492 + 0.308391i
\(713\) −28.7786 −1.07777
\(714\) 3.37419 0.333471i 0.126276 0.0124798i
\(715\) 0 0
\(716\) −38.1060 + 15.4200i −1.42409 + 0.576274i
\(717\) 5.65765 9.79934i 0.211289 0.365963i
\(718\) −31.6393 21.3284i −1.18077 0.795970i
\(719\) −15.5142 26.8714i −0.578583 1.00213i −0.995642 0.0932556i \(-0.970273\pi\)
0.417059 0.908879i \(-0.363061\pi\)
\(720\) 0 0
\(721\) −5.65320 + 15.2242i −0.210536 + 0.566980i
\(722\) −3.13857 0.218609i −0.116805 0.00813579i
\(723\) −6.12138 10.6025i −0.227657 0.394313i
\(724\) 20.5920 + 16.0702i 0.765297 + 0.597243i
\(725\) 0 0
\(726\) 1.72862 0.843691i 0.0641553 0.0313123i
\(727\) 37.9906i 1.40899i −0.709707 0.704497i \(-0.751173\pi\)
0.709707 0.704497i \(-0.248827\pi\)
\(728\) −38.6382 + 20.2644i −1.43203 + 0.751049i
\(729\) 6.11207 0.226373
\(730\) 0 0
\(731\) −2.12499 + 3.68058i −0.0785955 + 0.136131i
\(732\) −1.21072 + 1.55140i −0.0447496 + 0.0573413i
\(733\) 15.4876 + 26.8252i 0.572046 + 0.990813i 0.996356 + 0.0852956i \(0.0271835\pi\)
−0.424310 + 0.905517i \(0.639483\pi\)
\(734\) −2.04601 + 29.3745i −0.0755195 + 1.08423i
\(735\) 0 0
\(736\) 17.2590 + 6.25511i 0.636176 + 0.230566i
\(737\) −7.93996 + 4.58414i −0.292472 + 0.168859i
\(738\) 2.50110 + 1.68602i 0.0920669 + 0.0620633i
\(739\) 2.53077 + 1.46114i 0.0930957 + 0.0537488i 0.545825 0.837899i \(-0.316216\pi\)
−0.452729 + 0.891648i \(0.649550\pi\)
\(740\) 0 0
\(741\) 15.8167i 0.581039i
\(742\) −16.1735 22.5542i −0.593749 0.827990i
\(743\) 36.6505 1.34457 0.672287 0.740290i \(-0.265312\pi\)
0.672287 + 0.740290i \(0.265312\pi\)
\(744\) 15.7963 5.14685i 0.579122 0.188693i
\(745\) 0 0
\(746\) −20.7107 13.9613i −0.758274 0.511161i
\(747\) 14.3989 8.31323i 0.526829 0.304165i
\(748\) 1.37052 9.79051i 0.0501110 0.357976i
\(749\) −19.0187 7.06219i −0.694927 0.258047i
\(750\) 0 0
\(751\) 31.3355 18.0915i 1.14345 0.660170i 0.196166 0.980571i \(-0.437151\pi\)
0.947282 + 0.320401i \(0.103818\pi\)
\(752\) 19.1831 + 19.8214i 0.699537 + 0.722811i
\(753\) −9.48259 5.47478i −0.345565 0.199512i
\(754\) 18.7814 + 38.4810i 0.683980 + 1.40140i
\(755\) 0 0
\(756\) −19.4833 + 0.564587i −0.708601 + 0.0205338i
\(757\) 1.44394i 0.0524807i −0.999656 0.0262404i \(-0.991646\pi\)
0.999656 0.0262404i \(-0.00835352\pi\)
\(758\) −19.1338 + 9.33867i −0.694973 + 0.339196i
\(759\) −3.88297 + 6.72550i −0.140943 + 0.244120i
\(760\) 0 0
\(761\) −24.4509 + 14.1167i −0.886343 + 0.511730i −0.872744 0.488177i \(-0.837662\pi\)
−0.0135983 + 0.999908i \(0.504329\pi\)
\(762\) 1.10763 15.9022i 0.0401251 0.576076i
\(763\) 0.573178 + 3.37859i 0.0207505 + 0.122313i
\(764\) −3.45891 + 24.7093i −0.125139 + 0.893951i
\(765\) 0 0
\(766\) 35.5906 + 23.9920i 1.28594 + 0.866868i
\(767\) 21.8010 37.7605i 0.787189 1.36345i
\(768\) −10.5920 0.346723i −0.382206 0.0125113i
\(769\) 38.3866i 1.38426i −0.721774 0.692129i \(-0.756673\pi\)
0.721774 0.692129i \(-0.243327\pi\)
\(770\) 0 0
\(771\) 4.10328i 0.147776i
\(772\) −35.3448 + 14.3027i −1.27209 + 0.514765i
\(773\) 9.54086 16.5252i 0.343161 0.594372i −0.641857 0.766824i \(-0.721836\pi\)
0.985018 + 0.172452i \(0.0551691\pi\)
\(774\) 6.28955 9.33013i 0.226073 0.335364i
\(775\) 0 0
\(776\) 0.949638 + 0.201039i 0.0340900 + 0.00721688i
\(777\) −14.5712 + 12.0666i −0.522738 + 0.432886i
\(778\) 8.85722 + 0.616928i 0.317547 + 0.0221179i
\(779\) −2.95373 + 1.70533i −0.105828 + 0.0611000i
\(780\) 0 0
\(781\) 6.36787 11.0295i 0.227860 0.394666i
\(782\) 2.75401 + 5.64265i 0.0984833 + 0.201781i
\(783\) 19.1296i 0.683637i
\(784\) −27.9530 + 1.62141i −0.998322 + 0.0579073i
\(785\) 0 0
\(786\) 1.01532 0.495547i 0.0362152 0.0176756i
\(787\) −4.41858 2.55107i −0.157505 0.0909358i 0.419176 0.907905i \(-0.362319\pi\)
−0.576681 + 0.816969i \(0.695652\pi\)
\(788\) −3.04598 2.37710i −0.108509 0.0846808i
\(789\) 12.1340 7.00559i 0.431983 0.249406i
\(790\) 0 0
\(791\) 11.9911 + 14.4800i 0.426354 + 0.514851i
\(792\) −5.42087 + 25.6063i −0.192622 + 0.909879i
\(793\) 7.50075 4.33056i 0.266359 0.153783i
\(794\) −7.68528 + 11.4006i −0.272740 + 0.404592i
\(795\) 0 0
\(796\) 15.4281 + 38.1259i 0.546833 + 1.35134i
\(797\) 25.6101 0.907155 0.453578 0.891217i \(-0.350148\pi\)
0.453578 + 0.891217i \(0.350148\pi\)
\(798\) 4.18611 9.24718i 0.148187 0.327347i
\(799\) 9.43461i 0.333772i
\(800\) 0 0
\(801\) 20.8310 + 12.0268i 0.736027 + 0.424946i
\(802\) −5.52356 + 8.19384i −0.195044 + 0.289335i
\(803\) 16.1760 9.33922i 0.570839 0.329574i
\(804\) −0.466026 + 3.32913i −0.0164355 + 0.117409i
\(805\) 0 0
\(806\) −72.9429 5.08065i −2.56930 0.178958i
\(807\) 10.2621 + 17.7744i 0.361241 + 0.625688i
\(808\) 9.54212 + 8.57763i 0.335691 + 0.301760i
\(809\) 25.2381 43.7136i 0.887323 1.53689i 0.0442955 0.999018i \(-0.485896\pi\)
0.843028 0.537870i \(-0.180771\pi\)
\(810\) 0 0
\(811\) 3.15050 0.110629 0.0553145 0.998469i \(-0.482384\pi\)
0.0553145 + 0.998469i \(0.482384\pi\)
\(812\) 0.795986 + 27.4686i 0.0279336 + 0.963961i
\(813\) 15.2594i 0.535170i
\(814\) 24.1945 + 49.5718i 0.848018 + 1.73749i
\(815\) 0 0
\(816\) −2.52080 2.60467i −0.0882456 0.0911816i
\(817\) 6.36159 + 11.0186i 0.222564 + 0.385492i
\(818\) −0.220664 + 3.16807i −0.00771533 + 0.110769i
\(819\) 37.0379 + 13.7533i 1.29421 + 0.480578i
\(820\) 0 0
\(821\) 17.7416 + 30.7294i 0.619187 + 1.07246i 0.989634 + 0.143609i \(0.0458709\pi\)
−0.370448 + 0.928853i \(0.620796\pi\)
\(822\) −1.12305 + 1.66597i −0.0391709 + 0.0581074i
\(823\) −4.20565 + 7.28440i −0.146600 + 0.253918i −0.929969 0.367639i \(-0.880166\pi\)
0.783369 + 0.621557i \(0.213500\pi\)
\(824\) 16.5071 5.37843i 0.575052 0.187367i
\(825\) 0 0
\(826\) 22.7398 16.3066i 0.791219 0.567381i
\(827\) 4.33435 0.150720 0.0753601 0.997156i \(-0.475989\pi\)
0.0753601 + 0.997156i \(0.475989\pi\)
\(828\) −6.23577 15.4098i −0.216708 0.535529i
\(829\) −20.9404 12.0899i −0.727289 0.419900i 0.0901408 0.995929i \(-0.471268\pi\)
−0.817429 + 0.576029i \(0.804602\pi\)
\(830\) 0 0
\(831\) −2.30023 3.98412i −0.0797942 0.138208i
\(832\) 42.6407 + 18.9013i 1.47830 + 0.655283i
\(833\) −7.25589 6.25050i −0.251402 0.216567i
\(834\) −0.221005 + 3.17296i −0.00765277 + 0.109871i
\(835\) 0 0
\(836\) −23.3317 18.2082i −0.806943 0.629744i
\(837\) −28.2896 16.3330i −0.977831 0.564551i
\(838\) 11.3865 + 23.3296i 0.393340 + 0.805909i
\(839\) −18.3056 −0.631979 −0.315989 0.948763i \(-0.602336\pi\)
−0.315989 + 0.948763i \(0.602336\pi\)
\(840\) 0 0
\(841\) −2.02999 −0.0699998
\(842\) −1.41000 2.88892i −0.0485917 0.0995588i
\(843\) −2.43437 1.40549i −0.0838442 0.0484075i
\(844\) −15.7417 12.2849i −0.541851 0.422864i
\(845\) 0 0
\(846\) 1.73563 24.9184i 0.0596722 0.856712i
\(847\) −5.09322 1.89126i −0.175005 0.0649845i
\(848\) −8.14704 + 28.5296i −0.279770 + 0.979711i
\(849\) −2.82560 4.89408i −0.0969743 0.167964i
\(850\) 0 0
\(851\) −30.3407 17.5172i −1.04006 0.600481i
\(852\) −1.75163 4.32864i −0.0600100 0.148297i
\(853\) 16.9533 0.580469 0.290234 0.956956i \(-0.406267\pi\)
0.290234 + 0.956956i \(0.406267\pi\)
\(854\) 5.53145 0.546673i 0.189282 0.0187068i
\(855\) 0 0
\(856\) 6.71894 + 20.6213i 0.229649 + 0.704821i
\(857\) 25.2872 43.7988i 0.863795 1.49614i −0.00444284 0.999990i \(-0.501414\pi\)
0.868238 0.496147i \(-0.165252\pi\)
\(858\) −11.0292 + 16.3611i −0.376530 + 0.558558i
\(859\) −2.51925 4.36346i −0.0859555 0.148879i 0.819842 0.572589i \(-0.194061\pi\)
−0.905798 + 0.423710i \(0.860728\pi\)
\(860\) 0 0
\(861\) 0.244083 + 1.43874i 0.00831832 + 0.0490321i
\(862\) 1.26379 18.1442i 0.0430448 0.617993i
\(863\) −5.87084 10.1686i −0.199846 0.346143i 0.748633 0.662985i \(-0.230711\pi\)
−0.948478 + 0.316842i \(0.897377\pi\)
\(864\) 13.4157 + 15.9440i 0.456412 + 0.542425i
\(865\) 0 0
\(866\) −20.8610 42.7418i −0.708887 1.45243i
\(867\) 10.0203i 0.340306i
\(868\) −41.3013 22.2758i −1.40186 0.756090i
\(869\) 40.9714 1.38986
\(870\) 0 0
\(871\) 7.39747 12.8128i 0.250654 0.434145i
\(872\) 2.44911 2.72450i 0.0829373 0.0922631i
\(873\) −0.439502 0.761240i −0.0148749 0.0257641i
\(874\) 18.7517 + 1.30610i 0.634284 + 0.0441795i
\(875\) 0 0
\(876\) 0.949429 6.78241i 0.0320782 0.229156i
\(877\) −20.9426 + 12.0912i −0.707180 + 0.408290i −0.810016 0.586408i \(-0.800542\pi\)
0.102836 + 0.994698i \(0.467208\pi\)
\(878\) 19.6731 29.1838i 0.663936 0.984905i
\(879\) −14.4734 8.35624i −0.488177 0.281849i
\(880\) 0 0
\(881\) 19.6285i 0.661301i 0.943753 + 0.330651i \(0.107268\pi\)
−0.943753 + 0.330651i \(0.892732\pi\)
\(882\) 18.0142 + 17.8434i 0.606568 + 0.600820i
\(883\) −11.2418 −0.378315 −0.189158 0.981947i \(-0.560576\pi\)
−0.189158 + 0.981947i \(0.560576\pi\)
\(884\) 5.98420 + 14.7882i 0.201271 + 0.497380i
\(885\) 0 0
\(886\) 6.28266 9.31991i 0.211070 0.313109i
\(887\) −36.2085 + 20.9050i −1.21576 + 0.701920i −0.964009 0.265871i \(-0.914340\pi\)
−0.251753 + 0.967792i \(0.581007\pi\)
\(888\) 19.7865 + 4.18882i 0.663993 + 0.140568i
\(889\) −34.6779 + 28.7172i −1.16306 + 0.963143i
\(890\) 0 0
\(891\) 16.4082 9.47327i 0.549695 0.317366i
\(892\) −26.5167 20.6938i −0.887846 0.692881i
\(893\) 24.4604 + 14.1222i 0.818537 + 0.472583i
\(894\) −16.0669 + 7.84177i −0.537357 + 0.262268i
\(895\) 0 0
\(896\) 19.9274 + 22.3361i 0.665726 + 0.746196i
\(897\) 12.5320i 0.418430i
\(898\) 8.87195 + 18.1776i 0.296061 + 0.606594i
\(899\) −23.0272 + 39.8842i −0.768000 + 1.33021i
\(900\) 0 0
\(901\) −8.78851 + 5.07405i −0.292788 + 0.169041i
\(902\) 4.24455 + 0.295644i 0.141328 + 0.00984385i
\(903\) 5.36708 0.910527i 0.178605 0.0303005i
\(904\) 4.16262 19.6628i 0.138447 0.653974i
\(905\) 0 0
\(906\) 5.02958 7.46105i 0.167097 0.247877i
\(907\) −10.9044 + 18.8870i −0.362076 + 0.627133i −0.988302 0.152508i \(-0.951265\pi\)
0.626227 + 0.779641i \(0.284598\pi\)
\(908\) −36.7711 + 14.8798i −1.22029 + 0.493805i
\(909\) 11.6189i 0.385374i
\(910\) 0 0
\(911\) 2.40991i 0.0798440i 0.999203 + 0.0399220i \(0.0127109\pi\)
−0.999203 + 0.0399220i \(0.987289\pi\)
\(912\) −10.5262 + 2.63669i −0.348557 + 0.0873095i
\(913\) 11.7267 20.3112i 0.388096 0.672202i
\(914\) −26.0078 17.5322i −0.860262 0.579913i
\(915\) 0 0
\(916\) 3.86316 27.5971i 0.127642 0.911835i
\(917\) −2.99154 1.11085i −0.0987893 0.0366833i
\(918\) −0.495214 + 7.10977i −0.0163445 + 0.234657i
\(919\) −13.1661 + 7.60145i −0.434310 + 0.250749i −0.701181 0.712983i \(-0.747343\pi\)
0.266871 + 0.963732i \(0.414010\pi\)
\(920\) 0 0
\(921\) −9.69140 + 16.7860i −0.319343 + 0.553118i
\(922\) 41.7607 20.3822i 1.37532 0.671251i
\(923\) 20.5518i 0.676470i
\(924\) −10.7784 + 6.64644i −0.354583 + 0.218652i
\(925\) 0 0
\(926\) 2.05562 + 4.21172i 0.0675517 + 0.138406i
\(927\) −13.6152 7.86074i −0.447182 0.258181i
\(928\) 22.4787 18.9142i 0.737900 0.620890i
\(929\) −18.0735 + 10.4347i −0.592971 + 0.342352i −0.766272 0.642517i \(-0.777890\pi\)
0.173300 + 0.984869i \(0.444557\pi\)
\(930\) 0 0
\(931\) −27.0662 + 9.45573i −0.887059 + 0.309899i
\(932\) 2.83522 20.2538i 0.0928706 0.663437i
\(933\) 13.0475 7.53299i 0.427157 0.246619i
\(934\) −41.1993 27.7729i −1.34808 0.908757i
\(935\) 0 0
\(936\) −13.0848 40.1590i −0.427690 1.31264i
\(937\) 10.9083 0.356358 0.178179 0.983998i \(-0.442979\pi\)
0.178179 + 0.983998i \(0.442979\pi\)
\(938\) 7.71601 5.53313i 0.251937 0.180663i
\(939\) 4.36148i 0.142331i
\(940\) 0 0
\(941\) −42.7569 24.6857i −1.39383 0.804730i −0.400097 0.916473i \(-0.631023\pi\)
−0.993737 + 0.111743i \(0.964357\pi\)
\(942\) 12.7865 + 8.61952i 0.416607 + 0.280839i
\(943\) −2.34032 + 1.35118i −0.0762113 + 0.0440006i
\(944\) −28.7644 8.21408i −0.936202 0.267346i
\(945\) 0 0
\(946\) 1.10287 15.8339i 0.0358574 0.514804i
\(947\) −7.27929 12.6081i −0.236545 0.409708i 0.723175 0.690664i \(-0.242682\pi\)
−0.959721 + 0.280956i \(0.909349\pi\)
\(948\) 9.24221 11.8428i 0.300173 0.384637i
\(949\) −15.0708 + 26.1034i −0.489218 + 0.847351i
\(950\) 0 0
\(951\) −9.35358 −0.303311
\(952\) −0.415250 + 10.2297i −0.0134583 + 0.331546i
\(953\) 9.87954i 0.320030i 0.987115 + 0.160015i \(0.0511542\pi\)
−0.987115 + 0.160015i \(0.948846\pi\)
\(954\) 24.1454 11.7847i 0.781736 0.381542i
\(955\) 0 0
\(956\) 26.9354 + 21.0205i 0.871152 + 0.679853i
\(957\) 6.21390 + 10.7628i 0.200867 + 0.347912i
\(958\) −31.4983 2.19394i −1.01766 0.0708829i
\(959\) 5.59494 0.949183i 0.180670 0.0306507i
\(960\) 0 0
\(961\) −23.8215 41.2601i −0.768437 1.33097i
\(962\) −73.8095 49.7558i −2.37971 1.60419i
\(963\) 9.81993 17.0086i 0.316443 0.548095i
\(964\) 34.2680 13.8669i 1.10370 0.446624i
\(965\) 0 0
\(966\) 3.31677 7.32680i 0.106715 0.235736i
\(967\) 15.5047 0.498597 0.249298 0.968427i \(-0.419800\pi\)
0.249298 + 0.968427i \(0.419800\pi\)
\(968\) 1.79934 + 5.52240i 0.0578330 + 0.177497i
\(969\) −3.21427 1.85576i −0.103257 0.0596156i
\(970\) 0 0
\(971\) −16.5173 28.6089i −0.530067 0.918102i −0.999385 0.0350732i \(-0.988834\pi\)
0.469318 0.883029i \(-0.344500\pi\)
\(972\) 4.02701 28.7676i 0.129166 0.922721i
\(973\) 6.91927 5.72993i 0.221822 0.183693i
\(974\) 10.1368 + 0.706056i 0.324805 + 0.0226235i
\(975\) 0 0
\(976\) −4.13245 4.26993i −0.132276 0.136677i
\(977\) 44.1430 + 25.4860i 1.41226 + 0.815369i 0.995601 0.0936930i \(-0.0298672\pi\)
0.416660 + 0.909062i \(0.363201\pi\)
\(978\) 6.02400 2.94014i 0.192626 0.0940153i
\(979\) 33.9301 1.08441
\(980\) 0 0
\(981\) −3.31746 −0.105918
\(982\) −7.37207 + 3.59809i −0.235252 + 0.114820i
\(983\) 21.2423 + 12.2642i 0.677523 + 0.391168i 0.798921 0.601436i \(-0.205404\pi\)
−0.121398 + 0.992604i \(0.538738\pi\)
\(984\) 1.04293 1.16020i 0.0332474 0.0369859i
\(985\) 0 0
\(986\) 10.0238 + 0.698180i 0.319221 + 0.0222346i
\(987\) 9.30762 7.70775i 0.296265 0.245340i
\(988\) 47.2977 + 6.62093i 1.50474 + 0.210640i
\(989\) 5.04046 + 8.73034i 0.160277 + 0.277609i
\(990\) 0 0
\(991\) −45.8274 26.4585i −1.45576 0.840481i −0.456957 0.889489i \(-0.651061\pi\)
−0.998798 + 0.0490078i \(0.984394\pi\)
\(992\) 8.77857 + 49.3915i 0.278720 + 1.56818i
\(993\) −13.4606 −0.427160
\(994\) −5.43933 + 12.0156i −0.172525 + 0.381111i
\(995\) 0 0
\(996\) −3.22570 7.97135i −0.102210 0.252582i
\(997\) −8.51148 + 14.7423i −0.269561 + 0.466894i −0.968749 0.248045i \(-0.920212\pi\)
0.699187 + 0.714939i \(0.253545\pi\)
\(998\) 46.5075 + 31.3512i 1.47217 + 0.992406i
\(999\) −19.8834 34.4390i −0.629082 1.08960i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 700.2.t.c.199.7 32
4.3 odd 2 inner 700.2.t.c.199.12 32
5.2 odd 4 700.2.p.c.451.15 32
5.3 odd 4 140.2.o.a.31.2 32
5.4 even 2 700.2.t.d.199.10 32
7.5 odd 6 700.2.t.d.299.5 32
20.3 even 4 140.2.o.a.31.14 yes 32
20.7 even 4 700.2.p.c.451.3 32
20.19 odd 2 700.2.t.d.199.5 32
28.19 even 6 700.2.t.d.299.10 32
35.3 even 12 980.2.g.a.391.17 32
35.12 even 12 700.2.p.c.551.3 32
35.13 even 4 980.2.o.f.31.2 32
35.18 odd 12 980.2.g.a.391.18 32
35.19 odd 6 inner 700.2.t.c.299.12 32
35.23 odd 12 980.2.o.f.411.14 32
35.33 even 12 140.2.o.a.131.14 yes 32
140.3 odd 12 980.2.g.a.391.20 32
140.19 even 6 inner 700.2.t.c.299.7 32
140.23 even 12 980.2.o.f.411.2 32
140.47 odd 12 700.2.p.c.551.15 32
140.83 odd 4 980.2.o.f.31.14 32
140.103 odd 12 140.2.o.a.131.2 yes 32
140.123 even 12 980.2.g.a.391.19 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.o.a.31.2 32 5.3 odd 4
140.2.o.a.31.14 yes 32 20.3 even 4
140.2.o.a.131.2 yes 32 140.103 odd 12
140.2.o.a.131.14 yes 32 35.33 even 12
700.2.p.c.451.3 32 20.7 even 4
700.2.p.c.451.15 32 5.2 odd 4
700.2.p.c.551.3 32 35.12 even 12
700.2.p.c.551.15 32 140.47 odd 12
700.2.t.c.199.7 32 1.1 even 1 trivial
700.2.t.c.199.12 32 4.3 odd 2 inner
700.2.t.c.299.7 32 140.19 even 6 inner
700.2.t.c.299.12 32 35.19 odd 6 inner
700.2.t.d.199.5 32 20.19 odd 2
700.2.t.d.199.10 32 5.4 even 2
700.2.t.d.299.5 32 7.5 odd 6
700.2.t.d.299.10 32 28.19 even 6
980.2.g.a.391.17 32 35.3 even 12
980.2.g.a.391.18 32 35.18 odd 12
980.2.g.a.391.19 32 140.123 even 12
980.2.g.a.391.20 32 140.3 odd 12
980.2.o.f.31.2 32 35.13 even 4
980.2.o.f.31.14 32 140.83 odd 4
980.2.o.f.411.2 32 140.23 even 12
980.2.o.f.411.14 32 35.23 odd 12