L(s) = 1 | + (1.35 − 0.784i)3-s + (−42.3 + 24.5i)7-s + (−39.2 + 68.0i)9-s + (−11.7 − 20.3i)11-s + 136. i·13-s + (227. − 131. i)17-s + (−387. − 223. i)19-s + (−38.3 + 66.6i)21-s + (−374. + 648. i)23-s + 250. i·27-s + 406.·29-s + (−584. + 337. i)31-s + (−31.9 − 18.4i)33-s + (372. − 645. i)37-s + (106. + 185. i)39-s + ⋯ |
L(s) = 1 | + (0.151 − 0.0871i)3-s + (−0.865 + 0.501i)7-s + (−0.484 + 0.839i)9-s + (−0.0971 − 0.168i)11-s + 0.806i·13-s + (0.786 − 0.454i)17-s + (−1.07 − 0.619i)19-s + (−0.0869 + 0.151i)21-s + (−0.708 + 1.22i)23-s + 0.343i·27-s + 0.483·29-s + (−0.607 + 0.350i)31-s + (−0.0293 − 0.0169i)33-s + (0.272 − 0.471i)37-s + (0.0702 + 0.121i)39-s + ⋯ |
Λ(s)=(=(700s/2ΓC(s)L(s)(−0.124+0.992i)Λ(5−s)
Λ(s)=(=(700s/2ΓC(s+2)L(s)(−0.124+0.992i)Λ(1−s)
Degree: |
2 |
Conductor: |
700
= 22⋅52⋅7
|
Sign: |
−0.124+0.992i
|
Analytic conductor: |
72.3589 |
Root analytic conductor: |
8.50640 |
Motivic weight: |
4 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ700(201,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 700, ( :2), −0.124+0.992i)
|
Particular Values
L(25) |
≈ |
0.6308628824 |
L(21) |
≈ |
0.6308628824 |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 7 | 1+(42.3−24.5i)T |
good | 3 | 1+(−1.35+0.784i)T+(40.5−70.1i)T2 |
| 11 | 1+(11.7+20.3i)T+(−7.32e3+1.26e4i)T2 |
| 13 | 1−136.iT−2.85e4T2 |
| 17 | 1+(−227.+131.i)T+(4.17e4−7.23e4i)T2 |
| 19 | 1+(387.+223.i)T+(6.51e4+1.12e5i)T2 |
| 23 | 1+(374.−648.i)T+(−1.39e5−2.42e5i)T2 |
| 29 | 1−406.T+7.07e5T2 |
| 31 | 1+(584.−337.i)T+(4.61e5−7.99e5i)T2 |
| 37 | 1+(−372.+645.i)T+(−9.37e5−1.62e6i)T2 |
| 41 | 1+2.47e3iT−2.82e6T2 |
| 43 | 1−2.63e3T+3.41e6T2 |
| 47 | 1+(−579.−334.i)T+(2.43e6+4.22e6i)T2 |
| 53 | 1+(1.01e3+1.75e3i)T+(−3.94e6+6.83e6i)T2 |
| 59 | 1+(1.01e3−585.i)T+(6.05e6−1.04e7i)T2 |
| 61 | 1+(2.02e3+1.16e3i)T+(6.92e6+1.19e7i)T2 |
| 67 | 1+(3.77e3+6.54e3i)T+(−1.00e7+1.74e7i)T2 |
| 71 | 1−7.57e3T+2.54e7T2 |
| 73 | 1+(3.28e3−1.89e3i)T+(1.41e7−2.45e7i)T2 |
| 79 | 1+(3.89e3−6.75e3i)T+(−1.94e7−3.37e7i)T2 |
| 83 | 1−2.18e3iT−4.74e7T2 |
| 89 | 1+(−8.05e3−4.64e3i)T+(3.13e7+5.43e7i)T2 |
| 97 | 1+9.98e3iT−8.85e7T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.459296262633537291954463061776, −8.908966996313616291990643782074, −7.898084714242182738215987624151, −7.02581090703651825341119300307, −6.00158330215999678819000323134, −5.23629723408520391011011178030, −3.96476017225166711647526941868, −2.84677377488613590682003206551, −1.92340010697878974088420952080, −0.17080237525447218596066879154,
0.925147972311194636441000135732, 2.60618712788548907243407062803, 3.53653544930177053112784322258, 4.41285007244037864396454336851, 5.96657097696311834476979089516, 6.31218761245838807087655850024, 7.57873765781313149783827202116, 8.366096559867994967872433292203, 9.295551205739028599675098390533, 10.19347325513605957120612172365