L(s) = 1 | − 3·3-s + 14·7-s − 3·9-s − 15·11-s − 51·17-s + 27·19-s − 42·21-s − 9·23-s + 18·27-s − 12·29-s − 21·31-s + 45·33-s + 31·37-s − 20·43-s − 75·47-s + 147·49-s + 153·51-s − 57·53-s − 81·57-s − 141·59-s − 141·61-s − 42·63-s − 49·67-s + 27·69-s − 252·71-s + 45·73-s − 210·77-s + ⋯ |
L(s) = 1 | − 3-s + 2·7-s − 1/3·9-s − 1.36·11-s − 3·17-s + 1.42·19-s − 2·21-s − 0.391·23-s + 2/3·27-s − 0.413·29-s − 0.677·31-s + 1.36·33-s + 0.837·37-s − 0.465·43-s − 1.59·47-s + 3·49-s + 3·51-s − 1.07·53-s − 1.42·57-s − 2.38·59-s − 2.31·61-s − 2/3·63-s − 0.731·67-s + 9/23·69-s − 3.54·71-s + 0.616·73-s − 2.72·77-s + ⋯ |
Λ(s)=(=(490000s/2ΓC(s)2L(s)Λ(3−s)
Λ(s)=(=(490000s/2ΓC(s+1)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
490000
= 24⋅54⋅72
|
Sign: |
1
|
Analytic conductor: |
363.802 |
Root analytic conductor: |
4.36733 |
Motivic weight: |
2 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 490000, ( :1,1), 1)
|
Particular Values
L(23) |
≈ |
0.2856040591 |
L(21) |
≈ |
0.2856040591 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | | 1 |
| 7 | C1 | (1−pT)2 |
good | 3 | C22 | 1+pT+4pT2+p3T3+p4T4 |
| 11 | C22 | 1+15T+104T2+15p2T3+p4T4 |
| 13 | C2 | (1−22T+p2T2)(1+22T+p2T2) |
| 17 | C1×C2 | (1+pT)2(1+pT+p2T2) |
| 19 | C22 | 1−27T+604T2−27p2T3+p4T4 |
| 23 | C22 | 1+9T−448T2+9p2T3+p4T4 |
| 29 | C2 | (1+6T+p2T2)2 |
| 31 | C22 | 1+21T+1108T2+21p2T3+p4T4 |
| 37 | C22 | 1−31T−408T2−31p2T3+p4T4 |
| 41 | C22 | 1−290T2+p4T4 |
| 43 | C2 | (1+10T+p2T2)2 |
| 47 | C22 | 1+75T+4084T2+75p2T3+p4T4 |
| 53 | C22 | 1+57T+440T2+57p2T3+p4T4 |
| 59 | C22 | 1+141T+10108T2+141p2T3+p4T4 |
| 61 | C22 | 1+141T+10348T2+141p2T3+p4T4 |
| 67 | C22 | 1+49T−2088T2+49p2T3+p4T4 |
| 71 | C2 | (1+126T+p2T2)2 |
| 73 | C22 | 1−45T+6004T2−45p2T3+p4T4 |
| 79 | C22 | 1−73T−912T2−73p2T3+p4T4 |
| 83 | C22 | 1−13586T2+p4T4 |
| 89 | C22 | 1−99T+11188T2−99p2T3+p4T4 |
| 97 | C22 | 1−18050T2+p4T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.77203314139928659560084928212, −10.30889164606294289802650981018, −9.551712626442508563308807321574, −8.969251897109009723270315925100, −8.905804246121212237653338476789, −8.184481127579734496679130315611, −7.78459397375095089021536461444, −7.56310690112796074825511529298, −7.03217599242051044928547920826, −6.21674851687892022468422661497, −6.02302629311301303435145859666, −5.46576852031566262897330453106, −4.91050384184050559143940697438, −4.60002160232112338680603805334, −4.47443511609953302678460723697, −3.29324419362551245130096556408, −2.69690188492565920934702722165, −1.94570219692609133228107018188, −1.52144631369747675148343201508, −0.19625571118695790255210641001,
0.19625571118695790255210641001, 1.52144631369747675148343201508, 1.94570219692609133228107018188, 2.69690188492565920934702722165, 3.29324419362551245130096556408, 4.47443511609953302678460723697, 4.60002160232112338680603805334, 4.91050384184050559143940697438, 5.46576852031566262897330453106, 6.02302629311301303435145859666, 6.21674851687892022468422661497, 7.03217599242051044928547920826, 7.56310690112796074825511529298, 7.78459397375095089021536461444, 8.184481127579734496679130315611, 8.905804246121212237653338476789, 8.969251897109009723270315925100, 9.551712626442508563308807321574, 10.30889164606294289802650981018, 10.77203314139928659560084928212