L(s) = 1 | + (0.252 + 0.437i)3-s + (48.2 − 8.29i)7-s + (40.3 − 69.9i)9-s + (−106. − 183. i)11-s − 45.2·13-s + (125. + 217. i)17-s + (−405. − 234. i)19-s + (15.8 + 19.0i)21-s + (−809. − 467. i)23-s + 81.7·27-s + 816.·29-s + (−853. + 492. i)31-s + (53.6 − 93.0i)33-s + (−474. − 273. i)37-s + (−11.4 − 19.8i)39-s + ⋯ |
L(s) = 1 | + (0.0280 + 0.0486i)3-s + (0.985 − 0.169i)7-s + (0.498 − 0.863i)9-s + (−0.877 − 1.51i)11-s − 0.267·13-s + (0.435 + 0.753i)17-s + (−1.12 − 0.649i)19-s + (0.0359 + 0.0432i)21-s + (−1.52 − 0.883i)23-s + 0.112·27-s + 0.970·29-s + (−0.888 + 0.512i)31-s + (0.0493 − 0.0854i)33-s + (−0.346 − 0.200i)37-s + (−0.00751 − 0.0130i)39-s + ⋯ |
Λ(s)=(=(700s/2ΓC(s)L(s)(−0.999−0.0166i)Λ(5−s)
Λ(s)=(=(700s/2ΓC(s+2)L(s)(−0.999−0.0166i)Λ(1−s)
Degree: |
2 |
Conductor: |
700
= 22⋅52⋅7
|
Sign: |
−0.999−0.0166i
|
Analytic conductor: |
72.3589 |
Root analytic conductor: |
8.50640 |
Motivic weight: |
4 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ700(649,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 700, ( :2), −0.999−0.0166i)
|
Particular Values
L(25) |
≈ |
0.6539749042 |
L(21) |
≈ |
0.6539749042 |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 7 | 1+(−48.2+8.29i)T |
good | 3 | 1+(−0.252−0.437i)T+(−40.5+70.1i)T2 |
| 11 | 1+(106.+183.i)T+(−7.32e3+1.26e4i)T2 |
| 13 | 1+45.2T+2.85e4T2 |
| 17 | 1+(−125.−217.i)T+(−4.17e4+7.23e4i)T2 |
| 19 | 1+(405.+234.i)T+(6.51e4+1.12e5i)T2 |
| 23 | 1+(809.+467.i)T+(1.39e5+2.42e5i)T2 |
| 29 | 1−816.T+7.07e5T2 |
| 31 | 1+(853.−492.i)T+(4.61e5−7.99e5i)T2 |
| 37 | 1+(474.+273.i)T+(9.37e5+1.62e6i)T2 |
| 41 | 1−2.48e3iT−2.82e6T2 |
| 43 | 1−1.88e3iT−3.41e6T2 |
| 47 | 1+(289.−502.i)T+(−2.43e6−4.22e6i)T2 |
| 53 | 1+(−312.+180.i)T+(3.94e6−6.83e6i)T2 |
| 59 | 1+(5.28e3−3.04e3i)T+(6.05e6−1.04e7i)T2 |
| 61 | 1+(1.53e3+884.i)T+(6.92e6+1.19e7i)T2 |
| 67 | 1+(−5.17e3+2.98e3i)T+(1.00e7−1.74e7i)T2 |
| 71 | 1−1.01e3T+2.54e7T2 |
| 73 | 1+(−1.54e3−2.67e3i)T+(−1.41e7+2.45e7i)T2 |
| 79 | 1+(361.−626.i)T+(−1.94e7−3.37e7i)T2 |
| 83 | 1−8.10e3T+4.74e7T2 |
| 89 | 1+(2.39e3+1.37e3i)T+(3.13e7+5.43e7i)T2 |
| 97 | 1+1.66e4T+8.85e7T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.404793677081057377230471096318, −8.269941805822597456104022390185, −8.073338295248116279648256774707, −6.65381132398494750412805973188, −5.91168364567639511049584130551, −4.78078565098738053658186782146, −3.87762743283480979419319982791, −2.68922522822876145095283251505, −1.33623318424690748230803426882, −0.14517623425416147251304888355,
1.79316072047752613109972565164, 2.25942138427974275606151525352, 4.05460027612460233674284742648, 4.88570367478690676024550198386, 5.58524394495989462102404095720, 7.08950698458636393712207650342, 7.70329111394387442768828494854, 8.324003014229644731283010638073, 9.636504795890850777885651414445, 10.28561541615328140769309047241