Properties

Label 700.3.s.a
Level 700700
Weight 33
Character orbit 700.s
Analytic conductor 19.07419.074
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [700,3,Mod(101,700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(700, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("700.101");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: N N == 700=22527 700 = 2^{2} \cdot 5^{2} \cdot 7
Weight: k k == 3 3
Character orbit: [χ][\chi] == 700.s (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 19.073618505219.0736185052
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 28)
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ61)q3+7q76ζ6q9+(15ζ615)q11+(16ζ68)q13+(17ζ617)q17+(9ζ6+18)q19+(7ζ67)q21++90q99+O(q100) q + ( - \zeta_{6} - 1) q^{3} + 7 q^{7} - 6 \zeta_{6} q^{9} + (15 \zeta_{6} - 15) q^{11} + (16 \zeta_{6} - 8) q^{13} + ( - 17 \zeta_{6} - 17) q^{17} + ( - 9 \zeta_{6} + 18) q^{19} + ( - 7 \zeta_{6} - 7) q^{21} + \cdots + 90 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q3q3+14q76q915q1151q17+27q1921q219q2312q2921q31+45q33+31q37+24q3920q4375q47+98q49+51q51++180q99+O(q100) 2 q - 3 q^{3} + 14 q^{7} - 6 q^{9} - 15 q^{11} - 51 q^{17} + 27 q^{19} - 21 q^{21} - 9 q^{23} - 12 q^{29} - 21 q^{31} + 45 q^{33} + 31 q^{37} + 24 q^{39} - 20 q^{43} - 75 q^{47} + 98 q^{49} + 51 q^{51}+ \cdots + 180 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/700Z)×\left(\mathbb{Z}/700\mathbb{Z}\right)^\times.

nn 101101 351351 477477
χ(n)\chi(n) ζ6\zeta_{6} 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
101.1
0.500000 + 0.866025i
0.500000 0.866025i
0 −1.50000 0.866025i 0 0 0 7.00000 0 −3.00000 5.19615i 0
201.1 0 −1.50000 + 0.866025i 0 0 0 7.00000 0 −3.00000 + 5.19615i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.d odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 700.3.s.a 2
5.b even 2 1 28.3.h.a 2
5.c odd 4 2 700.3.o.a 4
7.d odd 6 1 inner 700.3.s.a 2
15.d odd 2 1 252.3.z.a 2
20.d odd 2 1 112.3.s.a 2
35.c odd 2 1 196.3.h.a 2
35.i odd 6 1 28.3.h.a 2
35.i odd 6 1 196.3.b.a 2
35.j even 6 1 196.3.b.a 2
35.j even 6 1 196.3.h.a 2
35.k even 12 2 700.3.o.a 4
40.e odd 2 1 448.3.s.b 2
40.f even 2 1 448.3.s.a 2
60.h even 2 1 1008.3.cg.c 2
105.g even 2 1 1764.3.z.f 2
105.o odd 6 1 1764.3.d.a 2
105.o odd 6 1 1764.3.z.f 2
105.p even 6 1 252.3.z.a 2
105.p even 6 1 1764.3.d.a 2
140.c even 2 1 784.3.s.b 2
140.p odd 6 1 784.3.c.a 2
140.p odd 6 1 784.3.s.b 2
140.s even 6 1 112.3.s.a 2
140.s even 6 1 784.3.c.a 2
280.ba even 6 1 448.3.s.b 2
280.bk odd 6 1 448.3.s.a 2
420.be odd 6 1 1008.3.cg.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
28.3.h.a 2 5.b even 2 1
28.3.h.a 2 35.i odd 6 1
112.3.s.a 2 20.d odd 2 1
112.3.s.a 2 140.s even 6 1
196.3.b.a 2 35.i odd 6 1
196.3.b.a 2 35.j even 6 1
196.3.h.a 2 35.c odd 2 1
196.3.h.a 2 35.j even 6 1
252.3.z.a 2 15.d odd 2 1
252.3.z.a 2 105.p even 6 1
448.3.s.a 2 40.f even 2 1
448.3.s.a 2 280.bk odd 6 1
448.3.s.b 2 40.e odd 2 1
448.3.s.b 2 280.ba even 6 1
700.3.o.a 4 5.c odd 4 2
700.3.o.a 4 35.k even 12 2
700.3.s.a 2 1.a even 1 1 trivial
700.3.s.a 2 7.d odd 6 1 inner
784.3.c.a 2 140.p odd 6 1
784.3.c.a 2 140.s even 6 1
784.3.s.b 2 140.c even 2 1
784.3.s.b 2 140.p odd 6 1
1008.3.cg.c 2 60.h even 2 1
1008.3.cg.c 2 420.be odd 6 1
1764.3.d.a 2 105.o odd 6 1
1764.3.d.a 2 105.p even 6 1
1764.3.z.f 2 105.g even 2 1
1764.3.z.f 2 105.o odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T32+3T3+3 T_{3}^{2} + 3T_{3} + 3 acting on S3new(700,[χ])S_{3}^{\mathrm{new}}(700, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+3T+3 T^{2} + 3T + 3 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 (T7)2 (T - 7)^{2} Copy content Toggle raw display
1111 T2+15T+225 T^{2} + 15T + 225 Copy content Toggle raw display
1313 T2+192 T^{2} + 192 Copy content Toggle raw display
1717 T2+51T+867 T^{2} + 51T + 867 Copy content Toggle raw display
1919 T227T+243 T^{2} - 27T + 243 Copy content Toggle raw display
2323 T2+9T+81 T^{2} + 9T + 81 Copy content Toggle raw display
2929 (T+6)2 (T + 6)^{2} Copy content Toggle raw display
3131 T2+21T+147 T^{2} + 21T + 147 Copy content Toggle raw display
3737 T231T+961 T^{2} - 31T + 961 Copy content Toggle raw display
4141 T2+3072 T^{2} + 3072 Copy content Toggle raw display
4343 (T+10)2 (T + 10)^{2} Copy content Toggle raw display
4747 T2+75T+1875 T^{2} + 75T + 1875 Copy content Toggle raw display
5353 T2+57T+3249 T^{2} + 57T + 3249 Copy content Toggle raw display
5959 T2+141T+6627 T^{2} + 141T + 6627 Copy content Toggle raw display
6161 T2+141T+6627 T^{2} + 141T + 6627 Copy content Toggle raw display
6767 T2+49T+2401 T^{2} + 49T + 2401 Copy content Toggle raw display
7171 (T+126)2 (T + 126)^{2} Copy content Toggle raw display
7373 T245T+675 T^{2} - 45T + 675 Copy content Toggle raw display
7979 T273T+5329 T^{2} - 73T + 5329 Copy content Toggle raw display
8383 T2+192 T^{2} + 192 Copy content Toggle raw display
8989 T299T+3267 T^{2} - 99T + 3267 Copy content Toggle raw display
9797 T2+768 T^{2} + 768 Copy content Toggle raw display
show more
show less