L(s) = 1 | + (0.965 − 0.258i)2-s + (0.866 − 0.499i)4-s + (0.926 − 3.45i)5-s + (4.42 − 1.18i)7-s + (0.707 − 0.707i)8-s − 3.57i·10-s + (0.277 + 1.03i)11-s + (−3.47 + 0.956i)13-s + (3.96 − 2.29i)14-s + (0.500 − 0.866i)16-s − 4.13·17-s + (−3.55 + 3.55i)19-s + (−0.926 − 3.45i)20-s + (0.536 + 0.928i)22-s + (1.26 + 2.18i)23-s + ⋯ |
L(s) = 1 | + (0.683 − 0.183i)2-s + (0.433 − 0.249i)4-s + (0.414 − 1.54i)5-s + (1.67 − 0.448i)7-s + (0.249 − 0.249i)8-s − 1.13i·10-s + (0.0836 + 0.312i)11-s + (−0.964 + 0.265i)13-s + (1.06 − 0.612i)14-s + (0.125 − 0.216i)16-s − 1.00·17-s + (−0.814 + 0.814i)19-s + (−0.207 − 0.772i)20-s + (0.114 + 0.197i)22-s + (0.263 + 0.456i)23-s + ⋯ |
Λ(s)=(=(702s/2ΓC(s)L(s)(0.317+0.948i)Λ(2−s)
Λ(s)=(=(702s/2ΓC(s+1/2)L(s)(0.317+0.948i)Λ(1−s)
Degree: |
2 |
Conductor: |
702
= 2⋅33⋅13
|
Sign: |
0.317+0.948i
|
Analytic conductor: |
5.60549 |
Root analytic conductor: |
2.36759 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ702(629,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 702, ( :1/2), 0.317+0.948i)
|
Particular Values
L(1) |
≈ |
2.18072−1.57029i |
L(21) |
≈ |
2.18072−1.57029i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.965+0.258i)T |
| 3 | 1 |
| 13 | 1+(3.47−0.956i)T |
good | 5 | 1+(−0.926+3.45i)T+(−4.33−2.5i)T2 |
| 7 | 1+(−4.42+1.18i)T+(6.06−3.5i)T2 |
| 11 | 1+(−0.277−1.03i)T+(−9.52+5.5i)T2 |
| 17 | 1+4.13T+17T2 |
| 19 | 1+(3.55−3.55i)T−19iT2 |
| 23 | 1+(−1.26−2.18i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−0.654−0.377i)T+(14.5+25.1i)T2 |
| 31 | 1+(−8.68−2.32i)T+(26.8+15.5i)T2 |
| 37 | 1+(−1.53−1.53i)T+37iT2 |
| 41 | 1+(0.112−0.419i)T+(−35.5−20.5i)T2 |
| 43 | 1+(2.15+1.24i)T+(21.5+37.2i)T2 |
| 47 | 1+(0.366+1.36i)T+(−40.7+23.5i)T2 |
| 53 | 1−11.0iT−53T2 |
| 59 | 1+(9.66+2.58i)T+(51.0+29.5i)T2 |
| 61 | 1+(−5.37+9.31i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−8.82−2.36i)T+(58.0+33.5i)T2 |
| 71 | 1+(2.42+2.42i)T+71iT2 |
| 73 | 1+(−3.17−3.17i)T+73iT2 |
| 79 | 1+(0.638−1.10i)T+(−39.5−68.4i)T2 |
| 83 | 1+(−6.13+1.64i)T+(71.8−41.5i)T2 |
| 89 | 1+(6.96−6.96i)T−89iT2 |
| 97 | 1+(−0.666−2.48i)T+(−84.0+48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.37964040982296871745751673789, −9.420509545420442554783363056251, −8.458756174148883351133833629612, −7.82157950368081445736611836155, −6.60817711403094358440856914073, −5.34299986821979403107957070266, −4.69630230058956844223116907302, −4.25798956292361137540752167057, −2.18150016625220709362957930440, −1.30751505199061061093089931271,
2.18671102448849937066007415918, 2.74561273062324700740286356888, 4.34035501850540542721544379086, 5.11618509637169620768378127093, 6.24613142028856740700986932037, 6.92112680232185620611332161374, 7.85761212791000608754576223034, 8.699575505565173007187302695048, 10.01922137179293002388972421976, 10.93711185976064191666638024355