Properties

Label 252.3.z.a
Level $252$
Weight $3$
Character orbit 252.z
Analytic conductor $6.867$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [252,3,Mod(73,252)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(252, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("252.73");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 252.z (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.86650266188\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 28)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{6} - 2) q^{5} - 7 q^{7} + ( - 15 \zeta_{6} + 15) q^{11} + ( - 16 \zeta_{6} + 8) q^{13} + ( - 17 \zeta_{6} - 17) q^{17} + ( - 9 \zeta_{6} + 18) q^{19} - 9 \zeta_{6} q^{23} + (22 \zeta_{6} - 22) q^{25} + \cdots + ( - 32 \zeta_{6} + 16) q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3 q^{5} - 14 q^{7} + 15 q^{11} - 51 q^{17} + 27 q^{19} - 9 q^{23} - 22 q^{25} + 12 q^{29} - 21 q^{31} + 21 q^{35} - 31 q^{37} + 20 q^{43} - 75 q^{47} + 98 q^{49} - 57 q^{53} + 141 q^{59} - 141 q^{61}+ \cdots - 27 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/252\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\) \(127\)
\(\chi(n)\) \(1\) \(\zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
73.1
0.500000 + 0.866025i
0.500000 0.866025i
0 0 0 −1.50000 + 0.866025i 0 −7.00000 0 0 0
145.1 0 0 0 −1.50000 0.866025i 0 −7.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.d odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 252.3.z.a 2
3.b odd 2 1 28.3.h.a 2
4.b odd 2 1 1008.3.cg.c 2
7.b odd 2 1 1764.3.z.f 2
7.c even 3 1 1764.3.d.a 2
7.c even 3 1 1764.3.z.f 2
7.d odd 6 1 inner 252.3.z.a 2
7.d odd 6 1 1764.3.d.a 2
12.b even 2 1 112.3.s.a 2
15.d odd 2 1 700.3.s.a 2
15.e even 4 2 700.3.o.a 4
21.c even 2 1 196.3.h.a 2
21.g even 6 1 28.3.h.a 2
21.g even 6 1 196.3.b.a 2
21.h odd 6 1 196.3.b.a 2
21.h odd 6 1 196.3.h.a 2
24.f even 2 1 448.3.s.b 2
24.h odd 2 1 448.3.s.a 2
28.f even 6 1 1008.3.cg.c 2
84.h odd 2 1 784.3.s.b 2
84.j odd 6 1 112.3.s.a 2
84.j odd 6 1 784.3.c.a 2
84.n even 6 1 784.3.c.a 2
84.n even 6 1 784.3.s.b 2
105.p even 6 1 700.3.s.a 2
105.w odd 12 2 700.3.o.a 4
168.ba even 6 1 448.3.s.a 2
168.be odd 6 1 448.3.s.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
28.3.h.a 2 3.b odd 2 1
28.3.h.a 2 21.g even 6 1
112.3.s.a 2 12.b even 2 1
112.3.s.a 2 84.j odd 6 1
196.3.b.a 2 21.g even 6 1
196.3.b.a 2 21.h odd 6 1
196.3.h.a 2 21.c even 2 1
196.3.h.a 2 21.h odd 6 1
252.3.z.a 2 1.a even 1 1 trivial
252.3.z.a 2 7.d odd 6 1 inner
448.3.s.a 2 24.h odd 2 1
448.3.s.a 2 168.ba even 6 1
448.3.s.b 2 24.f even 2 1
448.3.s.b 2 168.be odd 6 1
700.3.o.a 4 15.e even 4 2
700.3.o.a 4 105.w odd 12 2
700.3.s.a 2 15.d odd 2 1
700.3.s.a 2 105.p even 6 1
784.3.c.a 2 84.j odd 6 1
784.3.c.a 2 84.n even 6 1
784.3.s.b 2 84.h odd 2 1
784.3.s.b 2 84.n even 6 1
1008.3.cg.c 2 4.b odd 2 1
1008.3.cg.c 2 28.f even 6 1
1764.3.d.a 2 7.c even 3 1
1764.3.d.a 2 7.d odd 6 1
1764.3.z.f 2 7.b odd 2 1
1764.3.z.f 2 7.c even 3 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(252, [\chi])\):

\( T_{5}^{2} + 3T_{5} + 3 \) Copy content Toggle raw display
\( T_{11}^{2} - 15T_{11} + 225 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 3T + 3 \) Copy content Toggle raw display
$7$ \( (T + 7)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 15T + 225 \) Copy content Toggle raw display
$13$ \( T^{2} + 192 \) Copy content Toggle raw display
$17$ \( T^{2} + 51T + 867 \) Copy content Toggle raw display
$19$ \( T^{2} - 27T + 243 \) Copy content Toggle raw display
$23$ \( T^{2} + 9T + 81 \) Copy content Toggle raw display
$29$ \( (T - 6)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 21T + 147 \) Copy content Toggle raw display
$37$ \( T^{2} + 31T + 961 \) Copy content Toggle raw display
$41$ \( T^{2} + 3072 \) Copy content Toggle raw display
$43$ \( (T - 10)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 75T + 1875 \) Copy content Toggle raw display
$53$ \( T^{2} + 57T + 3249 \) Copy content Toggle raw display
$59$ \( T^{2} - 141T + 6627 \) Copy content Toggle raw display
$61$ \( T^{2} + 141T + 6627 \) Copy content Toggle raw display
$67$ \( T^{2} - 49T + 2401 \) Copy content Toggle raw display
$71$ \( (T - 126)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 45T + 675 \) Copy content Toggle raw display
$79$ \( T^{2} - 73T + 5329 \) Copy content Toggle raw display
$83$ \( T^{2} + 192 \) Copy content Toggle raw display
$89$ \( T^{2} + 99T + 3267 \) Copy content Toggle raw display
$97$ \( T^{2} + 768 \) Copy content Toggle raw display
show more
show less