Properties

Label 700.5.o.b.649.11
Level $700$
Weight $5$
Character 700.649
Analytic conductor $72.359$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [700,5,Mod(549,700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(700, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("700.549");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 700.o (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(72.3589741587\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 649.11
Character \(\chi\) \(=\) 700.649
Dual form 700.5.o.b.549.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.252864 + 0.437973i) q^{3} +(48.2934 - 8.29155i) q^{7} +(40.3721 - 69.9266i) q^{9} +(-106.173 - 183.897i) q^{11} -45.2171 q^{13} +(125.724 + 217.760i) q^{17} +(-405.974 - 234.389i) q^{19} +(15.8431 + 19.0546i) q^{21} +(-809.163 - 467.170i) q^{23} +81.7986 q^{27} +816.585 q^{29} +(-853.479 + 492.757i) q^{31} +(53.6948 - 93.0021i) q^{33} +(-474.487 - 273.945i) q^{37} +(-11.4338 - 19.8039i) q^{39} +2483.32i q^{41} +1880.19i q^{43} +(-289.936 + 502.185i) q^{47} +(2263.50 - 800.854i) q^{49} +(-63.5821 + 110.127i) q^{51} +(312.644 - 180.505i) q^{53} -237.075i q^{57} +(-5282.61 + 3049.91i) q^{59} +(-1532.63 - 884.865i) q^{61} +(1369.91 - 3711.74i) q^{63} +(5176.10 - 2988.43i) q^{67} -472.523i q^{69} +1012.99 q^{71} +(1541.84 + 2670.55i) q^{73} +(-6652.26 - 8000.69i) q^{77} +(-361.636 + 626.371i) q^{79} +(-3249.46 - 5628.23i) q^{81} +8101.85 q^{83} +(206.485 + 357.643i) q^{87} +(-2390.20 - 1379.98i) q^{89} +(-2183.69 + 374.920i) q^{91} +(-431.629 - 249.201i) q^{93} -16667.1 q^{97} -17145.8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 468 q^{9} - 300 q^{11} - 1956 q^{19} - 5152 q^{21} + 624 q^{29} + 10392 q^{31} + 13440 q^{39} + 16384 q^{49} + 4264 q^{51} - 20016 q^{59} + 4416 q^{61} - 59664 q^{71} - 18664 q^{79} + 14132 q^{81}+ \cdots - 6120 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/700\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(477\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.252864 + 0.437973i 0.0280960 + 0.0486637i 0.879732 0.475471i \(-0.157722\pi\)
−0.851636 + 0.524134i \(0.824389\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 48.2934 8.29155i 0.985579 0.169215i
\(8\) 0 0
\(9\) 40.3721 69.9266i 0.498421 0.863291i
\(10\) 0 0
\(11\) −106.173 183.897i −0.877465 1.51981i −0.854114 0.520086i \(-0.825900\pi\)
−0.0233507 0.999727i \(-0.507433\pi\)
\(12\) 0 0
\(13\) −45.2171 −0.267557 −0.133778 0.991011i \(-0.542711\pi\)
−0.133778 + 0.991011i \(0.542711\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 125.724 + 217.760i 0.435031 + 0.753495i 0.997298 0.0734603i \(-0.0234042\pi\)
−0.562268 + 0.826955i \(0.690071\pi\)
\(18\) 0 0
\(19\) −405.974 234.389i −1.12458 0.649278i −0.182015 0.983296i \(-0.558262\pi\)
−0.942567 + 0.334018i \(0.891595\pi\)
\(20\) 0 0
\(21\) 15.8431 + 19.0546i 0.0359255 + 0.0432077i
\(22\) 0 0
\(23\) −809.163 467.170i −1.52961 0.883120i −0.999378 0.0352667i \(-0.988772\pi\)
−0.530231 0.847853i \(-0.677895\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 81.7986 0.112207
\(28\) 0 0
\(29\) 816.585 0.970969 0.485484 0.874245i \(-0.338643\pi\)
0.485484 + 0.874245i \(0.338643\pi\)
\(30\) 0 0
\(31\) −853.479 + 492.757i −0.888116 + 0.512754i −0.873326 0.487137i \(-0.838041\pi\)
−0.0147902 + 0.999891i \(0.504708\pi\)
\(32\) 0 0
\(33\) 53.6948 93.0021i 0.0493065 0.0854014i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −474.487 273.945i −0.346594 0.200106i 0.316590 0.948562i \(-0.397462\pi\)
−0.663184 + 0.748456i \(0.730795\pi\)
\(38\) 0 0
\(39\) −11.4338 19.8039i −0.00751728 0.0130203i
\(40\) 0 0
\(41\) 2483.32i 1.47729i 0.674094 + 0.738645i \(0.264534\pi\)
−0.674094 + 0.738645i \(0.735466\pi\)
\(42\) 0 0
\(43\) 1880.19i 1.01687i 0.861101 + 0.508433i \(0.169775\pi\)
−0.861101 + 0.508433i \(0.830225\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −289.936 + 502.185i −0.131252 + 0.227336i −0.924160 0.382007i \(-0.875233\pi\)
0.792907 + 0.609342i \(0.208566\pi\)
\(48\) 0 0
\(49\) 2263.50 800.854i 0.942732 0.333550i
\(50\) 0 0
\(51\) −63.5821 + 110.127i −0.0244453 + 0.0423404i
\(52\) 0 0
\(53\) 312.644 180.505i 0.111301 0.0642595i −0.443316 0.896365i \(-0.646198\pi\)
0.554617 + 0.832106i \(0.312865\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 237.075i 0.0729685i
\(58\) 0 0
\(59\) −5282.61 + 3049.91i −1.51755 + 0.876160i −0.517767 + 0.855522i \(0.673237\pi\)
−0.999787 + 0.0206388i \(0.993430\pi\)
\(60\) 0 0
\(61\) −1532.63 884.865i −0.411887 0.237803i 0.279713 0.960084i \(-0.409761\pi\)
−0.691600 + 0.722281i \(0.743094\pi\)
\(62\) 0 0
\(63\) 1369.91 3711.74i 0.345152 0.935182i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 5176.10 2988.43i 1.15306 0.665722i 0.203432 0.979089i \(-0.434790\pi\)
0.949632 + 0.313367i \(0.101457\pi\)
\(68\) 0 0
\(69\) 472.523i 0.0992486i
\(70\) 0 0
\(71\) 1012.99 0.200949 0.100475 0.994940i \(-0.467964\pi\)
0.100475 + 0.994940i \(0.467964\pi\)
\(72\) 0 0
\(73\) 1541.84 + 2670.55i 0.289331 + 0.501135i 0.973650 0.228047i \(-0.0732339\pi\)
−0.684319 + 0.729182i \(0.739901\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −6652.26 8000.69i −1.12199 1.34942i
\(78\) 0 0
\(79\) −361.636 + 626.371i −0.0579451 + 0.100364i −0.893543 0.448978i \(-0.851788\pi\)
0.835598 + 0.549342i \(0.185122\pi\)
\(80\) 0 0
\(81\) −3249.46 5628.23i −0.495269 0.857830i
\(82\) 0 0
\(83\) 8101.85 1.17606 0.588028 0.808840i \(-0.299904\pi\)
0.588028 + 0.808840i \(0.299904\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 206.485 + 357.643i 0.0272804 + 0.0472510i
\(88\) 0 0
\(89\) −2390.20 1379.98i −0.301755 0.174218i 0.341476 0.939890i \(-0.389073\pi\)
−0.643231 + 0.765672i \(0.722406\pi\)
\(90\) 0 0
\(91\) −2183.69 + 374.920i −0.263698 + 0.0452747i
\(92\) 0 0
\(93\) −431.629 249.201i −0.0499050 0.0288127i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −16667.1 −1.77140 −0.885702 0.464254i \(-0.846323\pi\)
−0.885702 + 0.464254i \(0.846323\pi\)
\(98\) 0 0
\(99\) −17145.8 −1.74939
\(100\) 0 0
\(101\) −12363.0 + 7137.76i −1.21194 + 0.699711i −0.963181 0.268855i \(-0.913355\pi\)
−0.248755 + 0.968566i \(0.580021\pi\)
\(102\) 0 0
\(103\) −9402.08 + 16284.9i −0.886236 + 1.53501i −0.0419464 + 0.999120i \(0.513356\pi\)
−0.844290 + 0.535887i \(0.819977\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −7830.70 4521.05i −0.683963 0.394886i 0.117383 0.993087i \(-0.462549\pi\)
−0.801347 + 0.598200i \(0.795883\pi\)
\(108\) 0 0
\(109\) 6679.42 + 11569.1i 0.562194 + 0.973748i 0.997305 + 0.0733712i \(0.0233758\pi\)
−0.435111 + 0.900377i \(0.643291\pi\)
\(110\) 0 0
\(111\) 277.084i 0.0224887i
\(112\) 0 0
\(113\) 9056.23i 0.709236i −0.935011 0.354618i \(-0.884611\pi\)
0.935011 0.354618i \(-0.115389\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −1825.51 + 3161.87i −0.133356 + 0.230979i
\(118\) 0 0
\(119\) 7877.20 + 9473.92i 0.556260 + 0.669015i
\(120\) 0 0
\(121\) −15225.0 + 26370.5i −1.03989 + 1.80114i
\(122\) 0 0
\(123\) −1087.63 + 627.944i −0.0718904 + 0.0415060i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 30092.6i 1.86575i −0.360203 0.932874i \(-0.617293\pi\)
0.360203 0.932874i \(-0.382707\pi\)
\(128\) 0 0
\(129\) −823.472 + 475.432i −0.0494845 + 0.0285699i
\(130\) 0 0
\(131\) −15708.5 9069.32i −0.915362 0.528485i −0.0332096 0.999448i \(-0.510573\pi\)
−0.882153 + 0.470964i \(0.843906\pi\)
\(132\) 0 0
\(133\) −21549.3 7953.30i −1.21823 0.449618i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 22287.3 12867.6i 1.18745 0.685576i 0.229725 0.973256i \(-0.426217\pi\)
0.957727 + 0.287680i \(0.0928839\pi\)
\(138\) 0 0
\(139\) 7509.03i 0.388646i −0.980938 0.194323i \(-0.937749\pi\)
0.980938 0.194323i \(-0.0622510\pi\)
\(140\) 0 0
\(141\) −293.258 −0.0147507
\(142\) 0 0
\(143\) 4800.84 + 8315.30i 0.234772 + 0.406636i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 923.111 + 788.846i 0.0427188 + 0.0365054i
\(148\) 0 0
\(149\) 9159.85 15865.3i 0.412587 0.714622i −0.582584 0.812770i \(-0.697958\pi\)
0.995172 + 0.0981478i \(0.0312918\pi\)
\(150\) 0 0
\(151\) 14118.8 + 24454.4i 0.619216 + 1.07251i 0.989629 + 0.143647i \(0.0458829\pi\)
−0.370413 + 0.928867i \(0.620784\pi\)
\(152\) 0 0
\(153\) 20303.0 0.867314
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 8441.07 + 14620.4i 0.342451 + 0.593142i 0.984887 0.173197i \(-0.0554096\pi\)
−0.642436 + 0.766339i \(0.722076\pi\)
\(158\) 0 0
\(159\) 158.113 + 91.2864i 0.00625421 + 0.00361087i
\(160\) 0 0
\(161\) −42950.8 15852.0i −1.65699 0.611552i
\(162\) 0 0
\(163\) −3352.33 1935.47i −0.126175 0.0728469i 0.435584 0.900148i \(-0.356542\pi\)
−0.561759 + 0.827301i \(0.689875\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −23763.4 −0.852072 −0.426036 0.904706i \(-0.640090\pi\)
−0.426036 + 0.904706i \(0.640090\pi\)
\(168\) 0 0
\(169\) −26516.4 −0.928413
\(170\) 0 0
\(171\) −32780.1 + 18925.6i −1.12103 + 0.647228i
\(172\) 0 0
\(173\) 7185.09 12444.9i 0.240071 0.415816i −0.720663 0.693285i \(-0.756163\pi\)
0.960734 + 0.277470i \(0.0894958\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −2671.56 1542.43i −0.0852744 0.0492332i
\(178\) 0 0
\(179\) −18366.3 31811.4i −0.573212 0.992833i −0.996233 0.0867131i \(-0.972364\pi\)
0.423021 0.906120i \(-0.360970\pi\)
\(180\) 0 0
\(181\) 10730.7i 0.327544i 0.986498 + 0.163772i \(0.0523661\pi\)
−0.986498 + 0.163772i \(0.947634\pi\)
\(182\) 0 0
\(183\) 895.002i 0.0267253i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 26697.0 46240.6i 0.763448 1.32233i
\(188\) 0 0
\(189\) 3950.33 678.237i 0.110589 0.0189871i
\(190\) 0 0
\(191\) −28115.3 + 48697.2i −0.770684 + 1.33486i 0.166505 + 0.986041i \(0.446752\pi\)
−0.937189 + 0.348823i \(0.886581\pi\)
\(192\) 0 0
\(193\) −12786.7 + 7382.43i −0.343278 + 0.198191i −0.661720 0.749751i \(-0.730173\pi\)
0.318443 + 0.947942i \(0.396840\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 57662.6i 1.48580i −0.669400 0.742902i \(-0.733449\pi\)
0.669400 0.742902i \(-0.266551\pi\)
\(198\) 0 0
\(199\) −20182.3 + 11652.2i −0.509641 + 0.294241i −0.732686 0.680567i \(-0.761734\pi\)
0.223045 + 0.974808i \(0.428400\pi\)
\(200\) 0 0
\(201\) 2617.70 + 1511.33i 0.0647930 + 0.0374083i
\(202\) 0 0
\(203\) 39435.6 6770.75i 0.956967 0.164303i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −65335.3 + 37721.3i −1.52478 + 0.880332i
\(208\) 0 0
\(209\) 99543.5i 2.27887i
\(210\) 0 0
\(211\) 643.371 0.0144510 0.00722548 0.999974i \(-0.497700\pi\)
0.00722548 + 0.999974i \(0.497700\pi\)
\(212\) 0 0
\(213\) 256.148 + 443.661i 0.00564587 + 0.00977894i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −37131.7 + 30873.5i −0.788543 + 0.655642i
\(218\) 0 0
\(219\) −779.754 + 1350.57i −0.0162581 + 0.0281598i
\(220\) 0 0
\(221\) −5684.86 9846.47i −0.116395 0.201603i
\(222\) 0 0
\(223\) 14109.4 0.283726 0.141863 0.989886i \(-0.454691\pi\)
0.141863 + 0.989886i \(0.454691\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −42055.0 72841.4i −0.816142 1.41360i −0.908505 0.417874i \(-0.862775\pi\)
0.0923628 0.995725i \(-0.470558\pi\)
\(228\) 0 0
\(229\) −23336.1 13473.1i −0.444997 0.256919i 0.260718 0.965415i \(-0.416041\pi\)
−0.705715 + 0.708496i \(0.749374\pi\)
\(230\) 0 0
\(231\) 1821.97 4936.60i 0.0341443 0.0925132i
\(232\) 0 0
\(233\) −33977.2 19616.7i −0.625858 0.361339i 0.153288 0.988182i \(-0.451014\pi\)
−0.779146 + 0.626842i \(0.784347\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −365.779 −0.00651211
\(238\) 0 0
\(239\) 938.827 0.0164358 0.00821788 0.999966i \(-0.497384\pi\)
0.00821788 + 0.999966i \(0.497384\pi\)
\(240\) 0 0
\(241\) 1811.67 1045.97i 0.0311921 0.0180088i −0.484323 0.874889i \(-0.660934\pi\)
0.515515 + 0.856881i \(0.327601\pi\)
\(242\) 0 0
\(243\) 4956.19 8584.37i 0.0839335 0.145377i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 18357.0 + 10598.4i 0.300889 + 0.173719i
\(248\) 0 0
\(249\) 2048.67 + 3548.40i 0.0330425 + 0.0572313i
\(250\) 0 0
\(251\) 77587.0i 1.23152i −0.787934 0.615760i \(-0.788849\pi\)
0.787934 0.615760i \(-0.211151\pi\)
\(252\) 0 0
\(253\) 198404.i 3.09963i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 5964.17 10330.2i 0.0902991 0.156403i −0.817338 0.576159i \(-0.804551\pi\)
0.907637 + 0.419756i \(0.137884\pi\)
\(258\) 0 0
\(259\) −25186.0 9295.51i −0.375457 0.138571i
\(260\) 0 0
\(261\) 32967.3 57101.0i 0.483952 0.838229i
\(262\) 0 0
\(263\) −16408.9 + 9473.71i −0.237230 + 0.136965i −0.613903 0.789382i \(-0.710401\pi\)
0.376673 + 0.926346i \(0.377068\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 1395.79i 0.0195793i
\(268\) 0 0
\(269\) 73508.3 42440.0i 1.01585 0.586504i 0.102954 0.994686i \(-0.467171\pi\)
0.912901 + 0.408182i \(0.133837\pi\)
\(270\) 0 0
\(271\) −34775.7 20077.8i −0.473519 0.273387i 0.244192 0.969727i \(-0.421477\pi\)
−0.717712 + 0.696340i \(0.754810\pi\)
\(272\) 0 0
\(273\) −716.380 861.593i −0.00961210 0.0115605i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 55993.3 32327.7i 0.729754 0.421323i −0.0885784 0.996069i \(-0.528232\pi\)
0.818332 + 0.574746i \(0.194899\pi\)
\(278\) 0 0
\(279\) 79574.5i 1.02227i
\(280\) 0 0
\(281\) 31445.7 0.398244 0.199122 0.979975i \(-0.436191\pi\)
0.199122 + 0.979975i \(0.436191\pi\)
\(282\) 0 0
\(283\) −72527.4 125621.i −0.905586 1.56852i −0.820129 0.572178i \(-0.806099\pi\)
−0.0854562 0.996342i \(-0.527235\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 20590.6 + 119928.i 0.249980 + 1.45599i
\(288\) 0 0
\(289\) 10147.5 17576.0i 0.121497 0.210439i
\(290\) 0 0
\(291\) −4214.52 7299.77i −0.0497694 0.0862031i
\(292\) 0 0
\(293\) 65860.7 0.767169 0.383585 0.923506i \(-0.374689\pi\)
0.383585 + 0.923506i \(0.374689\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −8684.82 15042.6i −0.0984573 0.170533i
\(298\) 0 0
\(299\) 36588.0 + 21124.1i 0.409257 + 0.236285i
\(300\) 0 0
\(301\) 15589.7 + 90800.5i 0.172069 + 1.00220i
\(302\) 0 0
\(303\) −6252.30 3609.77i −0.0681011 0.0393182i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 75636.9 0.802523 0.401261 0.915964i \(-0.368572\pi\)
0.401261 + 0.915964i \(0.368572\pi\)
\(308\) 0 0
\(309\) −9509.80 −0.0995988
\(310\) 0 0
\(311\) 24176.3 13958.2i 0.249959 0.144314i −0.369787 0.929117i \(-0.620569\pi\)
0.619745 + 0.784803i \(0.287236\pi\)
\(312\) 0 0
\(313\) 24198.6 41913.1i 0.247002 0.427820i −0.715690 0.698418i \(-0.753888\pi\)
0.962693 + 0.270597i \(0.0872212\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −4441.67 2564.40i −0.0442005 0.0255192i 0.477737 0.878503i \(-0.341457\pi\)
−0.521937 + 0.852984i \(0.674791\pi\)
\(318\) 0 0
\(319\) −86699.4 150168.i −0.851991 1.47569i
\(320\) 0 0
\(321\) 4572.85i 0.0443789i
\(322\) 0 0
\(323\) 117873.i 1.12982i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −3377.97 + 5850.82i −0.0315908 + 0.0547169i
\(328\) 0 0
\(329\) −9838.12 + 26656.2i −0.0908909 + 0.246267i
\(330\) 0 0
\(331\) −38682.4 + 66999.8i −0.353067 + 0.611530i −0.986785 0.162034i \(-0.948195\pi\)
0.633718 + 0.773564i \(0.281528\pi\)
\(332\) 0 0
\(333\) −38312.1 + 22119.5i −0.345500 + 0.199474i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 149619.i 1.31743i 0.752392 + 0.658716i \(0.228900\pi\)
−0.752392 + 0.658716i \(0.771100\pi\)
\(338\) 0 0
\(339\) 3966.39 2290.00i 0.0345141 0.0199267i
\(340\) 0 0
\(341\) 181233. + 104635.i 1.55858 + 0.899847i
\(342\) 0 0
\(343\) 102672. 57443.8i 0.872696 0.488265i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −8421.59 + 4862.21i −0.0699415 + 0.0403808i −0.534563 0.845129i \(-0.679524\pi\)
0.464621 + 0.885509i \(0.346190\pi\)
\(348\) 0 0
\(349\) 120587.i 0.990031i −0.868884 0.495016i \(-0.835162\pi\)
0.868884 0.495016i \(-0.164838\pi\)
\(350\) 0 0
\(351\) −3698.69 −0.0300216
\(352\) 0 0
\(353\) 50375.8 + 87253.5i 0.404271 + 0.700218i 0.994236 0.107210i \(-0.0341919\pi\)
−0.589965 + 0.807429i \(0.700859\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −2157.47 + 5845.62i −0.0169281 + 0.0458663i
\(358\) 0 0
\(359\) 95046.0 164624.i 0.737471 1.27734i −0.216160 0.976358i \(-0.569353\pi\)
0.953631 0.300979i \(-0.0973133\pi\)
\(360\) 0 0
\(361\) 44716.2 + 77450.7i 0.343123 + 0.594307i
\(362\) 0 0
\(363\) −15399.4 −0.116867
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 96415.0 + 166996.i 0.715835 + 1.23986i 0.962637 + 0.270796i \(0.0872869\pi\)
−0.246802 + 0.969066i \(0.579380\pi\)
\(368\) 0 0
\(369\) 173650. + 100257.i 1.27533 + 0.736313i
\(370\) 0 0
\(371\) 13601.9 11309.5i 0.0988219 0.0821666i
\(372\) 0 0
\(373\) −134506. 77656.9i −0.966770 0.558165i −0.0685200 0.997650i \(-0.521828\pi\)
−0.898250 + 0.439485i \(0.855161\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −36923.6 −0.259789
\(378\) 0 0
\(379\) −11340.1 −0.0789472 −0.0394736 0.999221i \(-0.512568\pi\)
−0.0394736 + 0.999221i \(0.512568\pi\)
\(380\) 0 0
\(381\) 13179.8 7609.35i 0.0907942 0.0524201i
\(382\) 0 0
\(383\) 9003.33 15594.2i 0.0613770 0.106308i −0.833704 0.552211i \(-0.813784\pi\)
0.895081 + 0.445903i \(0.147117\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 131475. + 75907.1i 0.877852 + 0.506828i
\(388\) 0 0
\(389\) 104843. + 181594.i 0.692854 + 1.20006i 0.970899 + 0.239490i \(0.0769801\pi\)
−0.278045 + 0.960568i \(0.589687\pi\)
\(390\) 0 0
\(391\) 234938.i 1.53674i
\(392\) 0 0
\(393\) 9173.23i 0.0593932i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 101932. 176552.i 0.646740 1.12019i −0.337156 0.941449i \(-0.609465\pi\)
0.983897 0.178738i \(-0.0572016\pi\)
\(398\) 0 0
\(399\) −1965.71 11449.1i −0.0123474 0.0719162i
\(400\) 0 0
\(401\) 150116. 260008.i 0.933549 1.61695i 0.156347 0.987702i \(-0.450028\pi\)
0.777202 0.629251i \(-0.216638\pi\)
\(402\) 0 0
\(403\) 38591.8 22281.0i 0.237621 0.137191i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 116343.i 0.702344i
\(408\) 0 0
\(409\) −94863.0 + 54769.2i −0.567088 + 0.327408i −0.755985 0.654589i \(-0.772842\pi\)
0.188898 + 0.981997i \(0.439509\pi\)
\(410\) 0 0
\(411\) 11271.3 + 6507.49i 0.0667253 + 0.0385239i
\(412\) 0 0
\(413\) −229826. + 191092.i −1.34741 + 1.12032i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 3288.75 1898.76i 0.0189130 0.0109194i
\(418\) 0 0
\(419\) 85384.2i 0.486350i −0.969982 0.243175i \(-0.921811\pi\)
0.969982 0.243175i \(-0.0781890\pi\)
\(420\) 0 0
\(421\) 133199. 0.751513 0.375757 0.926718i \(-0.377383\pi\)
0.375757 + 0.926718i \(0.377383\pi\)
\(422\) 0 0
\(423\) 23410.7 + 40548.5i 0.130838 + 0.226618i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −81352.8 30025.2i −0.446187 0.164676i
\(428\) 0 0
\(429\) −2427.92 + 4205.28i −0.0131923 + 0.0228497i
\(430\) 0 0
\(431\) −47243.2 81827.6i −0.254322 0.440499i 0.710389 0.703809i \(-0.248519\pi\)
−0.964711 + 0.263310i \(0.915186\pi\)
\(432\) 0 0
\(433\) −268999. −1.43474 −0.717372 0.696691i \(-0.754655\pi\)
−0.717372 + 0.696691i \(0.754655\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 218999. + 379318.i 1.14678 + 1.98628i
\(438\) 0 0
\(439\) 27940.5 + 16131.5i 0.144979 + 0.0837036i 0.570735 0.821134i \(-0.306658\pi\)
−0.425756 + 0.904838i \(0.639992\pi\)
\(440\) 0 0
\(441\) 35381.4 190611.i 0.181927 0.980101i
\(442\) 0 0
\(443\) 182039. + 105100.i 0.927591 + 0.535545i 0.886049 0.463592i \(-0.153440\pi\)
0.0415419 + 0.999137i \(0.486773\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 9264.79 0.0463682
\(448\) 0 0
\(449\) 72203.4 0.358150 0.179075 0.983835i \(-0.442690\pi\)
0.179075 + 0.983835i \(0.442690\pi\)
\(450\) 0 0
\(451\) 456677. 263663.i 2.24521 1.29627i
\(452\) 0 0
\(453\) −7140.25 + 12367.3i −0.0347950 + 0.0602667i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −346877. 200269.i −1.66090 0.958919i −0.972288 0.233786i \(-0.924888\pi\)
−0.688609 0.725133i \(-0.741778\pi\)
\(458\) 0 0
\(459\) 10284.0 + 17812.5i 0.0488133 + 0.0845471i
\(460\) 0 0
\(461\) 49928.5i 0.234934i 0.993077 + 0.117467i \(0.0374775\pi\)
−0.993077 + 0.117467i \(0.962523\pi\)
\(462\) 0 0
\(463\) 17248.5i 0.0804617i −0.999190 0.0402309i \(-0.987191\pi\)
0.999190 0.0402309i \(-0.0128093\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −140847. + 243954.i −0.645822 + 1.11860i 0.338288 + 0.941042i \(0.390152\pi\)
−0.984111 + 0.177555i \(0.943181\pi\)
\(468\) 0 0
\(469\) 225193. 187239.i 1.02379 0.851238i
\(470\) 0 0
\(471\) −4268.89 + 7393.93i −0.0192430 + 0.0333299i
\(472\) 0 0
\(473\) 345761. 199625.i 1.54545 0.892264i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 29149.5i 0.128113i
\(478\) 0 0
\(479\) −210162. + 121337.i −0.915974 + 0.528838i −0.882349 0.470597i \(-0.844039\pi\)
−0.0336257 + 0.999434i \(0.510705\pi\)
\(480\) 0 0
\(481\) 21454.9 + 12387.0i 0.0927335 + 0.0535397i
\(482\) 0 0
\(483\) −3917.94 22819.7i −0.0167944 0.0978174i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 183874. 106160.i 0.775289 0.447613i −0.0594694 0.998230i \(-0.518941\pi\)
0.834758 + 0.550617i \(0.185608\pi\)
\(488\) 0 0
\(489\) 1957.64i 0.00818683i
\(490\) 0 0
\(491\) 113473. 0.470685 0.235342 0.971913i \(-0.424379\pi\)
0.235342 + 0.971913i \(0.424379\pi\)
\(492\) 0 0
\(493\) 102664. + 177820.i 0.422401 + 0.731620i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 48920.5 8399.22i 0.198051 0.0340037i
\(498\) 0 0
\(499\) −62483.6 + 108225.i −0.250937 + 0.434636i −0.963784 0.266684i \(-0.914072\pi\)
0.712847 + 0.701320i \(0.247405\pi\)
\(500\) 0 0
\(501\) −6008.92 10407.8i −0.0239398 0.0414650i
\(502\) 0 0
\(503\) 19956.1 0.0788752 0.0394376 0.999222i \(-0.487443\pi\)
0.0394376 + 0.999222i \(0.487443\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −6705.05 11613.5i −0.0260847 0.0451801i
\(508\) 0 0
\(509\) −139552. 80570.2i −0.538641 0.310985i 0.205887 0.978576i \(-0.433992\pi\)
−0.744528 + 0.667591i \(0.767325\pi\)
\(510\) 0 0
\(511\) 96603.8 + 116186.i 0.369958 + 0.444949i
\(512\) 0 0
\(513\) −33208.1 19172.7i −0.126186 0.0728533i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 123134. 0.460677
\(518\) 0 0
\(519\) 7267.41 0.0269802
\(520\) 0 0
\(521\) −164098. + 94742.2i −0.604545 + 0.349034i −0.770828 0.637044i \(-0.780157\pi\)
0.166282 + 0.986078i \(0.446824\pi\)
\(522\) 0 0
\(523\) 141732. 245488.i 0.518162 0.897483i −0.481615 0.876383i \(-0.659950\pi\)
0.999777 0.0211003i \(-0.00671694\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −214605. 123903.i −0.772715 0.446127i
\(528\) 0 0
\(529\) 296576. + 513685.i 1.05980 + 1.83563i
\(530\) 0 0
\(531\) 492526.i 1.74679i
\(532\) 0 0
\(533\) 112289.i 0.395259i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 9288.36 16087.9i 0.0322100 0.0557893i
\(538\) 0 0
\(539\) −387598. 331223.i −1.33415 1.14010i
\(540\) 0 0
\(541\) −38150.1 + 66077.9i −0.130347 + 0.225768i −0.923810 0.382850i \(-0.874942\pi\)
0.793463 + 0.608618i \(0.208276\pi\)
\(542\) 0 0
\(543\) −4699.74 + 2713.40i −0.0159395 + 0.00920267i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 441553.i 1.47573i 0.674946 + 0.737867i \(0.264167\pi\)
−0.674946 + 0.737867i \(0.735833\pi\)
\(548\) 0 0
\(549\) −123751. + 71447.7i −0.410586 + 0.237052i
\(550\) 0 0
\(551\) −331512. 191399.i −1.09193 0.630429i
\(552\) 0 0
\(553\) −12271.0 + 33248.1i −0.0401264 + 0.108722i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 28144.5 16249.3i 0.0907159 0.0523749i −0.453956 0.891024i \(-0.649988\pi\)
0.544672 + 0.838649i \(0.316654\pi\)
\(558\) 0 0
\(559\) 85016.5i 0.272069i
\(560\) 0 0
\(561\) 27002.9 0.0857994
\(562\) 0 0
\(563\) 11647.2 + 20173.6i 0.0367456 + 0.0636452i 0.883813 0.467840i \(-0.154968\pi\)
−0.847068 + 0.531485i \(0.821634\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −203594. 244863.i −0.633284 0.761653i
\(568\) 0 0
\(569\) 265132. 459222.i 0.818913 1.41840i −0.0875701 0.996158i \(-0.527910\pi\)
0.906484 0.422241i \(-0.138756\pi\)
\(570\) 0 0
\(571\) −40585.1 70295.4i −0.124478 0.215603i 0.797051 0.603913i \(-0.206392\pi\)
−0.921529 + 0.388310i \(0.873059\pi\)
\(572\) 0 0
\(573\) −28437.4 −0.0866126
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 261245. + 452490.i 0.784688 + 1.35912i 0.929185 + 0.369614i \(0.120510\pi\)
−0.144498 + 0.989505i \(0.546157\pi\)
\(578\) 0 0
\(579\) −6466.62 3733.50i −0.0192895 0.0111368i
\(580\) 0 0
\(581\) 391266. 67176.9i 1.15910 0.199007i
\(582\) 0 0
\(583\) −66388.8 38329.6i −0.195325 0.112771i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 534587. 1.55147 0.775733 0.631061i \(-0.217380\pi\)
0.775733 + 0.631061i \(0.217380\pi\)
\(588\) 0 0
\(589\) 461987. 1.33168
\(590\) 0 0
\(591\) 25254.7 14580.8i 0.0723048 0.0417452i
\(592\) 0 0
\(593\) −200296. + 346922.i −0.569590 + 0.986559i 0.427016 + 0.904244i \(0.359565\pi\)
−0.996606 + 0.0823148i \(0.973769\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −10206.8 5892.87i −0.0286378 0.0165340i
\(598\) 0 0
\(599\) −208037. 360331.i −0.579812 1.00426i −0.995500 0.0947564i \(-0.969793\pi\)
0.415689 0.909507i \(-0.363541\pi\)
\(600\) 0 0
\(601\) 208179.i 0.576351i 0.957578 + 0.288175i \(0.0930486\pi\)
−0.957578 + 0.288175i \(0.906951\pi\)
\(602\) 0 0
\(603\) 482596.i 1.32724i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 242055. 419251.i 0.656956 1.13788i −0.324444 0.945905i \(-0.605177\pi\)
0.981400 0.191976i \(-0.0614895\pi\)
\(608\) 0 0
\(609\) 12937.3 + 15559.7i 0.0348825 + 0.0419533i
\(610\) 0 0
\(611\) 13110.1 22707.3i 0.0351174 0.0608252i
\(612\) 0 0
\(613\) −362093. + 209055.i −0.963607 + 0.556339i −0.897281 0.441460i \(-0.854461\pi\)
−0.0663254 + 0.997798i \(0.521128\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 84089.6i 0.220888i 0.993882 + 0.110444i \(0.0352273\pi\)
−0.993882 + 0.110444i \(0.964773\pi\)
\(618\) 0 0
\(619\) −268098. + 154786.i −0.699701 + 0.403972i −0.807236 0.590229i \(-0.799037\pi\)
0.107535 + 0.994201i \(0.465704\pi\)
\(620\) 0 0
\(621\) −66188.4 38213.9i −0.171632 0.0990919i
\(622\) 0 0
\(623\) −126873. 46825.5i −0.326884 0.120644i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −43597.4 + 25171.0i −0.110898 + 0.0640272i
\(628\) 0 0
\(629\) 137766.i 0.348209i
\(630\) 0 0
\(631\) −698410. −1.75409 −0.877045 0.480408i \(-0.840489\pi\)
−0.877045 + 0.480408i \(0.840489\pi\)
\(632\) 0 0
\(633\) 162.685 + 281.780i 0.000406014 + 0.000703237i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −102349. + 36212.3i −0.252234 + 0.0892435i
\(638\) 0 0
\(639\) 40896.4 70834.6i 0.100157 0.173478i
\(640\) 0 0
\(641\) −134751. 233396.i −0.327956 0.568037i 0.654150 0.756365i \(-0.273027\pi\)
−0.982106 + 0.188328i \(0.939693\pi\)
\(642\) 0 0
\(643\) 67730.3 0.163818 0.0819089 0.996640i \(-0.473898\pi\)
0.0819089 + 0.996640i \(0.473898\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −270817. 469068.i −0.646944 1.12054i −0.983849 0.179002i \(-0.942713\pi\)
0.336904 0.941539i \(-0.390620\pi\)
\(648\) 0 0
\(649\) 1.12174e6 + 647638.i 2.66320 + 1.53760i
\(650\) 0 0
\(651\) −22911.1 8455.88i −0.0540609 0.0199525i
\(652\) 0 0
\(653\) 18149.6 + 10478.7i 0.0425637 + 0.0245742i 0.521131 0.853477i \(-0.325510\pi\)
−0.478567 + 0.878051i \(0.658844\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 248990. 0.576834
\(658\) 0 0
\(659\) −352991. −0.812817 −0.406409 0.913691i \(-0.633219\pi\)
−0.406409 + 0.913691i \(0.633219\pi\)
\(660\) 0 0
\(661\) −331273. + 191260.i −0.758199 + 0.437746i −0.828649 0.559769i \(-0.810890\pi\)
0.0704500 + 0.997515i \(0.477556\pi\)
\(662\) 0 0
\(663\) 2875.00 4979.64i 0.00654049 0.0113285i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −660750. 381484.i −1.48520 0.857482i
\(668\) 0 0
\(669\) 3567.76 + 6179.54i 0.00797156 + 0.0138071i
\(670\) 0 0
\(671\) 375796.i 0.834655i
\(672\) 0 0
\(673\) 436693.i 0.964153i 0.876129 + 0.482077i \(0.160117\pi\)
−0.876129 + 0.482077i \(0.839883\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 217479. 376685.i 0.474504 0.821865i −0.525070 0.851059i \(-0.675961\pi\)
0.999574 + 0.0291939i \(0.00929402\pi\)
\(678\) 0 0
\(679\) −804913. + 138196.i −1.74586 + 0.299749i
\(680\) 0 0
\(681\) 21268.4 36837.9i 0.0458607 0.0794330i
\(682\) 0 0
\(683\) −89862.6 + 51882.2i −0.192636 + 0.111218i −0.593216 0.805043i \(-0.702142\pi\)
0.400580 + 0.916262i \(0.368809\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 13627.4i 0.0288736i
\(688\) 0 0
\(689\) −14136.8 + 8161.90i −0.0297792 + 0.0171930i
\(690\) 0 0
\(691\) −268293. 154899.i −0.561893 0.324409i 0.192012 0.981393i \(-0.438499\pi\)
−0.753905 + 0.656984i \(0.771832\pi\)
\(692\) 0 0
\(693\) −828026. + 142165.i −1.72416 + 0.296023i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −540769. + 312213.i −1.11313 + 0.642666i
\(698\) 0 0
\(699\) 19841.5i 0.0406088i
\(700\) 0 0
\(701\) −201098. −0.409234 −0.204617 0.978842i \(-0.565595\pi\)
−0.204617 + 0.978842i \(0.565595\pi\)
\(702\) 0 0
\(703\) 128420. + 222429.i 0.259849 + 0.450071i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −537866. + 447214.i −1.07606 + 0.894699i
\(708\) 0 0
\(709\) −380972. + 659864.i −0.757881 + 1.31269i 0.186048 + 0.982541i \(0.440432\pi\)
−0.943929 + 0.330148i \(0.892901\pi\)
\(710\) 0 0
\(711\) 29200.0 + 50575.9i 0.0577622 + 0.100047i
\(712\) 0 0
\(713\) 920805. 1.81129
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 237.396 + 411.181i 0.000461779 + 0.000799825i
\(718\) 0 0
\(719\) −116578. 67306.3i −0.225506 0.130196i 0.382991 0.923752i \(-0.374894\pi\)
−0.608497 + 0.793556i \(0.708227\pi\)
\(720\) 0 0
\(721\) −319031. + 864410.i −0.613710 + 1.66284i
\(722\) 0 0
\(723\) 916.212 + 528.975i 0.00175275 + 0.00101195i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 13108.8 0.0248024 0.0124012 0.999923i \(-0.496052\pi\)
0.0124012 + 0.999923i \(0.496052\pi\)
\(728\) 0 0
\(729\) −521399. −0.981105
\(730\) 0 0
\(731\) −409430. + 236384.i −0.766204 + 0.442368i
\(732\) 0 0
\(733\) 362547. 627950.i 0.674771 1.16874i −0.301765 0.953382i \(-0.597576\pi\)
0.976536 0.215355i \(-0.0690908\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1.09913e6 634581.i −2.02355 1.16829i
\(738\) 0 0
\(739\) −89456.6 154943.i −0.163804 0.283716i 0.772426 0.635105i \(-0.219043\pi\)
−0.936230 + 0.351388i \(0.885710\pi\)
\(740\) 0 0
\(741\) 10719.8i 0.0195232i
\(742\) 0 0
\(743\) 503755.i 0.912518i −0.889847 0.456259i \(-0.849189\pi\)
0.889847 0.456259i \(-0.150811\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 327089. 566535.i 0.586172 1.01528i
\(748\) 0 0
\(749\) −415657. 153408.i −0.740921 0.273455i
\(750\) 0 0
\(751\) 110955. 192179.i 0.196728 0.340742i −0.750738 0.660600i \(-0.770302\pi\)
0.947465 + 0.319858i \(0.103635\pi\)
\(752\) 0 0
\(753\) 33981.0 19619.0i 0.0599303 0.0346008i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 609454.i 1.06353i −0.846892 0.531764i \(-0.821529\pi\)
0.846892 0.531764i \(-0.178471\pi\)
\(758\) 0 0
\(759\) −86895.7 + 50169.2i −0.150839 + 0.0870871i
\(760\) 0 0
\(761\) 25738.1 + 14859.9i 0.0444434 + 0.0256594i 0.522057 0.852911i \(-0.325165\pi\)
−0.477614 + 0.878570i \(0.658498\pi\)
\(762\) 0 0
\(763\) 418498. + 503328.i 0.718859 + 0.864574i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 238864. 137908.i 0.406032 0.234423i
\(768\) 0 0
\(769\) 917153.i 1.55092i 0.631397 + 0.775460i \(0.282482\pi\)
−0.631397 + 0.775460i \(0.717518\pi\)
\(770\) 0 0
\(771\) 6032.50 0.0101482
\(772\) 0 0
\(773\) 322053. + 557812.i 0.538975 + 0.933531i 0.998960 + 0.0456046i \(0.0145214\pi\)
−0.459985 + 0.887927i \(0.652145\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −2297.45 13381.3i −0.00380544 0.0221644i
\(778\) 0 0
\(779\) 582065. 1.00817e6i 0.959172 1.66133i
\(780\) 0 0
\(781\) −107552. 186285.i −0.176326 0.305405i
\(782\) 0 0
\(783\) 66795.5 0.108949
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −432899. 749803.i −0.698935 1.21059i −0.968836 0.247703i \(-0.920324\pi\)
0.269901 0.962888i \(-0.413009\pi\)
\(788\) 0 0
\(789\) −8298.46 4791.12i −0.0133304 0.00769632i
\(790\) 0 0
\(791\) −75090.2 437356.i −0.120014 0.699008i
\(792\) 0 0
\(793\) 69301.1 + 40011.0i 0.110203 + 0.0636258i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 679441. 1.06963 0.534817 0.844968i \(-0.320381\pi\)
0.534817 + 0.844968i \(0.320381\pi\)
\(798\) 0 0
\(799\) −145808. −0.228395
\(800\) 0 0
\(801\) −192995. + 111426.i −0.300802 + 0.173668i
\(802\) 0 0
\(803\) 327405. 567082.i 0.507755 0.879457i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 37175.2 + 21463.1i 0.0570829 + 0.0329568i
\(808\) 0 0
\(809\) 62901.2 + 108948.i 0.0961085 + 0.166465i 0.910071 0.414453i \(-0.136027\pi\)
−0.813962 + 0.580918i \(0.802694\pi\)
\(810\) 0 0
\(811\) 977721.i 1.48653i −0.668998 0.743265i \(-0.733276\pi\)
0.668998 0.743265i \(-0.266724\pi\)
\(812\) 0 0
\(813\) 20307.8i 0.0307243i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 440695. 763307.i 0.660229 1.14355i
\(818\) 0 0
\(819\) −61943.2 + 167834.i −0.0923476 + 0.250214i
\(820\) 0 0
\(821\) −526935. + 912679.i −0.781756 + 1.35404i 0.149162 + 0.988813i \(0.452342\pi\)
−0.930918 + 0.365228i \(0.880991\pi\)
\(822\) 0 0
\(823\) 477455. 275659.i 0.704909 0.406979i −0.104264 0.994550i \(-0.533249\pi\)
0.809173 + 0.587570i \(0.199915\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 172431.i 0.252119i 0.992023 + 0.126059i \(0.0402330\pi\)
−0.992023 + 0.126059i \(0.959767\pi\)
\(828\) 0 0
\(829\) −200582. + 115806.i −0.291865 + 0.168508i −0.638783 0.769387i \(-0.720562\pi\)
0.346918 + 0.937896i \(0.387228\pi\)
\(830\) 0 0
\(831\) 28317.4 + 16349.0i 0.0410063 + 0.0236750i
\(832\) 0 0
\(833\) 458970. + 392214.i 0.661446 + 0.565240i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −69813.4 + 40306.8i −0.0996525 + 0.0575344i
\(838\) 0 0
\(839\) 250894.i 0.356424i 0.983992 + 0.178212i \(0.0570312\pi\)
−0.983992 + 0.178212i \(0.942969\pi\)
\(840\) 0 0
\(841\) −40470.2 −0.0572194
\(842\) 0 0
\(843\) 7951.49 + 13772.4i 0.0111891 + 0.0193800i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −516615. + 1.39976e6i −0.720112 + 1.95113i
\(848\) 0 0
\(849\) 36679.2 63530.2i 0.0508867 0.0881383i
\(850\) 0 0
\(851\) 255958. + 443333.i 0.353435 + 0.612168i
\(852\) 0 0
\(853\) −1.44175e6 −1.98150 −0.990748 0.135711i \(-0.956668\pi\)
−0.990748 + 0.135711i \(0.956668\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 69114.7 + 119710.i 0.0941041 + 0.162993i 0.909234 0.416285i \(-0.136668\pi\)
−0.815130 + 0.579278i \(0.803335\pi\)
\(858\) 0 0
\(859\) 405697. + 234229.i 0.549813 + 0.317435i 0.749047 0.662517i \(-0.230512\pi\)
−0.199234 + 0.979952i \(0.563845\pi\)
\(860\) 0 0
\(861\) −47318.7 + 39343.7i −0.0638303 + 0.0530724i
\(862\) 0 0
\(863\) −595253. 343669.i −0.799245 0.461444i 0.0439621 0.999033i \(-0.486002\pi\)
−0.843207 + 0.537589i \(0.819335\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 10263.8 0.0136543
\(868\) 0 0
\(869\) 153584. 0.203379
\(870\) 0 0
\(871\) −234048. + 135128.i −0.308510 + 0.178118i
\(872\) 0 0
\(873\) −672888. + 1.16548e6i −0.882906 + 1.52924i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −182571. 105408.i −0.237374 0.137048i 0.376595 0.926378i \(-0.377095\pi\)
−0.613969 + 0.789330i \(0.710428\pi\)
\(878\) 0 0
\(879\) 16653.8 + 28845.3i 0.0215544 + 0.0373333i
\(880\) 0 0
\(881\) 367667.i 0.473699i 0.971546 + 0.236850i \(0.0761149\pi\)
−0.971546 + 0.236850i \(0.923885\pi\)
\(882\) 0 0
\(883\) 1.11838e6i 1.43439i 0.696872 + 0.717196i \(0.254575\pi\)
−0.696872 + 0.717196i \(0.745425\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 642118. 1.11218e6i 0.816145 1.41360i −0.0923576 0.995726i \(-0.529440\pi\)
0.908503 0.417879i \(-0.137226\pi\)
\(888\) 0 0
\(889\) −249515. 1.45328e6i −0.315713 1.83884i
\(890\) 0 0
\(891\) −690011. + 1.19513e6i −0.869161 + 1.50543i
\(892\) 0 0
\(893\) 235413. 135916.i 0.295208 0.170438i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 21366.1i 0.0265546i
\(898\) 0 0
\(899\) −696938. + 402378.i −0.862333 + 0.497868i
\(900\) 0 0
\(901\) 78613.5 + 45387.5i 0.0968384 + 0.0559097i
\(902\) 0 0
\(903\) −35826.2 + 29788.1i −0.0439364 + 0.0365314i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 340115. 196365.i 0.413439 0.238699i −0.278827 0.960341i \(-0.589946\pi\)
0.692266 + 0.721642i \(0.256612\pi\)
\(908\) 0 0
\(909\) 1.15267e6i 1.39500i
\(910\) 0 0
\(911\) −582974. −0.702445 −0.351223 0.936292i \(-0.614234\pi\)
−0.351223 + 0.936292i \(0.614234\pi\)
\(912\) 0 0
\(913\) −860200. 1.48991e6i −1.03195 1.78739i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −833817. 307740.i −0.991589 0.365970i
\(918\) 0 0
\(919\) 268690. 465385.i 0.318142 0.551038i −0.661958 0.749541i \(-0.730274\pi\)
0.980100 + 0.198503i \(0.0636078\pi\)
\(920\) 0 0
\(921\) 19125.9 + 33127.0i 0.0225477 + 0.0390537i
\(922\) 0 0
\(923\) −45804.2 −0.0537653
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 759164. + 1.31491e6i 0.883438 + 1.53016i
\(928\) 0 0
\(929\) 742125. + 428466.i 0.859896 + 0.496461i 0.863977 0.503531i \(-0.167966\pi\)
−0.00408163 + 0.999992i \(0.501299\pi\)
\(930\) 0 0
\(931\) −1.10663e6 205414.i −1.27675 0.236991i
\(932\) 0 0
\(933\) 12226.6 + 7059.04i 0.0140457 + 0.00810929i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −1.10816e6 −1.26218 −0.631092 0.775708i \(-0.717393\pi\)
−0.631092 + 0.775708i \(0.717393\pi\)
\(938\) 0 0
\(939\) 24475.8 0.0277591
\(940\) 0 0
\(941\) 1.03129e6 595418.i 1.16467 0.672424i 0.212253 0.977215i \(-0.431920\pi\)
0.952419 + 0.304791i \(0.0985866\pi\)
\(942\) 0 0
\(943\) 1.16014e6 2.00941e6i 1.30462 2.25968i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −407696. 235384.i −0.454608 0.262468i 0.255166 0.966897i \(-0.417870\pi\)
−0.709774 + 0.704429i \(0.751203\pi\)
\(948\) 0 0
\(949\) −69717.6 120754.i −0.0774124 0.134082i
\(950\) 0 0
\(951\) 2593.78i 0.00286795i
\(952\) 0 0
\(953\) 987964.i 1.08782i 0.839145 + 0.543908i \(0.183056\pi\)
−0.839145 + 0.543908i \(0.816944\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 43846.4 75944.1i 0.0478751 0.0829221i
\(958\) 0 0
\(959\) 969636. 806214.i 1.05432 0.876624i
\(960\) 0 0
\(961\) 23857.6 41322.6i 0.0258333 0.0447447i
\(962\) 0 0
\(963\) −632284. + 365049.i −0.681804 + 0.393640i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 498312.i 0.532903i 0.963848 + 0.266451i \(0.0858512\pi\)
−0.963848 + 0.266451i \(0.914149\pi\)
\(968\) 0 0
\(969\) 51625.4 29805.9i 0.0549814 0.0317435i
\(970\) 0 0
\(971\) −575246. 332118.i −0.610119 0.352253i 0.162893 0.986644i \(-0.447918\pi\)
−0.773012 + 0.634391i \(0.781251\pi\)
\(972\) 0 0
\(973\) −62261.4 362636.i −0.0657648 0.383041i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 625763. 361284.i 0.655572 0.378495i −0.135016 0.990843i \(-0.543108\pi\)
0.790588 + 0.612349i \(0.209775\pi\)
\(978\) 0 0
\(979\) 586069.i 0.611481i
\(980\) 0 0
\(981\) 1.07865e6 1.12084
\(982\) 0 0
\(983\) 533658. + 924322.i 0.552276 + 0.956569i 0.998110 + 0.0614538i \(0.0195737\pi\)
−0.445834 + 0.895115i \(0.647093\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −14162.4 + 2431.56i −0.0145380 + 0.00249604i
\(988\) 0 0
\(989\) 878368. 1.52138e6i 0.898015 1.55541i
\(990\) 0 0
\(991\) 775245. + 1.34276e6i 0.789391 + 1.36726i 0.926341 + 0.376687i \(0.122937\pi\)
−0.136950 + 0.990578i \(0.543730\pi\)
\(992\) 0 0
\(993\) −39125.5 −0.0396791
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 802368. + 1.38974e6i 0.807204 + 1.39812i 0.914793 + 0.403923i \(0.132354\pi\)
−0.107589 + 0.994195i \(0.534313\pi\)
\(998\) 0 0
\(999\) −38812.4 22408.3i −0.0388901 0.0224532i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 700.5.o.b.649.11 40
5.2 odd 4 140.5.r.a.61.5 20
5.3 odd 4 700.5.s.b.201.6 20
5.4 even 2 inner 700.5.o.b.649.10 40
7.3 odd 6 inner 700.5.o.b.549.10 40
35.2 odd 12 980.5.d.a.881.11 20
35.3 even 12 700.5.s.b.101.6 20
35.12 even 12 980.5.d.a.881.10 20
35.17 even 12 140.5.r.a.101.5 yes 20
35.24 odd 6 inner 700.5.o.b.549.11 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.5.r.a.61.5 20 5.2 odd 4
140.5.r.a.101.5 yes 20 35.17 even 12
700.5.o.b.549.10 40 7.3 odd 6 inner
700.5.o.b.549.11 40 35.24 odd 6 inner
700.5.o.b.649.10 40 5.4 even 2 inner
700.5.o.b.649.11 40 1.1 even 1 trivial
700.5.s.b.101.6 20 35.3 even 12
700.5.s.b.201.6 20 5.3 odd 4
980.5.d.a.881.10 20 35.12 even 12
980.5.d.a.881.11 20 35.2 odd 12