L(s) = 1 | + (0.252 + 0.437i)3-s + (48.2 − 8.29i)7-s + (40.3 − 69.9i)9-s + (−106. − 183. i)11-s − 45.2·13-s + (125. + 217. i)17-s + (−405. − 234. i)19-s + (15.8 + 19.0i)21-s + (−809. − 467. i)23-s + 81.7·27-s + 816.·29-s + (−853. + 492. i)31-s + (53.6 − 93.0i)33-s + (−474. − 273. i)37-s + (−11.4 − 19.8i)39-s + ⋯ |
L(s) = 1 | + (0.0280 + 0.0486i)3-s + (0.985 − 0.169i)7-s + (0.498 − 0.863i)9-s + (−0.877 − 1.51i)11-s − 0.267·13-s + (0.435 + 0.753i)17-s + (−1.12 − 0.649i)19-s + (0.0359 + 0.0432i)21-s + (−1.52 − 0.883i)23-s + 0.112·27-s + 0.970·29-s + (−0.888 + 0.512i)31-s + (0.0493 − 0.0854i)33-s + (−0.346 − 0.200i)37-s + (−0.00751 − 0.0130i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 - 0.0166i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.999 - 0.0166i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(0.6539749042\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6539749042\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (-48.2 + 8.29i)T \) |
good | 3 | \( 1 + (-0.252 - 0.437i)T + (-40.5 + 70.1i)T^{2} \) |
| 11 | \( 1 + (106. + 183. i)T + (-7.32e3 + 1.26e4i)T^{2} \) |
| 13 | \( 1 + 45.2T + 2.85e4T^{2} \) |
| 17 | \( 1 + (-125. - 217. i)T + (-4.17e4 + 7.23e4i)T^{2} \) |
| 19 | \( 1 + (405. + 234. i)T + (6.51e4 + 1.12e5i)T^{2} \) |
| 23 | \( 1 + (809. + 467. i)T + (1.39e5 + 2.42e5i)T^{2} \) |
| 29 | \( 1 - 816.T + 7.07e5T^{2} \) |
| 31 | \( 1 + (853. - 492. i)T + (4.61e5 - 7.99e5i)T^{2} \) |
| 37 | \( 1 + (474. + 273. i)T + (9.37e5 + 1.62e6i)T^{2} \) |
| 41 | \( 1 - 2.48e3iT - 2.82e6T^{2} \) |
| 43 | \( 1 - 1.88e3iT - 3.41e6T^{2} \) |
| 47 | \( 1 + (289. - 502. i)T + (-2.43e6 - 4.22e6i)T^{2} \) |
| 53 | \( 1 + (-312. + 180. i)T + (3.94e6 - 6.83e6i)T^{2} \) |
| 59 | \( 1 + (5.28e3 - 3.04e3i)T + (6.05e6 - 1.04e7i)T^{2} \) |
| 61 | \( 1 + (1.53e3 + 884. i)T + (6.92e6 + 1.19e7i)T^{2} \) |
| 67 | \( 1 + (-5.17e3 + 2.98e3i)T + (1.00e7 - 1.74e7i)T^{2} \) |
| 71 | \( 1 - 1.01e3T + 2.54e7T^{2} \) |
| 73 | \( 1 + (-1.54e3 - 2.67e3i)T + (-1.41e7 + 2.45e7i)T^{2} \) |
| 79 | \( 1 + (361. - 626. i)T + (-1.94e7 - 3.37e7i)T^{2} \) |
| 83 | \( 1 - 8.10e3T + 4.74e7T^{2} \) |
| 89 | \( 1 + (2.39e3 + 1.37e3i)T + (3.13e7 + 5.43e7i)T^{2} \) |
| 97 | \( 1 + 1.66e4T + 8.85e7T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.404793677081057377230471096318, −8.269941805822597456104022390185, −8.073338295248116279648256774707, −6.65381132398494750412805973188, −5.91168364567639511049584130551, −4.78078565098738053658186782146, −3.87762743283480979419319982791, −2.68922522822876145095283251505, −1.33623318424690748230803426882, −0.14517623425416147251304888355,
1.79316072047752613109972565164, 2.25942138427974275606151525352, 4.05460027612460233674284742648, 4.88570367478690676024550198386, 5.58524394495989462102404095720, 7.08950698458636393712207650342, 7.70329111394387442768828494854, 8.324003014229644731283010638073, 9.636504795890850777885651414445, 10.28561541615328140769309047241