Properties

Label 700.5.s.a.201.2
Level $700$
Weight $5$
Character 700.201
Analytic conductor $72.359$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [700,5,Mod(101,700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(700, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("700.101");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 700.s (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(72.3589741587\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{6})\)
Coefficient field: 6.0.11337408.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 18x^{4} + 81x^{2} + 12 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{3}\cdot 7^{2} \)
Twist minimal: no (minimal twist has level 28)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 201.2
Root \(0.391571i\) of defining polynomial
Character \(\chi\) \(=\) 700.201
Dual form 700.5.s.a.101.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.35901 - 0.784623i) q^{3} +(-42.3967 + 24.5667i) q^{7} +(-39.2687 + 68.0154i) q^{9} +(-11.7557 - 20.3615i) q^{11} +136.269i q^{13} +(227.333 - 131.251i) q^{17} +(-387.162 - 223.528i) q^{19} +(-38.3418 + 66.6517i) q^{21} +(-374.585 + 648.800i) q^{23} +250.353i q^{27} +406.524 q^{29} +(-584.199 + 337.287i) q^{31} +(-31.9521 - 18.4476i) q^{33} +(372.666 - 645.476i) q^{37} +(106.920 + 185.191i) q^{39} -2476.20i q^{41} +2636.68 q^{43} +(579.099 + 334.343i) q^{47} +(1193.96 - 2083.09i) q^{49} +(205.964 - 356.741i) q^{51} +(-1014.61 - 1757.36i) q^{53} -701.541 q^{57} +(-1014.22 + 585.561i) q^{59} +(-2022.05 - 1167.43i) q^{61} +(-6.04891 - 3848.33i) q^{63} +(-3779.79 - 6546.78i) q^{67} +1175.63i q^{69} +7575.36 q^{71} +(-3284.18 + 1896.12i) q^{73} +(998.615 + 574.460i) q^{77} +(-3897.33 + 6750.37i) q^{79} +(-2984.33 - 5169.02i) q^{81} +2181.41i q^{83} +(552.469 - 318.968i) q^{87} +(8050.38 + 4647.89i) q^{89} +(-3347.69 - 5777.37i) q^{91} +(-529.287 + 916.751i) q^{93} -9981.90i q^{97} +1846.52 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 9 q^{3} - 66 q^{7} + 90 q^{9} + 135 q^{11} + 1107 q^{17} - 747 q^{19} + 2169 q^{21} - 243 q^{23} - 540 q^{29} - 5355 q^{31} + 1863 q^{33} - 2355 q^{37} + 6588 q^{39} + 948 q^{43} + 9747 q^{47} + 8430 q^{49}+ \cdots + 8100 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/700\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(477\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.35901 0.784623i 0.151001 0.0871803i −0.422596 0.906318i \(-0.638881\pi\)
0.573597 + 0.819138i \(0.305548\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −42.3967 + 24.5667i −0.865238 + 0.501361i
\(8\) 0 0
\(9\) −39.2687 + 68.0154i −0.484799 + 0.839697i
\(10\) 0 0
\(11\) −11.7557 20.3615i −0.0971545 0.168276i 0.813351 0.581773i \(-0.197641\pi\)
−0.910506 + 0.413496i \(0.864307\pi\)
\(12\) 0 0
\(13\) 136.269i 0.806328i 0.915128 + 0.403164i \(0.132090\pi\)
−0.915128 + 0.403164i \(0.867910\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 227.333 131.251i 0.786618 0.454154i −0.0521523 0.998639i \(-0.516608\pi\)
0.838771 + 0.544485i \(0.183275\pi\)
\(18\) 0 0
\(19\) −387.162 223.528i −1.07247 0.619191i −0.143615 0.989634i \(-0.545873\pi\)
−0.928855 + 0.370442i \(0.879206\pi\)
\(20\) 0 0
\(21\) −38.3418 + 66.6517i −0.0869429 + 0.151138i
\(22\) 0 0
\(23\) −374.585 + 648.800i −0.708100 + 1.22646i 0.257462 + 0.966288i \(0.417114\pi\)
−0.965561 + 0.260176i \(0.916219\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 250.353i 0.343420i
\(28\) 0 0
\(29\) 406.524 0.483382 0.241691 0.970353i \(-0.422298\pi\)
0.241691 + 0.970353i \(0.422298\pi\)
\(30\) 0 0
\(31\) −584.199 + 337.287i −0.607907 + 0.350975i −0.772146 0.635445i \(-0.780817\pi\)
0.164239 + 0.986421i \(0.447483\pi\)
\(32\) 0 0
\(33\) −31.9521 18.4476i −0.0293408 0.0169399i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 372.666 645.476i 0.272218 0.471495i −0.697212 0.716865i \(-0.745576\pi\)
0.969429 + 0.245370i \(0.0789096\pi\)
\(38\) 0 0
\(39\) 106.920 + 185.191i 0.0702959 + 0.121756i
\(40\) 0 0
\(41\) 2476.20i 1.47305i −0.676410 0.736526i \(-0.736465\pi\)
0.676410 0.736526i \(-0.263535\pi\)
\(42\) 0 0
\(43\) 2636.68 1.42601 0.713003 0.701161i \(-0.247335\pi\)
0.713003 + 0.701161i \(0.247335\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 579.099 + 334.343i 0.262154 + 0.151355i 0.625317 0.780371i \(-0.284970\pi\)
−0.363163 + 0.931726i \(0.618303\pi\)
\(48\) 0 0
\(49\) 1193.96 2083.09i 0.497275 0.867593i
\(50\) 0 0
\(51\) 205.964 356.741i 0.0791866 0.137155i
\(52\) 0 0
\(53\) −1014.61 1757.36i −0.361200 0.625617i 0.626959 0.779053i \(-0.284300\pi\)
−0.988159 + 0.153436i \(0.950966\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −701.541 −0.215925
\(58\) 0 0
\(59\) −1014.22 + 585.561i −0.291359 + 0.168216i −0.638555 0.769576i \(-0.720467\pi\)
0.347195 + 0.937793i \(0.387134\pi\)
\(60\) 0 0
\(61\) −2022.05 1167.43i −0.543416 0.313741i 0.203047 0.979169i \(-0.434916\pi\)
−0.746462 + 0.665428i \(0.768249\pi\)
\(62\) 0 0
\(63\) −6.04891 3848.33i −0.00152404 0.969597i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −3779.79 6546.78i −0.842011 1.45841i −0.888192 0.459472i \(-0.848039\pi\)
0.0461815 0.998933i \(-0.485295\pi\)
\(68\) 0 0
\(69\) 1175.63i 0.246929i
\(70\) 0 0
\(71\) 7575.36 1.50275 0.751375 0.659876i \(-0.229391\pi\)
0.751375 + 0.659876i \(0.229391\pi\)
\(72\) 0 0
\(73\) −3284.18 + 1896.12i −0.616284 + 0.355812i −0.775421 0.631445i \(-0.782462\pi\)
0.159137 + 0.987257i \(0.449129\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 998.615 + 574.460i 0.168429 + 0.0968898i
\(78\) 0 0
\(79\) −3897.33 + 6750.37i −0.624472 + 1.08162i 0.364171 + 0.931332i \(0.381353\pi\)
−0.988643 + 0.150285i \(0.951981\pi\)
\(80\) 0 0
\(81\) −2984.33 5169.02i −0.454860 0.787840i
\(82\) 0 0
\(83\) 2181.41i 0.316651i 0.987387 + 0.158326i \(0.0506096\pi\)
−0.987387 + 0.158326i \(0.949390\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 552.469 318.968i 0.0729910 0.0421414i
\(88\) 0 0
\(89\) 8050.38 + 4647.89i 1.01633 + 0.586781i 0.913040 0.407870i \(-0.133728\pi\)
0.103294 + 0.994651i \(0.467062\pi\)
\(90\) 0 0
\(91\) −3347.69 5777.37i −0.404261 0.697666i
\(92\) 0 0
\(93\) −529.287 + 916.751i −0.0611963 + 0.105995i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 9981.90i 1.06089i −0.847720 0.530444i \(-0.822025\pi\)
0.847720 0.530444i \(-0.177975\pi\)
\(98\) 0 0
\(99\) 1846.52 0.188402
\(100\) 0 0
\(101\) −675.552 + 390.030i −0.0662241 + 0.0382345i −0.532746 0.846275i \(-0.678840\pi\)
0.466522 + 0.884509i \(0.345507\pi\)
\(102\) 0 0
\(103\) −2383.90 1376.35i −0.224706 0.129734i 0.383422 0.923573i \(-0.374746\pi\)
−0.608127 + 0.793840i \(0.708079\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 7429.46 12868.2i 0.648917 1.12396i −0.334464 0.942408i \(-0.608555\pi\)
0.983382 0.181550i \(-0.0581113\pi\)
\(108\) 0 0
\(109\) −1378.33 2387.33i −0.116011 0.200937i 0.802172 0.597092i \(-0.203677\pi\)
−0.918183 + 0.396155i \(0.870344\pi\)
\(110\) 0 0
\(111\) 1169.61i 0.0949281i
\(112\) 0 0
\(113\) −6264.79 −0.490625 −0.245312 0.969444i \(-0.578891\pi\)
−0.245312 + 0.969444i \(0.578891\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −9268.43 5351.13i −0.677071 0.390907i
\(118\) 0 0
\(119\) −6413.76 + 11149.4i −0.452917 + 0.787331i
\(120\) 0 0
\(121\) 7044.11 12200.8i 0.481122 0.833328i
\(122\) 0 0
\(123\) −1942.88 3365.17i −0.128421 0.222432i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −12855.0 −0.797010 −0.398505 0.917166i \(-0.630471\pi\)
−0.398505 + 0.917166i \(0.630471\pi\)
\(128\) 0 0
\(129\) 3583.27 2068.80i 0.215328 0.124320i
\(130\) 0 0
\(131\) −21412.5 12362.5i −1.24774 0.720383i −0.277082 0.960846i \(-0.589367\pi\)
−0.970658 + 0.240464i \(0.922701\pi\)
\(132\) 0 0
\(133\) 21905.7 34.4320i 1.23838 0.00194652i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 661.078 + 1145.02i 0.0352218 + 0.0610059i 0.883099 0.469187i \(-0.155453\pi\)
−0.847877 + 0.530193i \(0.822120\pi\)
\(138\) 0 0
\(139\) 5119.78i 0.264985i −0.991184 0.132493i \(-0.957702\pi\)
0.991184 0.132493i \(-0.0422981\pi\)
\(140\) 0 0
\(141\) 1049.33 0.0527807
\(142\) 0 0
\(143\) 2774.64 1601.94i 0.135686 0.0783384i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −11.8445 3767.74i −0.000548128 0.174360i
\(148\) 0 0
\(149\) −5104.93 + 8842.00i −0.229942 + 0.398270i −0.957791 0.287467i \(-0.907187\pi\)
0.727849 + 0.685737i \(0.240520\pi\)
\(150\) 0 0
\(151\) −14672.1 25412.8i −0.643483 1.11455i −0.984650 0.174543i \(-0.944155\pi\)
0.341166 0.940003i \(-0.389178\pi\)
\(152\) 0 0
\(153\) 20616.2i 0.880695i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 26033.1 15030.2i 1.05615 0.609770i 0.131787 0.991278i \(-0.457928\pi\)
0.924366 + 0.381508i \(0.124595\pi\)
\(158\) 0 0
\(159\) −2757.73 1592.17i −0.109083 0.0629791i
\(160\) 0 0
\(161\) −57.7005 36709.3i −0.00222602 1.41620i
\(162\) 0 0
\(163\) 15439.7 26742.3i 0.581115 1.00652i −0.414232 0.910171i \(-0.635950\pi\)
0.995348 0.0963500i \(-0.0307168\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 12858.8i 0.461070i −0.973064 0.230535i \(-0.925952\pi\)
0.973064 0.230535i \(-0.0740477\pi\)
\(168\) 0 0
\(169\) 9991.63 0.349835
\(170\) 0 0
\(171\) 30406.7 17555.3i 1.03987 0.600367i
\(172\) 0 0
\(173\) −13588.8 7845.51i −0.454035 0.262137i 0.255498 0.966810i \(-0.417761\pi\)
−0.709533 + 0.704672i \(0.751094\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −918.890 + 1591.56i −0.0293303 + 0.0508016i
\(178\) 0 0
\(179\) 15993.2 + 27701.0i 0.499148 + 0.864550i 1.00000 0.000983488i \(-0.000313054\pi\)
−0.500851 + 0.865533i \(0.666980\pi\)
\(180\) 0 0
\(181\) 47967.6i 1.46417i −0.681215 0.732083i \(-0.738548\pi\)
0.681215 0.732083i \(-0.261452\pi\)
\(182\) 0 0
\(183\) −3663.97 −0.109408
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −5344.91 3085.88i −0.152847 0.0882462i
\(188\) 0 0
\(189\) −6150.35 10614.2i −0.172177 0.297141i
\(190\) 0 0
\(191\) −2227.93 + 3858.88i −0.0610709 + 0.105778i −0.894944 0.446178i \(-0.852785\pi\)
0.833873 + 0.551956i \(0.186118\pi\)
\(192\) 0 0
\(193\) −14699.9 25460.9i −0.394638 0.683533i 0.598417 0.801185i \(-0.295797\pi\)
−0.993055 + 0.117652i \(0.962463\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −23816.0 −0.613671 −0.306836 0.951763i \(-0.599270\pi\)
−0.306836 + 0.951763i \(0.599270\pi\)
\(198\) 0 0
\(199\) −42280.9 + 24410.9i −1.06767 + 0.616421i −0.927545 0.373713i \(-0.878085\pi\)
−0.140128 + 0.990133i \(0.544751\pi\)
\(200\) 0 0
\(201\) −10273.5 5931.41i −0.254288 0.146813i
\(202\) 0 0
\(203\) −17235.3 + 9986.94i −0.418241 + 0.242349i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −29418.9 50955.1i −0.686572 1.18918i
\(208\) 0 0
\(209\) 10510.9i 0.240629i
\(210\) 0 0
\(211\) −9582.07 −0.215226 −0.107613 0.994193i \(-0.534321\pi\)
−0.107613 + 0.994193i \(0.534321\pi\)
\(212\) 0 0
\(213\) 10295.0 5943.80i 0.226916 0.131010i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 16482.1 28651.7i 0.350019 0.608458i
\(218\) 0 0
\(219\) −2975.48 + 5153.68i −0.0620396 + 0.107456i
\(220\) 0 0
\(221\) 17885.5 + 30978.5i 0.366197 + 0.634273i
\(222\) 0 0
\(223\) 54978.9i 1.10557i 0.833324 + 0.552785i \(0.186435\pi\)
−0.833324 + 0.552785i \(0.813565\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 7518.24 4340.66i 0.145903 0.0842372i −0.425271 0.905066i \(-0.639821\pi\)
0.571174 + 0.820829i \(0.306488\pi\)
\(228\) 0 0
\(229\) −6262.86 3615.86i −0.119427 0.0689511i 0.439097 0.898440i \(-0.355299\pi\)
−0.558523 + 0.829489i \(0.688632\pi\)
\(230\) 0 0
\(231\) 1807.86 2.84164i 0.0338798 5.32531e-5i
\(232\) 0 0
\(233\) 4422.96 7660.79i 0.0814707 0.141111i −0.822411 0.568894i \(-0.807372\pi\)
0.903882 + 0.427782i \(0.140705\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 12231.7i 0.217767i
\(238\) 0 0
\(239\) 88491.7 1.54920 0.774599 0.632453i \(-0.217952\pi\)
0.774599 + 0.632453i \(0.217952\pi\)
\(240\) 0 0
\(241\) −53365.8 + 30810.7i −0.918816 + 0.530479i −0.883257 0.468889i \(-0.844654\pi\)
−0.0355589 + 0.999368i \(0.511321\pi\)
\(242\) 0 0
\(243\) −25673.3 14822.5i −0.434779 0.251020i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 30460.0 52758.4i 0.499271 0.864763i
\(248\) 0 0
\(249\) 1711.59 + 2964.55i 0.0276058 + 0.0478146i
\(250\) 0 0
\(251\) 57796.3i 0.917386i −0.888595 0.458693i \(-0.848318\pi\)
0.888595 0.458693i \(-0.151682\pi\)
\(252\) 0 0
\(253\) 17614.0 0.275180
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −60734.3 35065.0i −0.919534 0.530893i −0.0360479 0.999350i \(-0.511477\pi\)
−0.883486 + 0.468457i \(0.844810\pi\)
\(258\) 0 0
\(259\) 57.4050 + 36521.2i 0.000855756 + 0.544435i
\(260\) 0 0
\(261\) −15963.7 + 27649.9i −0.234343 + 0.405894i
\(262\) 0 0
\(263\) 11120.9 + 19262.0i 0.160779 + 0.278477i 0.935148 0.354257i \(-0.115266\pi\)
−0.774369 + 0.632734i \(0.781933\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 14587.4 0.204623
\(268\) 0 0
\(269\) 40332.3 23285.9i 0.557376 0.321801i −0.194715 0.980860i \(-0.562378\pi\)
0.752092 + 0.659058i \(0.229045\pi\)
\(270\) 0 0
\(271\) 71958.3 + 41545.1i 0.979811 + 0.565694i 0.902213 0.431291i \(-0.141942\pi\)
0.0775980 + 0.996985i \(0.475275\pi\)
\(272\) 0 0
\(273\) −9082.59 5224.82i −0.121866 0.0701045i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −4514.06 7818.59i −0.0588313 0.101899i 0.835110 0.550083i \(-0.185404\pi\)
−0.893941 + 0.448185i \(0.852071\pi\)
\(278\) 0 0
\(279\) 52979.4i 0.680610i
\(280\) 0 0
\(281\) 64188.4 0.812912 0.406456 0.913670i \(-0.366764\pi\)
0.406456 + 0.913670i \(0.366764\pi\)
\(282\) 0 0
\(283\) −19563.7 + 11295.1i −0.244274 + 0.141032i −0.617140 0.786854i \(-0.711709\pi\)
0.372865 + 0.927885i \(0.378375\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 60832.0 + 104983.i 0.738530 + 1.27454i
\(288\) 0 0
\(289\) −7307.06 + 12656.2i −0.0874877 + 0.151533i
\(290\) 0 0
\(291\) −7832.02 13565.5i −0.0924885 0.160195i
\(292\) 0 0
\(293\) 130473.i 1.51980i −0.650040 0.759900i \(-0.725248\pi\)
0.650040 0.759900i \(-0.274752\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 5097.56 2943.08i 0.0577896 0.0333648i
\(298\) 0 0
\(299\) −88411.6 51044.5i −0.988933 0.570961i
\(300\) 0 0
\(301\) −111787. + 64774.5i −1.23383 + 0.714943i
\(302\) 0 0
\(303\) −612.053 + 1060.11i −0.00666659 + 0.0115469i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 56173.9i 0.596015i 0.954563 + 0.298008i \(0.0963221\pi\)
−0.954563 + 0.298008i \(0.903678\pi\)
\(308\) 0 0
\(309\) −4319.65 −0.0452410
\(310\) 0 0
\(311\) 40087.2 23144.4i 0.414462 0.239290i −0.278243 0.960511i \(-0.589752\pi\)
0.692705 + 0.721221i \(0.256419\pi\)
\(312\) 0 0
\(313\) 119814. + 69174.4i 1.22298 + 0.706085i 0.965551 0.260213i \(-0.0837929\pi\)
0.257424 + 0.966299i \(0.417126\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −29152.7 + 50493.9i −0.290108 + 0.502482i −0.973835 0.227256i \(-0.927025\pi\)
0.683727 + 0.729738i \(0.260358\pi\)
\(318\) 0 0
\(319\) −4778.97 8277.42i −0.0469627 0.0813418i
\(320\) 0 0
\(321\) 23317.3i 0.226291i
\(322\) 0 0
\(323\) −117353. −1.12483
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −3746.31 2162.93i −0.0350355 0.0202278i
\(328\) 0 0
\(329\) −32765.6 + 51.5018i −0.302709 + 0.000475806i
\(330\) 0 0
\(331\) −494.602 + 856.675i −0.00451440 + 0.00781916i −0.868274 0.496085i \(-0.834770\pi\)
0.863759 + 0.503904i \(0.168104\pi\)
\(332\) 0 0
\(333\) 29268.2 + 50694.1i 0.263942 + 0.457161i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 55958.7 0.492728 0.246364 0.969177i \(-0.420764\pi\)
0.246364 + 0.969177i \(0.420764\pi\)
\(338\) 0 0
\(339\) −8513.89 + 4915.49i −0.0740847 + 0.0427728i
\(340\) 0 0
\(341\) 13735.3 + 7930.09i 0.118122 + 0.0681976i
\(342\) 0 0
\(343\) 554.769 + 117648.i 0.00471546 + 0.999989i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 65322.2 + 113141.i 0.542502 + 0.939641i 0.998760 + 0.0497936i \(0.0158563\pi\)
−0.456257 + 0.889848i \(0.650810\pi\)
\(348\) 0 0
\(349\) 110948.i 0.910899i −0.890262 0.455450i \(-0.849478\pi\)
0.890262 0.455450i \(-0.150522\pi\)
\(350\) 0 0
\(351\) −34115.5 −0.276910
\(352\) 0 0
\(353\) −14727.9 + 8503.18i −0.118193 + 0.0682389i −0.557931 0.829887i \(-0.688405\pi\)
0.439738 + 0.898126i \(0.355071\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 31.7265 + 20184.5i 0.000248935 + 0.158373i
\(358\) 0 0
\(359\) −35732.4 + 61890.3i −0.277251 + 0.480212i −0.970701 0.240293i \(-0.922757\pi\)
0.693450 + 0.720505i \(0.256090\pi\)
\(360\) 0 0
\(361\) 34769.0 + 60221.8i 0.266795 + 0.462103i
\(362\) 0 0
\(363\) 22107.9i 0.167777i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −147543. + 85183.8i −1.09543 + 0.632448i −0.935017 0.354602i \(-0.884617\pi\)
−0.160415 + 0.987050i \(0.551283\pi\)
\(368\) 0 0
\(369\) 168420. + 97237.2i 1.23692 + 0.714134i
\(370\) 0 0
\(371\) 86188.6 + 49580.5i 0.626184 + 0.360216i
\(372\) 0 0
\(373\) 75346.0 130503.i 0.541555 0.938001i −0.457260 0.889333i \(-0.651169\pi\)
0.998815 0.0486680i \(-0.0154976\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 55396.8i 0.389764i
\(378\) 0 0
\(379\) −211477. −1.47226 −0.736129 0.676841i \(-0.763348\pi\)
−0.736129 + 0.676841i \(0.763348\pi\)
\(380\) 0 0
\(381\) −17470.0 + 10086.3i −0.120349 + 0.0694836i
\(382\) 0 0
\(383\) 102769. + 59333.6i 0.700590 + 0.404486i 0.807567 0.589776i \(-0.200784\pi\)
−0.106977 + 0.994261i \(0.534117\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −103539. + 179335.i −0.691326 + 1.19741i
\(388\) 0 0
\(389\) −107858. 186816.i −0.712778 1.23457i −0.963810 0.266588i \(-0.914104\pi\)
0.251033 0.967979i \(-0.419230\pi\)
\(390\) 0 0
\(391\) 196658.i 1.28635i
\(392\) 0 0
\(393\) −38799.6 −0.251213
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 134011. + 77371.1i 0.850273 + 0.490905i 0.860743 0.509040i \(-0.169999\pi\)
−0.0104699 + 0.999945i \(0.503333\pi\)
\(398\) 0 0
\(399\) 29743.0 17234.5i 0.186827 0.108256i
\(400\) 0 0
\(401\) −100029. + 173255.i −0.622067 + 1.07745i 0.367033 + 0.930208i \(0.380374\pi\)
−0.989100 + 0.147244i \(0.952960\pi\)
\(402\) 0 0
\(403\) −45962.0 79608.5i −0.283001 0.490173i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −17523.8 −0.105789
\(408\) 0 0
\(409\) 190382. 109917.i 1.13810 0.657080i 0.192137 0.981368i \(-0.438458\pi\)
0.945958 + 0.324288i \(0.105125\pi\)
\(410\) 0 0
\(411\) 1796.82 + 1037.39i 0.0106370 + 0.00614129i
\(412\) 0 0
\(413\) 28614.4 49741.9i 0.167758 0.291623i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −4017.10 6957.81i −0.0231015 0.0400130i
\(418\) 0 0
\(419\) 31359.8i 0.178626i −0.996004 0.0893132i \(-0.971533\pi\)
0.996004 0.0893132i \(-0.0284672\pi\)
\(420\) 0 0
\(421\) −73690.7 −0.415766 −0.207883 0.978154i \(-0.566657\pi\)
−0.207883 + 0.978154i \(0.566657\pi\)
\(422\) 0 0
\(423\) −45481.0 + 26258.5i −0.254184 + 0.146753i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 114408. 179.830i 0.627481 0.000986291i
\(428\) 0 0
\(429\) 2513.84 4354.10i 0.0136591 0.0236583i
\(430\) 0 0
\(431\) 132586. + 229646.i 0.713746 + 1.23624i 0.963441 + 0.267920i \(0.0863364\pi\)
−0.249695 + 0.968325i \(0.580330\pi\)
\(432\) 0 0
\(433\) 124873.i 0.666027i 0.942922 + 0.333014i \(0.108066\pi\)
−0.942922 + 0.333014i \(0.891934\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 290050. 167460.i 1.51883 0.876898i
\(438\) 0 0
\(439\) −120989. 69852.8i −0.627792 0.362456i 0.152105 0.988364i \(-0.451395\pi\)
−0.779896 + 0.625909i \(0.784728\pi\)
\(440\) 0 0
\(441\) 94797.1 + 163008.i 0.487437 + 0.838169i
\(442\) 0 0
\(443\) −110595. + 191556.i −0.563544 + 0.976087i 0.433639 + 0.901087i \(0.357229\pi\)
−0.997183 + 0.0750005i \(0.976104\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 16021.8i 0.0801855i
\(448\) 0 0
\(449\) 255878. 1.26923 0.634615 0.772828i \(-0.281159\pi\)
0.634615 + 0.772828i \(0.281159\pi\)
\(450\) 0 0
\(451\) −50419.0 + 29109.4i −0.247880 + 0.143114i
\(452\) 0 0
\(453\) −39878.9 23024.1i −0.194333 0.112198i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −159964. + 277065.i −0.765929 + 1.32663i 0.173825 + 0.984777i \(0.444387\pi\)
−0.939754 + 0.341852i \(0.888946\pi\)
\(458\) 0 0
\(459\) 32859.0 + 56913.5i 0.155966 + 0.270141i
\(460\) 0 0
\(461\) 369557.i 1.73892i 0.494002 + 0.869461i \(0.335534\pi\)
−0.494002 + 0.869461i \(0.664466\pi\)
\(462\) 0 0
\(463\) −32715.0 −0.152611 −0.0763053 0.997084i \(-0.524312\pi\)
−0.0763053 + 0.997084i \(0.524312\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −265325. 153186.i −1.21659 0.702400i −0.252405 0.967622i \(-0.581221\pi\)
−0.964187 + 0.265222i \(0.914555\pi\)
\(468\) 0 0
\(469\) 321083. + 184705.i 1.45973 + 0.839717i
\(470\) 0 0
\(471\) 23586.1 40852.3i 0.106320 0.184151i
\(472\) 0 0
\(473\) −30996.0 53686.7i −0.138543 0.239963i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 159370. 0.700438
\(478\) 0 0
\(479\) −226801. + 130944.i −0.988493 + 0.570707i −0.904824 0.425787i \(-0.859997\pi\)
−0.0836697 + 0.996494i \(0.526664\pi\)
\(480\) 0 0
\(481\) 87958.7 + 50783.0i 0.380180 + 0.219497i
\(482\) 0 0
\(483\) −28881.3 49842.8i −0.123801 0.213653i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 41127.7 + 71235.3i 0.173411 + 0.300357i 0.939610 0.342246i \(-0.111188\pi\)
−0.766199 + 0.642603i \(0.777854\pi\)
\(488\) 0 0
\(489\) 48457.2i 0.202647i
\(490\) 0 0
\(491\) −102923. −0.426924 −0.213462 0.976951i \(-0.568474\pi\)
−0.213462 + 0.976951i \(0.568474\pi\)
\(492\) 0 0
\(493\) 92416.2 53356.5i 0.380237 0.219530i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −321170. + 186101.i −1.30024 + 0.753420i
\(498\) 0 0
\(499\) −75028.2 + 129953.i −0.301317 + 0.521896i −0.976434 0.215814i \(-0.930759\pi\)
0.675118 + 0.737710i \(0.264093\pi\)
\(500\) 0 0
\(501\) −10089.3 17475.2i −0.0401962 0.0696219i
\(502\) 0 0
\(503\) 91806.6i 0.362859i 0.983404 + 0.181430i \(0.0580725\pi\)
−0.983404 + 0.181430i \(0.941928\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 13578.7 7839.66i 0.0528253 0.0304987i
\(508\) 0 0
\(509\) −412600. 238215.i −1.59255 0.919460i −0.992867 0.119224i \(-0.961959\pi\)
−0.599684 0.800237i \(-0.704707\pi\)
\(510\) 0 0
\(511\) 92656.9 161071.i 0.354843 0.616843i
\(512\) 0 0
\(513\) 55961.0 96927.3i 0.212643 0.368308i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 15721.7i 0.0588192i
\(518\) 0 0
\(519\) −24623.1 −0.0914128
\(520\) 0 0
\(521\) 147768. 85314.0i 0.544384 0.314300i −0.202470 0.979289i \(-0.564897\pi\)
0.746854 + 0.664988i \(0.231563\pi\)
\(522\) 0 0
\(523\) −85040.5 49098.2i −0.310901 0.179499i 0.336428 0.941709i \(-0.390781\pi\)
−0.647330 + 0.762210i \(0.724114\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −88538.3 + 153353.i −0.318794 + 0.552167i
\(528\) 0 0
\(529\) −140707. 243711.i −0.502810 0.870892i
\(530\) 0 0
\(531\) 91977.0i 0.326205i
\(532\) 0 0
\(533\) 337430. 1.18776
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 43469.7 + 25097.3i 0.150743 + 0.0870318i
\(538\) 0 0
\(539\) −56450.5 + 177.461i −0.194308 + 0.000610838i
\(540\) 0 0
\(541\) 52833.7 91510.6i 0.180516 0.312663i −0.761540 0.648118i \(-0.775557\pi\)
0.942056 + 0.335454i \(0.108890\pi\)
\(542\) 0 0
\(543\) −37636.4 65188.2i −0.127646 0.221090i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 127121. 0.424855 0.212428 0.977177i \(-0.431863\pi\)
0.212428 + 0.977177i \(0.431863\pi\)
\(548\) 0 0
\(549\) 158807. 91687.0i 0.526895 0.304203i
\(550\) 0 0
\(551\) −157391. 90869.5i −0.518413 0.299306i
\(552\) 0 0
\(553\) −600.340 381938.i −0.00196312 1.24894i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 15246.5 + 26407.6i 0.0491427 + 0.0851176i 0.889550 0.456837i \(-0.151018\pi\)
−0.840408 + 0.541955i \(0.817684\pi\)
\(558\) 0 0
\(559\) 359300.i 1.14983i
\(560\) 0 0
\(561\) −9685.01 −0.0307733
\(562\) 0 0
\(563\) −459404. + 265237.i −1.44936 + 0.836791i −0.998444 0.0557725i \(-0.982238\pi\)
−0.450921 + 0.892564i \(0.648905\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 253511. + 145834.i 0.788554 + 0.453621i
\(568\) 0 0
\(569\) 169366. 293351.i 0.523121 0.906072i −0.476517 0.879165i \(-0.658101\pi\)
0.999638 0.0269067i \(-0.00856571\pi\)
\(570\) 0 0
\(571\) 53455.6 + 92587.8i 0.163954 + 0.283976i 0.936283 0.351246i \(-0.114242\pi\)
−0.772330 + 0.635222i \(0.780909\pi\)
\(572\) 0 0
\(573\) 6992.33i 0.0212967i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 104337. 60238.8i 0.313390 0.180936i −0.335052 0.942200i \(-0.608754\pi\)
0.648443 + 0.761264i \(0.275421\pi\)
\(578\) 0 0
\(579\) −39954.4 23067.7i −0.119181 0.0688093i
\(580\) 0 0
\(581\) −53590.0 92484.6i −0.158757 0.273979i
\(582\) 0 0
\(583\) −23854.9 + 41317.9i −0.0701844 + 0.121563i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 525818.i 1.52602i −0.646389 0.763008i \(-0.723722\pi\)
0.646389 0.763008i \(-0.276278\pi\)
\(588\) 0 0
\(589\) 301573. 0.869283
\(590\) 0 0
\(591\) −32366.0 + 18686.5i −0.0926648 + 0.0535000i
\(592\) 0 0
\(593\) 64283.0 + 37113.8i 0.182804 + 0.105542i 0.588610 0.808417i \(-0.299676\pi\)
−0.405805 + 0.913960i \(0.633009\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −38306.7 + 66349.1i −0.107480 + 0.186160i
\(598\) 0 0
\(599\) −10990.7 19036.5i −0.0306318 0.0530558i 0.850303 0.526293i \(-0.176419\pi\)
−0.880935 + 0.473237i \(0.843085\pi\)
\(600\) 0 0
\(601\) 77418.2i 0.214336i −0.994241 0.107168i \(-0.965822\pi\)
0.994241 0.107168i \(-0.0341782\pi\)
\(602\) 0 0
\(603\) 593710. 1.63282
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −155765. 89931.2i −0.422760 0.244081i 0.273498 0.961873i \(-0.411819\pi\)
−0.696257 + 0.717792i \(0.745153\pi\)
\(608\) 0 0
\(609\) −15586.9 + 27095.5i −0.0420266 + 0.0730572i
\(610\) 0 0
\(611\) −45560.7 + 78913.5i −0.122042 + 0.211382i
\(612\) 0 0
\(613\) 314637. + 544968.i 0.837316 + 1.45027i 0.892131 + 0.451777i \(0.149210\pi\)
−0.0548147 + 0.998497i \(0.517457\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 52877.1 0.138899 0.0694493 0.997585i \(-0.477876\pi\)
0.0694493 + 0.997585i \(0.477876\pi\)
\(618\) 0 0
\(619\) 447040. 258099.i 1.16672 0.673603i 0.213811 0.976875i \(-0.431412\pi\)
0.952904 + 0.303271i \(0.0980789\pi\)
\(620\) 0 0
\(621\) −162429. 93778.6i −0.421193 0.243176i
\(622\) 0 0
\(623\) −455493. + 715.955i −1.17356 + 0.00184463i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 8247.09 + 14284.4i 0.0209781 + 0.0363351i
\(628\) 0 0
\(629\) 195651.i 0.494515i
\(630\) 0 0
\(631\) 193439. 0.485831 0.242915 0.970047i \(-0.421896\pi\)
0.242915 + 0.970047i \(0.421896\pi\)
\(632\) 0 0
\(633\) −13022.1 + 7518.31i −0.0324993 + 0.0187635i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 283862. + 162700.i 0.699565 + 0.400967i
\(638\) 0 0
\(639\) −297475. + 515242.i −0.728532 + 1.26185i
\(640\) 0 0
\(641\) −376563. 652226.i −0.916477 1.58738i −0.804725 0.593648i \(-0.797687\pi\)
−0.111751 0.993736i \(-0.535646\pi\)
\(642\) 0 0
\(643\) 7110.23i 0.0171974i −0.999963 0.00859868i \(-0.997263\pi\)
0.999963 0.00859868i \(-0.00273708\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 341808. 197343.i 0.816534 0.471426i −0.0326859 0.999466i \(-0.510406\pi\)
0.849220 + 0.528040i \(0.177073\pi\)
\(648\) 0 0
\(649\) 23845.8 + 13767.4i 0.0566137 + 0.0326860i
\(650\) 0 0
\(651\) −81.5306 51870.0i −0.000192380 0.122392i
\(652\) 0 0
\(653\) 115578. 200186.i 0.271049 0.469470i −0.698082 0.716018i \(-0.745963\pi\)
0.969131 + 0.246548i \(0.0792963\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 297833.i 0.689989i
\(658\) 0 0
\(659\) −772498. −1.77880 −0.889399 0.457131i \(-0.848877\pi\)
−0.889399 + 0.457131i \(0.848877\pi\)
\(660\) 0 0
\(661\) −195287. + 112749.i −0.446962 + 0.258053i −0.706546 0.707667i \(-0.749748\pi\)
0.259584 + 0.965720i \(0.416414\pi\)
\(662\) 0 0
\(663\) 48612.9 + 28066.7i 0.110592 + 0.0638504i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −152278. + 263753.i −0.342282 + 0.592851i
\(668\) 0 0
\(669\) 43137.7 + 74716.6i 0.0963839 + 0.166942i
\(670\) 0 0
\(671\) 54895.8i 0.121925i
\(672\) 0 0
\(673\) −59564.6 −0.131510 −0.0657549 0.997836i \(-0.520946\pi\)
−0.0657549 + 0.997836i \(0.520946\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −687131. 396715.i −1.49921 0.865569i −0.499210 0.866481i \(-0.666376\pi\)
−1.00000 0.000912440i \(0.999710\pi\)
\(678\) 0 0
\(679\) 245222. + 423199.i 0.531888 + 0.917921i
\(680\) 0 0
\(681\) 6811.56 11798.0i 0.0146876 0.0254397i
\(682\) 0 0
\(683\) −46304.3 80201.3i −0.0992612 0.171925i 0.812118 0.583493i \(-0.198315\pi\)
−0.911379 + 0.411568i \(0.864981\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −11348.4 −0.0240447
\(688\) 0 0
\(689\) 239474. 138261.i 0.504453 0.291246i
\(690\) 0 0
\(691\) −162273. 93688.2i −0.339852 0.196213i 0.320355 0.947298i \(-0.396198\pi\)
−0.660206 + 0.751084i \(0.729531\pi\)
\(692\) 0 0
\(693\) −78286.5 + 45362.9i −0.163012 + 0.0944571i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −325003. 562921.i −0.668993 1.15873i
\(698\) 0 0
\(699\) 13881.4i 0.0284105i
\(700\) 0 0
\(701\) 326056. 0.663522 0.331761 0.943363i \(-0.392357\pi\)
0.331761 + 0.943363i \(0.392357\pi\)
\(702\) 0 0
\(703\) −288564. + 166603.i −0.583891 + 0.337110i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 19059.4 33132.0i 0.0381303 0.0662841i
\(708\) 0 0
\(709\) −32372.6 + 56070.9i −0.0643998 + 0.111544i −0.896428 0.443190i \(-0.853847\pi\)
0.832028 + 0.554734i \(0.187180\pi\)
\(710\) 0 0
\(711\) −306086. 530157.i −0.605487 1.04873i
\(712\) 0 0
\(713\) 505371.i 0.994102i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 120261. 69432.6i 0.233930 0.135060i
\(718\) 0 0
\(719\) −616355. 355853.i −1.19227 0.688355i −0.233446 0.972370i \(-0.575000\pi\)
−0.958820 + 0.284014i \(0.908334\pi\)
\(720\) 0 0
\(721\) 134882. 212.011i 0.259468 0.000407838i
\(722\) 0 0
\(723\) −48349.6 + 83744.0i −0.0924946 + 0.160205i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 763134.i 1.44388i −0.691954 0.721941i \(-0.743250\pi\)
0.691954 0.721941i \(-0.256750\pi\)
\(728\) 0 0
\(729\) 436942. 0.822183
\(730\) 0 0
\(731\) 599404. 346066.i 1.12172 0.647626i
\(732\) 0 0
\(733\) 17848.0 + 10304.6i 0.0332187 + 0.0191788i 0.516517 0.856277i \(-0.327228\pi\)
−0.483299 + 0.875456i \(0.660561\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −88868.0 + 153924.i −0.163610 + 0.283381i
\(738\) 0 0
\(739\) 393194. + 681032.i 0.719976 + 1.24703i 0.961009 + 0.276518i \(0.0891805\pi\)
−0.241033 + 0.970517i \(0.577486\pi\)
\(740\) 0 0
\(741\) 95598.6i 0.174107i
\(742\) 0 0
\(743\) −740479. −1.34133 −0.670664 0.741761i \(-0.733991\pi\)
−0.670664 + 0.741761i \(0.733991\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −148370. 85661.3i −0.265891 0.153512i
\(748\) 0 0
\(749\) 1144.42 + 728086.i 0.00203997 + 1.29783i
\(750\) 0 0
\(751\) 247292. 428322.i 0.438460 0.759436i −0.559111 0.829093i \(-0.688857\pi\)
0.997571 + 0.0696574i \(0.0221906\pi\)
\(752\) 0 0
\(753\) −45348.3 78545.5i −0.0799780 0.138526i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 139399. 0.243258 0.121629 0.992576i \(-0.461188\pi\)
0.121629 + 0.992576i \(0.461188\pi\)
\(758\) 0 0
\(759\) 23937.5 13820.3i 0.0415524 0.0239903i
\(760\) 0 0
\(761\) −207340. 119708.i −0.358025 0.206706i 0.310189 0.950675i \(-0.399608\pi\)
−0.668214 + 0.743969i \(0.732941\pi\)
\(762\) 0 0
\(763\) 117085. + 67354.1i 0.201119 + 0.115695i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −79794.1 138208.i −0.135638 0.234931i
\(768\) 0 0
\(769\) 98701.5i 0.166906i 0.996512 + 0.0834528i \(0.0265948\pi\)
−0.996512 + 0.0834528i \(0.973405\pi\)
\(770\) 0 0
\(771\) −110051. −0.185134
\(772\) 0 0
\(773\) 507921. 293248.i 0.850036 0.490769i −0.0106268 0.999944i \(-0.503383\pi\)
0.860663 + 0.509175i \(0.170049\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 28733.4 + 49587.5i 0.0475932 + 0.0821354i
\(778\) 0 0
\(779\) −553500. + 958690.i −0.912100 + 1.57980i
\(780\) 0 0
\(781\) −89053.6 154245.i −0.145999 0.252877i
\(782\) 0 0
\(783\) 101775.i 0.166003i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 129536. 74787.4i 0.209141 0.120748i −0.391771 0.920063i \(-0.628137\pi\)
0.600912 + 0.799315i \(0.294804\pi\)
\(788\) 0 0
\(789\) 30226.8 + 17451.4i 0.0485554 + 0.0280335i
\(790\) 0 0
\(791\) 265606. 153905.i 0.424507 0.245980i
\(792\) 0 0
\(793\) 159085. 275544.i 0.252978 0.438171i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 241092.i 0.379547i −0.981828 0.189774i \(-0.939225\pi\)
0.981828 0.189774i \(-0.0607754\pi\)
\(798\) 0 0
\(799\) 175531. 0.274954
\(800\) 0 0
\(801\) −632256. + 365033.i −0.985436 + 0.568941i
\(802\) 0 0
\(803\) 77215.6 + 44580.4i 0.119750 + 0.0691374i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 36541.3 63291.3i 0.0561095 0.0971845i
\(808\) 0 0
\(809\) −100933. 174820.i −0.154218 0.267113i 0.778556 0.627575i \(-0.215952\pi\)
−0.932774 + 0.360462i \(0.882619\pi\)
\(810\) 0 0
\(811\) 1.16747e6i 1.77503i −0.460779 0.887515i \(-0.652430\pi\)
0.460779 0.887515i \(-0.347570\pi\)
\(812\) 0 0
\(813\) 130389. 0.197270
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −1.02082e6 589373.i −1.52935 0.882970i
\(818\) 0 0
\(819\) 524410. 824.281i 0.781814 0.00122887i
\(820\) 0 0
\(821\) 324585. 562198.i 0.481551 0.834071i −0.518225 0.855245i \(-0.673407\pi\)
0.999776 + 0.0211734i \(0.00674022\pi\)
\(822\) 0 0
\(823\) −245486. 425193.i −0.362432 0.627750i 0.625929 0.779880i \(-0.284720\pi\)
−0.988360 + 0.152130i \(0.951387\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 709017. 1.03668 0.518341 0.855174i \(-0.326550\pi\)
0.518341 + 0.855174i \(0.326550\pi\)
\(828\) 0 0
\(829\) 534645. 308677.i 0.777958 0.449154i −0.0577480 0.998331i \(-0.518392\pi\)
0.835706 + 0.549177i \(0.185059\pi\)
\(830\) 0 0
\(831\) −12269.3 7083.68i −0.0177671 0.0102579i
\(832\) 0 0
\(833\) −1981.33 630262.i −0.00285540 0.908304i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −84441.0 146256.i −0.120532 0.208768i
\(838\) 0 0
\(839\) 493961.i 0.701728i −0.936426 0.350864i \(-0.885888\pi\)
0.936426 0.350864i \(-0.114112\pi\)
\(840\) 0 0
\(841\) −542019. −0.766342
\(842\) 0 0
\(843\) 87232.4 50363.7i 0.122750 0.0708699i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 1085.07 + 690322.i 0.00151248 + 0.962243i
\(848\) 0 0
\(849\) −17724.8 + 30700.2i −0.0245904 + 0.0425918i
\(850\) 0 0
\(851\) 279190. + 483571.i 0.385514 + 0.667730i
\(852\) 0 0
\(853\) 505142.i 0.694249i 0.937819 + 0.347124i \(0.112842\pi\)
−0.937819 + 0.347124i \(0.887158\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 969980. 560018.i 1.32069 0.762501i 0.336852 0.941557i \(-0.390638\pi\)
0.983839 + 0.179056i \(0.0573043\pi\)
\(858\) 0 0
\(859\) −605141. 349379.i −0.820107 0.473489i 0.0303463 0.999539i \(-0.490339\pi\)
−0.850453 + 0.526050i \(0.823672\pi\)
\(860\) 0 0
\(861\) 165043. + 94941.9i 0.222633 + 0.128071i
\(862\) 0 0
\(863\) 479533. 830576.i 0.643868 1.11521i −0.340693 0.940175i \(-0.610662\pi\)
0.984562 0.175038i \(-0.0560049\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 22933.1i 0.0305088i
\(868\) 0 0
\(869\) 183263. 0.242681
\(870\) 0 0
\(871\) 892127. 515069.i 1.17595 0.678937i
\(872\) 0 0
\(873\) 678923. + 391976.i 0.890824 + 0.514318i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −498442. + 863326.i −0.648060 + 1.12247i 0.335526 + 0.942031i \(0.391086\pi\)
−0.983586 + 0.180442i \(0.942247\pi\)
\(878\) 0 0
\(879\) −102372. 177314.i −0.132497 0.229491i
\(880\) 0 0
\(881\) 494568.i 0.637198i −0.947890 0.318599i \(-0.896788\pi\)
0.947890 0.318599i \(-0.103212\pi\)
\(882\) 0 0
\(883\) −887278. −1.13799 −0.568995 0.822341i \(-0.692667\pi\)
−0.568995 + 0.822341i \(0.692667\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −542062. 312960.i −0.688973 0.397779i 0.114254 0.993452i \(-0.463552\pi\)
−0.803227 + 0.595673i \(0.796885\pi\)
\(888\) 0 0
\(889\) 545008. 315804.i 0.689604 0.399589i
\(890\) 0 0
\(891\) −70165.8 + 121531.i −0.0883833 + 0.153084i
\(892\) 0 0
\(893\) −149470. 258890.i −0.187435 0.324647i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −160203. −0.199106
\(898\) 0 0
\(899\) −237491. + 137115.i −0.293851 + 0.169655i
\(900\) 0 0
\(901\) −461309. 266337.i −0.568253 0.328081i
\(902\) 0 0
\(903\) −101095. + 175739.i −0.123981 + 0.215523i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −634131. 1.09835e6i −0.770840 1.33513i −0.937103 0.349052i \(-0.886504\pi\)
0.166263 0.986081i \(-0.446830\pi\)
\(908\) 0 0
\(909\) 61263.9i 0.0741442i
\(910\) 0 0
\(911\) −1.09985e6 −1.32525 −0.662625 0.748951i \(-0.730558\pi\)
−0.662625 + 0.748951i \(0.730558\pi\)
\(912\) 0 0
\(913\) 44416.7 25644.0i 0.0532850 0.0307641i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1.21152e6 1904.30i 1.44076 0.00226463i
\(918\) 0 0
\(919\) −430660. + 745925.i −0.509922 + 0.883211i 0.490012 + 0.871716i \(0.336992\pi\)
−0.999934 + 0.0114950i \(0.996341\pi\)
\(920\) 0 0
\(921\) 44075.3 + 76340.6i 0.0519608 + 0.0899987i
\(922\) 0 0
\(923\) 1.03229e6i 1.21171i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 187226. 108095.i 0.217874 0.125790i
\(928\) 0 0
\(929\) −326247. 188359.i −0.378021 0.218250i 0.298936 0.954273i \(-0.403368\pi\)
−0.676957 + 0.736023i \(0.736702\pi\)
\(930\) 0 0
\(931\) −927884. + 539610.i −1.07052 + 0.622560i
\(932\) 0 0
\(933\) 36319.2 62906.7i 0.0417227 0.0722659i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 417813.i 0.475885i −0.971279 0.237943i \(-0.923527\pi\)
0.971279 0.237943i \(-0.0764731\pi\)
\(938\) 0 0
\(939\) 217103. 0.246227
\(940\) 0 0
\(941\) 213031. 122994.i 0.240582 0.138900i −0.374862 0.927081i \(-0.622310\pi\)
0.615444 + 0.788180i \(0.288977\pi\)
\(942\) 0 0
\(943\) 1.60656e6 + 927546.i 1.80665 + 1.04307i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −722964. + 1.25221e6i −0.806152 + 1.39630i 0.109359 + 0.994002i \(0.465120\pi\)
−0.915511 + 0.402294i \(0.868213\pi\)
\(948\) 0 0
\(949\) −258384. 447533.i −0.286901 0.496928i
\(950\) 0 0
\(951\) 91495.4i 0.101167i
\(952\) 0 0
\(953\) −907377. −0.999084 −0.499542 0.866290i \(-0.666498\pi\)
−0.499542 + 0.866290i \(0.666498\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −12989.3 7499.38i −0.0141828 0.00818845i
\(958\) 0 0
\(959\) −56156.9 32304.6i −0.0610612 0.0351259i
\(960\) 0 0
\(961\) −234235. + 405707.i −0.253633 + 0.439305i
\(962\) 0 0
\(963\) 583491. + 1.01064e6i 0.629189 + 1.08979i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 50286.2 0.0537770 0.0268885 0.999638i \(-0.491440\pi\)
0.0268885 + 0.999638i \(0.491440\pi\)
\(968\) 0 0
\(969\) −159483. + 92077.6i −0.169851 + 0.0980633i
\(970\) 0 0
\(971\) 677500. + 391155.i 0.718573 + 0.414868i 0.814227 0.580546i \(-0.197161\pi\)
−0.0956544 + 0.995415i \(0.530494\pi\)
\(972\) 0 0
\(973\) 125776. + 217062.i 0.132853 + 0.229275i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 638714. + 1.10629e6i 0.669141 + 1.15899i 0.978145 + 0.207925i \(0.0666711\pi\)
−0.309004 + 0.951061i \(0.599996\pi\)
\(978\) 0 0
\(979\) 218557.i 0.228033i
\(980\) 0 0
\(981\) 216501. 0.224968
\(982\) 0 0
\(983\) −1.36250e6 + 786638.i −1.41003 + 0.814081i −0.995391 0.0959049i \(-0.969426\pi\)
−0.414639 + 0.909986i \(0.636092\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −44488.2 + 25778.6i −0.0456679 + 0.0264621i
\(988\) 0 0
\(989\) −987661. + 1.71068e6i −1.00975 + 1.74894i
\(990\) 0 0
\(991\) −162173. 280892.i −0.165132 0.286017i 0.771570 0.636144i \(-0.219472\pi\)
−0.936702 + 0.350127i \(0.886138\pi\)
\(992\) 0 0
\(993\) 1552.30i 0.00157427i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 1.57129e6 907185.i 1.58076 0.912652i 0.586012 0.810303i \(-0.300697\pi\)
0.994748 0.102350i \(-0.0326361\pi\)
\(998\) 0 0
\(999\) 161597. + 93298.2i 0.161921 + 0.0934851i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 700.5.s.a.201.2 6
5.2 odd 4 700.5.o.a.649.3 12
5.3 odd 4 700.5.o.a.649.4 12
5.4 even 2 28.5.h.a.5.2 6
7.3 odd 6 inner 700.5.s.a.101.2 6
15.14 odd 2 252.5.z.f.145.1 6
20.19 odd 2 112.5.s.c.33.2 6
35.3 even 12 700.5.o.a.549.3 12
35.4 even 6 196.5.h.c.129.2 6
35.9 even 6 196.5.b.a.97.3 6
35.17 even 12 700.5.o.a.549.4 12
35.19 odd 6 196.5.b.a.97.4 6
35.24 odd 6 28.5.h.a.17.2 yes 6
35.34 odd 2 196.5.h.c.117.2 6
105.59 even 6 252.5.z.f.73.1 6
140.19 even 6 784.5.c.e.97.3 6
140.59 even 6 112.5.s.c.17.2 6
140.79 odd 6 784.5.c.e.97.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
28.5.h.a.5.2 6 5.4 even 2
28.5.h.a.17.2 yes 6 35.24 odd 6
112.5.s.c.17.2 6 140.59 even 6
112.5.s.c.33.2 6 20.19 odd 2
196.5.b.a.97.3 6 35.9 even 6
196.5.b.a.97.4 6 35.19 odd 6
196.5.h.c.117.2 6 35.34 odd 2
196.5.h.c.129.2 6 35.4 even 6
252.5.z.f.73.1 6 105.59 even 6
252.5.z.f.145.1 6 15.14 odd 2
700.5.o.a.549.3 12 35.3 even 12
700.5.o.a.549.4 12 35.17 even 12
700.5.o.a.649.3 12 5.2 odd 4
700.5.o.a.649.4 12 5.3 odd 4
700.5.s.a.101.2 6 7.3 odd 6 inner
700.5.s.a.201.2 6 1.1 even 1 trivial
784.5.c.e.97.3 6 140.19 even 6
784.5.c.e.97.4 6 140.79 odd 6