Properties

Label 702.2.bg.a.629.14
Level $702$
Weight $2$
Character 702.629
Analytic conductor $5.605$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [702,2,Mod(125,702)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(702, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([10, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("702.125");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 702 = 2 \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 702.bg (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.60549822189\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 234)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 629.14
Character \(\chi\) \(=\) 702.629
Dual form 702.2.bg.a.125.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.965926 - 0.258819i) q^{2} +(0.866025 - 0.500000i) q^{4} +(0.926266 - 3.45687i) q^{5} +(4.42416 - 1.18545i) q^{7} +(0.707107 - 0.707107i) q^{8} -3.57882i q^{10} +(0.277511 + 1.03569i) q^{11} +(-3.47629 + 0.956779i) q^{13} +(3.96659 - 2.29011i) q^{14} +(0.500000 - 0.866025i) q^{16} -4.13440 q^{17} +(-3.55072 + 3.55072i) q^{19} +(-0.926266 - 3.45687i) q^{20} +(0.536110 + 0.928570i) q^{22} +(1.26396 + 2.18925i) q^{23} +(-6.76187 - 3.90397i) q^{25} +(-3.11020 + 1.82391i) q^{26} +(3.23871 - 3.23871i) q^{28} +(0.654210 + 0.377708i) q^{29} +(8.68512 + 2.32717i) q^{31} +(0.258819 - 0.965926i) q^{32} +(-3.99353 + 1.07006i) q^{34} -16.3918i q^{35} +(1.53470 + 1.53470i) q^{37} +(-2.51074 + 4.34872i) q^{38} +(-1.78941 - 3.09935i) q^{40} +(-0.112341 + 0.419264i) q^{41} +(-2.15504 - 1.24421i) q^{43} +(0.758175 + 0.758175i) q^{44} +(1.78751 + 1.78751i) q^{46} +(-0.366030 - 1.36604i) q^{47} +(12.1057 - 6.98923i) q^{49} +(-7.54188 - 2.02084i) q^{50} +(-2.53216 + 2.56674i) q^{52} +11.0932i q^{53} +3.83728 q^{55} +(2.29011 - 3.96659i) q^{56} +(0.729677 + 0.195516i) q^{58} +(-9.66293 - 2.58917i) q^{59} +(5.37935 - 9.31732i) q^{61} +8.99150 q^{62} -1.00000i q^{64} +(0.0874941 + 12.9033i) q^{65} +(8.82122 + 2.36364i) q^{67} +(-3.58050 + 2.06720i) q^{68} +(-4.24251 - 15.8333i) q^{70} +(-2.42867 - 2.42867i) q^{71} +(3.17686 + 3.17686i) q^{73} +(1.87961 + 1.08520i) q^{74} +(-1.29965 + 4.85037i) q^{76} +(2.45551 + 4.25306i) q^{77} +(-0.638454 + 1.10583i) q^{79} +(-2.53061 - 2.53061i) q^{80} +0.434054i q^{82} +(6.13302 - 1.64334i) q^{83} +(-3.82956 + 14.2921i) q^{85} +(-2.40363 - 0.644051i) q^{86} +(0.928570 + 0.536110i) q^{88} +(-6.96929 + 6.96929i) q^{89} +(-14.2454 + 8.35390i) q^{91} +(2.18925 + 1.26396i) q^{92} +(-0.707116 - 1.22476i) q^{94} +(8.98547 + 15.5633i) q^{95} +(0.666716 + 2.48822i) q^{97} +(9.88427 - 9.88427i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 4 q^{7} - 24 q^{11} + 28 q^{16} - 8 q^{19} + 8 q^{28} - 4 q^{31} + 8 q^{37} + 48 q^{41} + 24 q^{47} + 24 q^{50} - 4 q^{52} - 48 q^{65} + 28 q^{67} - 56 q^{73} + 48 q^{74} + 4 q^{76} + 48 q^{79} + 24 q^{83}+ \cdots + 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/702\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(677\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.965926 0.258819i 0.683013 0.183013i
\(3\) 0 0
\(4\) 0.866025 0.500000i 0.433013 0.250000i
\(5\) 0.926266 3.45687i 0.414239 1.54596i −0.372117 0.928186i \(-0.621368\pi\)
0.786356 0.617774i \(-0.211965\pi\)
\(6\) 0 0
\(7\) 4.42416 1.18545i 1.67217 0.448058i 0.706479 0.707734i \(-0.250283\pi\)
0.965696 + 0.259676i \(0.0836159\pi\)
\(8\) 0.707107 0.707107i 0.250000 0.250000i
\(9\) 0 0
\(10\) 3.57882i 1.13172i
\(11\) 0.277511 + 1.03569i 0.0836728 + 0.312271i 0.995060 0.0992799i \(-0.0316539\pi\)
−0.911387 + 0.411551i \(0.864987\pi\)
\(12\) 0 0
\(13\) −3.47629 + 0.956779i −0.964149 + 0.265363i
\(14\) 3.96659 2.29011i 1.06012 0.612058i
\(15\) 0 0
\(16\) 0.500000 0.866025i 0.125000 0.216506i
\(17\) −4.13440 −1.00274 −0.501370 0.865233i \(-0.667171\pi\)
−0.501370 + 0.865233i \(0.667171\pi\)
\(18\) 0 0
\(19\) −3.55072 + 3.55072i −0.814591 + 0.814591i −0.985318 0.170728i \(-0.945388\pi\)
0.170728 + 0.985318i \(0.445388\pi\)
\(20\) −0.926266 3.45687i −0.207119 0.772980i
\(21\) 0 0
\(22\) 0.536110 + 0.928570i 0.114299 + 0.197972i
\(23\) 1.26396 + 2.18925i 0.263554 + 0.456489i 0.967184 0.254078i \(-0.0817718\pi\)
−0.703630 + 0.710567i \(0.748439\pi\)
\(24\) 0 0
\(25\) −6.76187 3.90397i −1.35237 0.780793i
\(26\) −3.11020 + 1.82391i −0.609961 + 0.357698i
\(27\) 0 0
\(28\) 3.23871 3.23871i 0.612058 0.612058i
\(29\) 0.654210 + 0.377708i 0.121484 + 0.0701387i 0.559511 0.828823i \(-0.310989\pi\)
−0.438027 + 0.898962i \(0.644322\pi\)
\(30\) 0 0
\(31\) 8.68512 + 2.32717i 1.55989 + 0.417972i 0.932630 0.360835i \(-0.117508\pi\)
0.627264 + 0.778807i \(0.284175\pi\)
\(32\) 0.258819 0.965926i 0.0457532 0.170753i
\(33\) 0 0
\(34\) −3.99353 + 1.07006i −0.684884 + 0.183514i
\(35\) 16.3918i 2.77072i
\(36\) 0 0
\(37\) 1.53470 + 1.53470i 0.252303 + 0.252303i 0.821914 0.569611i \(-0.192906\pi\)
−0.569611 + 0.821914i \(0.692906\pi\)
\(38\) −2.51074 + 4.34872i −0.407295 + 0.705456i
\(39\) 0 0
\(40\) −1.78941 3.09935i −0.282930 0.490050i
\(41\) −0.112341 + 0.419264i −0.0175448 + 0.0654780i −0.974143 0.225931i \(-0.927457\pi\)
0.956598 + 0.291409i \(0.0941242\pi\)
\(42\) 0 0
\(43\) −2.15504 1.24421i −0.328640 0.189740i 0.326597 0.945164i \(-0.394098\pi\)
−0.655237 + 0.755423i \(0.727431\pi\)
\(44\) 0.758175 + 0.758175i 0.114299 + 0.114299i
\(45\) 0 0
\(46\) 1.78751 + 1.78751i 0.263554 + 0.263554i
\(47\) −0.366030 1.36604i −0.0533910 0.199258i 0.934079 0.357068i \(-0.116223\pi\)
−0.987470 + 0.157810i \(0.949557\pi\)
\(48\) 0 0
\(49\) 12.1057 6.98923i 1.72939 0.998462i
\(50\) −7.54188 2.02084i −1.06658 0.285790i
\(51\) 0 0
\(52\) −2.53216 + 2.56674i −0.351148 + 0.355943i
\(53\) 11.0932i 1.52376i 0.647716 + 0.761882i \(0.275724\pi\)
−0.647716 + 0.761882i \(0.724276\pi\)
\(54\) 0 0
\(55\) 3.83728 0.517419
\(56\) 2.29011 3.96659i 0.306029 0.530058i
\(57\) 0 0
\(58\) 0.729677 + 0.195516i 0.0958112 + 0.0256725i
\(59\) −9.66293 2.58917i −1.25801 0.337082i −0.432582 0.901595i \(-0.642397\pi\)
−0.825424 + 0.564513i \(0.809064\pi\)
\(60\) 0 0
\(61\) 5.37935 9.31732i 0.688756 1.19296i −0.283485 0.958977i \(-0.591491\pi\)
0.972241 0.233983i \(-0.0751761\pi\)
\(62\) 8.99150 1.14192
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 0.0874941 + 12.9033i 0.0108523 + 1.60046i
\(66\) 0 0
\(67\) 8.82122 + 2.36364i 1.07768 + 0.288765i 0.753647 0.657280i \(-0.228293\pi\)
0.324037 + 0.946044i \(0.394960\pi\)
\(68\) −3.58050 + 2.06720i −0.434199 + 0.250685i
\(69\) 0 0
\(70\) −4.24251 15.8333i −0.507077 1.89244i
\(71\) −2.42867 2.42867i −0.288230 0.288230i 0.548150 0.836380i \(-0.315332\pi\)
−0.836380 + 0.548150i \(0.815332\pi\)
\(72\) 0 0
\(73\) 3.17686 + 3.17686i 0.371824 + 0.371824i 0.868141 0.496317i \(-0.165315\pi\)
−0.496317 + 0.868141i \(0.665315\pi\)
\(74\) 1.87961 + 1.08520i 0.218501 + 0.126151i
\(75\) 0 0
\(76\) −1.29965 + 4.85037i −0.149080 + 0.556376i
\(77\) 2.45551 + 4.25306i 0.279831 + 0.484681i
\(78\) 0 0
\(79\) −0.638454 + 1.10583i −0.0718316 + 0.124416i −0.899704 0.436500i \(-0.856218\pi\)
0.827872 + 0.560916i \(0.189551\pi\)
\(80\) −2.53061 2.53061i −0.282930 0.282930i
\(81\) 0 0
\(82\) 0.434054i 0.0479332i
\(83\) 6.13302 1.64334i 0.673186 0.180380i 0.0939965 0.995573i \(-0.470036\pi\)
0.579190 + 0.815193i \(0.303369\pi\)
\(84\) 0 0
\(85\) −3.82956 + 14.2921i −0.415374 + 1.55020i
\(86\) −2.40363 0.644051i −0.259190 0.0694498i
\(87\) 0 0
\(88\) 0.928570 + 0.536110i 0.0989859 + 0.0571496i
\(89\) −6.96929 + 6.96929i −0.738743 + 0.738743i −0.972335 0.233591i \(-0.924952\pi\)
0.233591 + 0.972335i \(0.424952\pi\)
\(90\) 0 0
\(91\) −14.2454 + 8.35390i −1.49333 + 0.875727i
\(92\) 2.18925 + 1.26396i 0.228245 + 0.131777i
\(93\) 0 0
\(94\) −0.707116 1.22476i −0.0729335 0.126324i
\(95\) 8.98547 + 15.5633i 0.921890 + 1.59676i
\(96\) 0 0
\(97\) 0.666716 + 2.48822i 0.0676947 + 0.252640i 0.991478 0.130276i \(-0.0415864\pi\)
−0.923783 + 0.382916i \(0.874920\pi\)
\(98\) 9.88427 9.88427i 0.998462 0.998462i
\(99\) 0 0
\(100\) −7.80793 −0.780793
\(101\) 4.80845 8.32848i 0.478459 0.828715i −0.521236 0.853413i \(-0.674529\pi\)
0.999695 + 0.0246975i \(0.00786224\pi\)
\(102\) 0 0
\(103\) −9.13951 + 5.27670i −0.900543 + 0.519929i −0.877376 0.479803i \(-0.840708\pi\)
−0.0231667 + 0.999732i \(0.507375\pi\)
\(104\) −1.78156 + 3.13465i −0.174697 + 0.307378i
\(105\) 0 0
\(106\) 2.87112 + 10.7152i 0.278868 + 1.04075i
\(107\) 8.87442i 0.857923i −0.903323 0.428961i \(-0.858880\pi\)
0.903323 0.428961i \(-0.141120\pi\)
\(108\) 0 0
\(109\) −13.3375 + 13.3375i −1.27750 + 1.27750i −0.335432 + 0.942064i \(0.608882\pi\)
−0.942064 + 0.335432i \(0.891118\pi\)
\(110\) 3.70653 0.993162i 0.353404 0.0946942i
\(111\) 0 0
\(112\) 1.18545 4.42416i 0.112014 0.418044i
\(113\) −1.66894 + 0.963564i −0.157001 + 0.0906445i −0.576442 0.817138i \(-0.695559\pi\)
0.419441 + 0.907782i \(0.362226\pi\)
\(114\) 0 0
\(115\) 8.73871 2.34153i 0.814889 0.218349i
\(116\) 0.755417 0.0701387
\(117\) 0 0
\(118\) −10.0038 −0.920924
\(119\) −18.2913 + 4.90113i −1.67676 + 0.449286i
\(120\) 0 0
\(121\) 8.53065 4.92517i 0.775513 0.447743i
\(122\) 2.78456 10.3921i 0.252102 0.940858i
\(123\) 0 0
\(124\) 8.68512 2.32717i 0.779947 0.208986i
\(125\) −7.10576 + 7.10576i −0.635559 + 0.635559i
\(126\) 0 0
\(127\) 5.55792i 0.493186i −0.969119 0.246593i \(-0.920689\pi\)
0.969119 0.246593i \(-0.0793111\pi\)
\(128\) −0.258819 0.965926i −0.0228766 0.0853766i
\(129\) 0 0
\(130\) 3.42414 + 12.4410i 0.300317 + 1.09115i
\(131\) −4.63129 + 2.67388i −0.404638 + 0.233618i −0.688483 0.725252i \(-0.741723\pi\)
0.283845 + 0.958870i \(0.408390\pi\)
\(132\) 0 0
\(133\) −11.4997 + 19.9181i −0.997154 + 1.72712i
\(134\) 9.13240 0.788919
\(135\) 0 0
\(136\) −2.92347 + 2.92347i −0.250685 + 0.250685i
\(137\) 0.131653 + 0.491334i 0.0112478 + 0.0419775i 0.971322 0.237769i \(-0.0764162\pi\)
−0.960074 + 0.279747i \(0.909750\pi\)
\(138\) 0 0
\(139\) −3.49301 6.05008i −0.296274 0.513161i 0.679007 0.734132i \(-0.262411\pi\)
−0.975280 + 0.220971i \(0.929077\pi\)
\(140\) −8.19589 14.1957i −0.692679 1.19976i
\(141\) 0 0
\(142\) −2.97450 1.71733i −0.249615 0.144115i
\(143\) −1.95563 3.33482i −0.163538 0.278872i
\(144\) 0 0
\(145\) 1.91166 1.91166i 0.158755 0.158755i
\(146\) 3.89085 + 2.24638i 0.322009 + 0.185912i
\(147\) 0 0
\(148\) 2.09644 + 0.561739i 0.172326 + 0.0461746i
\(149\) −4.16059 + 15.5275i −0.340848 + 1.27206i 0.556539 + 0.830821i \(0.312129\pi\)
−0.897388 + 0.441243i \(0.854538\pi\)
\(150\) 0 0
\(151\) 2.68543 0.719558i 0.218537 0.0585568i −0.147889 0.989004i \(-0.547248\pi\)
0.366426 + 0.930447i \(0.380581\pi\)
\(152\) 5.02147i 0.407295i
\(153\) 0 0
\(154\) 3.47261 + 3.47261i 0.279831 + 0.279831i
\(155\) 16.0895 27.8678i 1.29234 2.23839i
\(156\) 0 0
\(157\) −6.91473 11.9767i −0.551856 0.955842i −0.998141 0.0609515i \(-0.980587\pi\)
0.446285 0.894891i \(-0.352747\pi\)
\(158\) −0.330488 + 1.23340i −0.0262922 + 0.0981238i
\(159\) 0 0
\(160\) −3.09935 1.78941i −0.245025 0.141465i
\(161\) 8.18721 + 8.18721i 0.645243 + 0.645243i
\(162\) 0 0
\(163\) −15.3749 15.3749i −1.20426 1.20426i −0.972859 0.231400i \(-0.925669\pi\)
−0.231400 0.972859i \(-0.574331\pi\)
\(164\) 0.112341 + 0.419264i 0.00877238 + 0.0327390i
\(165\) 0 0
\(166\) 5.49871 3.17468i 0.426783 0.246403i
\(167\) 14.2638 + 3.82198i 1.10377 + 0.295754i 0.764298 0.644863i \(-0.223085\pi\)
0.339471 + 0.940617i \(0.389752\pi\)
\(168\) 0 0
\(169\) 11.1691 6.65208i 0.859165 0.511698i
\(170\) 14.7963i 1.13482i
\(171\) 0 0
\(172\) −2.48842 −0.189740
\(173\) −4.94488 + 8.56478i −0.375952 + 0.651168i −0.990469 0.137736i \(-0.956018\pi\)
0.614517 + 0.788904i \(0.289351\pi\)
\(174\) 0 0
\(175\) −34.5435 9.25591i −2.61124 0.699681i
\(176\) 1.03569 + 0.277511i 0.0780677 + 0.0209182i
\(177\) 0 0
\(178\) −4.92803 + 8.53560i −0.369372 + 0.639771i
\(179\) −5.77755 −0.431835 −0.215917 0.976412i \(-0.569274\pi\)
−0.215917 + 0.976412i \(0.569274\pi\)
\(180\) 0 0
\(181\) 0.380715i 0.0282983i −0.999900 0.0141492i \(-0.995496\pi\)
0.999900 0.0141492i \(-0.00450397\pi\)
\(182\) −11.5979 + 11.7562i −0.859692 + 0.871431i
\(183\) 0 0
\(184\) 2.44179 + 0.654275i 0.180011 + 0.0482338i
\(185\) 6.72679 3.88372i 0.494564 0.285537i
\(186\) 0 0
\(187\) −1.14734 4.28194i −0.0839021 0.313127i
\(188\) −1.00001 1.00001i −0.0729335 0.0729335i
\(189\) 0 0
\(190\) 12.7074 + 12.7074i 0.921890 + 0.921890i
\(191\) 9.11205 + 5.26085i 0.659325 + 0.380662i 0.792020 0.610495i \(-0.209030\pi\)
−0.132695 + 0.991157i \(0.542363\pi\)
\(192\) 0 0
\(193\) −2.06271 + 7.69813i −0.148477 + 0.554124i 0.851099 + 0.525005i \(0.175937\pi\)
−0.999576 + 0.0291185i \(0.990730\pi\)
\(194\) 1.28800 + 2.23087i 0.0924727 + 0.160167i
\(195\) 0 0
\(196\) 6.98923 12.1057i 0.499231 0.864693i
\(197\) 15.8934 + 15.8934i 1.13235 + 1.13235i 0.989785 + 0.142570i \(0.0455365\pi\)
0.142570 + 0.989785i \(0.454463\pi\)
\(198\) 0 0
\(199\) 11.7833i 0.835293i 0.908610 + 0.417646i \(0.137145\pi\)
−0.908610 + 0.417646i \(0.862855\pi\)
\(200\) −7.54188 + 2.02084i −0.533292 + 0.142895i
\(201\) 0 0
\(202\) 2.48904 9.28922i 0.175128 0.653587i
\(203\) 3.34208 + 0.895509i 0.234568 + 0.0628524i
\(204\) 0 0
\(205\) 1.34528 + 0.776699i 0.0939586 + 0.0542470i
\(206\) −7.46238 + 7.46238i −0.519929 + 0.519929i
\(207\) 0 0
\(208\) −0.909549 + 3.48894i −0.0630659 + 0.241915i
\(209\) −4.66279 2.69206i −0.322532 0.186214i
\(210\) 0 0
\(211\) 10.3429 + 17.9145i 0.712037 + 1.23328i 0.964091 + 0.265572i \(0.0855607\pi\)
−0.252054 + 0.967713i \(0.581106\pi\)
\(212\) 5.54658 + 9.60696i 0.380941 + 0.659809i
\(213\) 0 0
\(214\) −2.29687 8.57203i −0.157011 0.585972i
\(215\) −6.29721 + 6.29721i −0.429466 + 0.429466i
\(216\) 0 0
\(217\) 41.1831 2.79569
\(218\) −9.43100 + 16.3350i −0.638748 + 1.10634i
\(219\) 0 0
\(220\) 3.32318 1.91864i 0.224049 0.129355i
\(221\) 14.3724 3.95571i 0.966791 0.266090i
\(222\) 0 0
\(223\) −4.06125 15.1568i −0.271962 1.01497i −0.957850 0.287268i \(-0.907253\pi\)
0.685889 0.727707i \(-0.259414\pi\)
\(224\) 4.58023i 0.306029i
\(225\) 0 0
\(226\) −1.36269 + 1.36269i −0.0906445 + 0.0906445i
\(227\) −15.4357 + 4.13598i −1.02450 + 0.274514i −0.731677 0.681652i \(-0.761262\pi\)
−0.292825 + 0.956166i \(0.594595\pi\)
\(228\) 0 0
\(229\) 2.36858 8.83967i 0.156520 0.584142i −0.842450 0.538774i \(-0.818887\pi\)
0.998970 0.0453674i \(-0.0144458\pi\)
\(230\) 7.83491 4.52349i 0.516619 0.298270i
\(231\) 0 0
\(232\) 0.729677 0.195516i 0.0479056 0.0128363i
\(233\) 24.6878 1.61735 0.808676 0.588255i \(-0.200185\pi\)
0.808676 + 0.588255i \(0.200185\pi\)
\(234\) 0 0
\(235\) −5.06128 −0.330161
\(236\) −9.66293 + 2.58917i −0.629003 + 0.168541i
\(237\) 0 0
\(238\) −16.3995 + 9.46825i −1.06302 + 0.613736i
\(239\) 4.05596 15.1370i 0.262358 0.979134i −0.701490 0.712680i \(-0.747481\pi\)
0.963848 0.266454i \(-0.0858520\pi\)
\(240\) 0 0
\(241\) −3.50953 + 0.940376i −0.226069 + 0.0605750i −0.370075 0.929002i \(-0.620668\pi\)
0.144006 + 0.989577i \(0.454001\pi\)
\(242\) 6.96524 6.96524i 0.447743 0.447743i
\(243\) 0 0
\(244\) 10.7587i 0.688756i
\(245\) −12.9478 48.3218i −0.827203 3.08716i
\(246\) 0 0
\(247\) 8.94607 15.7406i 0.569225 1.00155i
\(248\) 7.78686 4.49575i 0.494466 0.285480i
\(249\) 0 0
\(250\) −5.02453 + 8.70275i −0.317779 + 0.550410i
\(251\) −24.3205 −1.53509 −0.767547 0.640992i \(-0.778523\pi\)
−0.767547 + 0.640992i \(0.778523\pi\)
\(252\) 0 0
\(253\) −1.91661 + 1.91661i −0.120496 + 0.120496i
\(254\) −1.43850 5.36854i −0.0902593 0.336852i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −3.79901 6.58009i −0.236976 0.410454i 0.722869 0.690985i \(-0.242823\pi\)
−0.959845 + 0.280531i \(0.909490\pi\)
\(258\) 0 0
\(259\) 8.60906 + 4.97044i 0.534941 + 0.308848i
\(260\) 6.52743 + 11.1308i 0.404814 + 0.690306i
\(261\) 0 0
\(262\) −3.78143 + 3.78143i −0.233618 + 0.233618i
\(263\) 23.6385 + 13.6477i 1.45761 + 0.841552i 0.998894 0.0470295i \(-0.0149755\pi\)
0.458718 + 0.888582i \(0.348309\pi\)
\(264\) 0 0
\(265\) 38.3476 + 10.2752i 2.35568 + 0.631202i
\(266\) −5.95271 + 22.2158i −0.364984 + 1.36214i
\(267\) 0 0
\(268\) 8.82122 2.36364i 0.538842 0.144382i
\(269\) 14.8321i 0.904327i 0.891935 + 0.452164i \(0.149348\pi\)
−0.891935 + 0.452164i \(0.850652\pi\)
\(270\) 0 0
\(271\) −16.0694 16.0694i −0.976147 0.976147i 0.0235754 0.999722i \(-0.492495\pi\)
−0.999722 + 0.0235754i \(0.992495\pi\)
\(272\) −2.06720 + 3.58050i −0.125343 + 0.217100i
\(273\) 0 0
\(274\) 0.254333 + 0.440518i 0.0153648 + 0.0266127i
\(275\) 2.16679 8.08656i 0.130662 0.487638i
\(276\) 0 0
\(277\) −20.1564 11.6373i −1.21108 0.699218i −0.248087 0.968738i \(-0.579802\pi\)
−0.962995 + 0.269520i \(0.913135\pi\)
\(278\) −4.93987 4.93987i −0.296274 0.296274i
\(279\) 0 0
\(280\) −11.5907 11.5907i −0.692679 0.692679i
\(281\) −0.838571 3.12959i −0.0500250 0.186696i 0.936392 0.350955i \(-0.114143\pi\)
−0.986417 + 0.164260i \(0.947476\pi\)
\(282\) 0 0
\(283\) −4.80758 + 2.77566i −0.285781 + 0.164996i −0.636038 0.771658i \(-0.719428\pi\)
0.350257 + 0.936654i \(0.386094\pi\)
\(284\) −3.31763 0.888956i −0.196865 0.0527498i
\(285\) 0 0
\(286\) −2.75211 2.71504i −0.162736 0.160544i
\(287\) 1.98806i 0.117352i
\(288\) 0 0
\(289\) 0.0933004 0.00548826
\(290\) 1.35175 2.34130i 0.0793775 0.137486i
\(291\) 0 0
\(292\) 4.33967 + 1.16281i 0.253960 + 0.0680484i
\(293\) −16.6590 4.46378i −0.973232 0.260777i −0.263040 0.964785i \(-0.584725\pi\)
−0.710192 + 0.704008i \(0.751392\pi\)
\(294\) 0 0
\(295\) −17.9009 + 31.0052i −1.04223 + 1.80519i
\(296\) 2.17039 0.126151
\(297\) 0 0
\(298\) 16.0753i 0.931215i
\(299\) −6.48852 6.40112i −0.375241 0.370186i
\(300\) 0 0
\(301\) −11.0092 2.94990i −0.634558 0.170029i
\(302\) 2.40769 1.39008i 0.138547 0.0799901i
\(303\) 0 0
\(304\) 1.29965 + 4.85037i 0.0745402 + 0.278188i
\(305\) −27.2261 27.2261i −1.55896 1.55896i
\(306\) 0 0
\(307\) −0.629117 0.629117i −0.0359056 0.0359056i 0.688926 0.724832i \(-0.258082\pi\)
−0.724832 + 0.688926i \(0.758082\pi\)
\(308\) 4.25306 + 2.45551i 0.242341 + 0.139915i
\(309\) 0 0
\(310\) 8.32852 31.0824i 0.473028 1.76536i
\(311\) −7.56960 13.1109i −0.429233 0.743453i 0.567573 0.823323i \(-0.307883\pi\)
−0.996805 + 0.0798707i \(0.974549\pi\)
\(312\) 0 0
\(313\) −6.51021 + 11.2760i −0.367979 + 0.637358i −0.989249 0.146238i \(-0.953283\pi\)
0.621271 + 0.783596i \(0.286617\pi\)
\(314\) −9.77891 9.77891i −0.551856 0.551856i
\(315\) 0 0
\(316\) 1.27691i 0.0718316i
\(317\) 11.8433 3.17341i 0.665188 0.178237i 0.0896019 0.995978i \(-0.471441\pi\)
0.575586 + 0.817741i \(0.304774\pi\)
\(318\) 0 0
\(319\) −0.209637 + 0.782374i −0.0117374 + 0.0438046i
\(320\) −3.45687 0.926266i −0.193245 0.0517798i
\(321\) 0 0
\(322\) 10.0272 + 5.78923i 0.558796 + 0.322621i
\(323\) 14.6801 14.6801i 0.816823 0.816823i
\(324\) 0 0
\(325\) 27.2414 + 7.10170i 1.51108 + 0.393931i
\(326\) −18.8304 10.8717i −1.04292 0.602129i
\(327\) 0 0
\(328\) 0.217027 + 0.375901i 0.0119833 + 0.0207557i
\(329\) −3.23875 5.60968i −0.178558 0.309272i
\(330\) 0 0
\(331\) −2.19780 8.20228i −0.120802 0.450838i 0.878854 0.477092i \(-0.158309\pi\)
−0.999655 + 0.0262533i \(0.991642\pi\)
\(332\) 4.48968 4.48968i 0.246403 0.246403i
\(333\) 0 0
\(334\) 14.7670 0.808015
\(335\) 16.3416 28.3045i 0.892837 1.54644i
\(336\) 0 0
\(337\) −10.2132 + 5.89659i −0.556348 + 0.321207i −0.751678 0.659530i \(-0.770755\pi\)
0.195331 + 0.980737i \(0.437422\pi\)
\(338\) 9.06689 9.31620i 0.493174 0.506734i
\(339\) 0 0
\(340\) 3.82956 + 14.2921i 0.207687 + 0.775098i
\(341\) 9.64087i 0.522082i
\(342\) 0 0
\(343\) 22.6012 22.6012i 1.22035 1.22035i
\(344\) −2.40363 + 0.644051i −0.129595 + 0.0347249i
\(345\) 0 0
\(346\) −2.55966 + 9.55277i −0.137608 + 0.513560i
\(347\) −24.1293 + 13.9310i −1.29533 + 0.747857i −0.979593 0.200991i \(-0.935584\pi\)
−0.315733 + 0.948848i \(0.602251\pi\)
\(348\) 0 0
\(349\) 7.85155 2.10382i 0.420284 0.112615i −0.0424778 0.999097i \(-0.513525\pi\)
0.462762 + 0.886483i \(0.346859\pi\)
\(350\) −35.7621 −1.91156
\(351\) 0 0
\(352\) 1.07222 0.0571496
\(353\) −0.765102 + 0.205008i −0.0407222 + 0.0109115i −0.279123 0.960255i \(-0.590044\pi\)
0.238400 + 0.971167i \(0.423377\pi\)
\(354\) 0 0
\(355\) −10.6452 + 6.14601i −0.564989 + 0.326197i
\(356\) −2.55094 + 9.52023i −0.135199 + 0.504571i
\(357\) 0 0
\(358\) −5.58069 + 1.49534i −0.294948 + 0.0790312i
\(359\) 21.9230 21.9230i 1.15705 1.15705i 0.171942 0.985107i \(-0.444996\pi\)
0.985107 0.171942i \(-0.0550042\pi\)
\(360\) 0 0
\(361\) 6.21521i 0.327116i
\(362\) −0.0985363 0.367743i −0.00517895 0.0193281i
\(363\) 0 0
\(364\) −8.15995 + 14.3574i −0.427698 + 0.752533i
\(365\) 13.9246 8.03939i 0.728848 0.420801i
\(366\) 0 0
\(367\) 1.42913 2.47533i 0.0746002 0.129211i −0.826312 0.563212i \(-0.809565\pi\)
0.900912 + 0.434001i \(0.142899\pi\)
\(368\) 2.52792 0.131777
\(369\) 0 0
\(370\) 5.49240 5.49240i 0.285537 0.285537i
\(371\) 13.1504 + 49.0779i 0.682734 + 2.54800i
\(372\) 0 0
\(373\) 9.89249 + 17.1343i 0.512214 + 0.887180i 0.999900 + 0.0141612i \(0.00450780\pi\)
−0.487686 + 0.873019i \(0.662159\pi\)
\(374\) −2.21650 3.83909i −0.114612 0.198514i
\(375\) 0 0
\(376\) −1.22476 0.707116i −0.0631622 0.0364667i
\(377\) −2.63561 0.687089i −0.135741 0.0353869i
\(378\) 0 0
\(379\) −3.26410 + 3.26410i −0.167665 + 0.167665i −0.785952 0.618287i \(-0.787827\pi\)
0.618287 + 0.785952i \(0.287827\pi\)
\(380\) 15.5633 + 8.98547i 0.798380 + 0.460945i
\(381\) 0 0
\(382\) 10.1632 + 2.72321i 0.519993 + 0.139332i
\(383\) −1.38882 + 5.18315i −0.0709654 + 0.264846i −0.992288 0.123952i \(-0.960443\pi\)
0.921323 + 0.388798i \(0.127110\pi\)
\(384\) 0 0
\(385\) 16.9767 4.54890i 0.865215 0.231834i
\(386\) 7.96969i 0.405647i
\(387\) 0 0
\(388\) 1.82150 + 1.82150i 0.0924727 + 0.0924727i
\(389\) −12.8925 + 22.3304i −0.653675 + 1.13220i 0.328549 + 0.944487i \(0.393440\pi\)
−0.982224 + 0.187711i \(0.939893\pi\)
\(390\) 0 0
\(391\) −5.22573 9.05123i −0.264277 0.457740i
\(392\) 3.61789 13.5022i 0.182731 0.681962i
\(393\) 0 0
\(394\) 19.4653 + 11.2383i 0.980648 + 0.566177i
\(395\) 3.23135 + 3.23135i 0.162587 + 0.162587i
\(396\) 0 0
\(397\) −10.8989 10.8989i −0.547000 0.547000i 0.378572 0.925572i \(-0.376415\pi\)
−0.925572 + 0.378572i \(0.876415\pi\)
\(398\) 3.04973 + 11.3817i 0.152869 + 0.570515i
\(399\) 0 0
\(400\) −6.76187 + 3.90397i −0.338093 + 0.195198i
\(401\) −3.84186 1.02942i −0.191853 0.0514070i 0.161613 0.986854i \(-0.448330\pi\)
−0.353466 + 0.935447i \(0.614997\pi\)
\(402\) 0 0
\(403\) −32.4186 + 0.219822i −1.61488 + 0.0109501i
\(404\) 9.61690i 0.478459i
\(405\) 0 0
\(406\) 3.45998 0.171716
\(407\) −1.16357 + 2.01536i −0.0576760 + 0.0998977i
\(408\) 0 0
\(409\) −26.9511 7.22152i −1.33264 0.357081i −0.478944 0.877845i \(-0.658980\pi\)
−0.853700 + 0.520765i \(0.825647\pi\)
\(410\) 1.50047 + 0.402049i 0.0741028 + 0.0198558i
\(411\) 0 0
\(412\) −5.27670 + 9.13951i −0.259964 + 0.450272i
\(413\) −45.8196 −2.25464
\(414\) 0 0
\(415\) 22.7232i 1.11544i
\(416\) 0.0244478 + 3.60547i 0.00119865 + 0.176773i
\(417\) 0 0
\(418\) −5.20067 1.39352i −0.254373 0.0681591i
\(419\) 15.9003 9.18003i 0.776779 0.448474i −0.0585084 0.998287i \(-0.518634\pi\)
0.835288 + 0.549813i \(0.185301\pi\)
\(420\) 0 0
\(421\) −6.33652 23.6482i −0.308823 1.15254i −0.929604 0.368560i \(-0.879851\pi\)
0.620781 0.783984i \(-0.286816\pi\)
\(422\) 14.6271 + 14.6271i 0.712037 + 0.712037i
\(423\) 0 0
\(424\) 7.84405 + 7.84405i 0.380941 + 0.380941i
\(425\) 27.9563 + 16.1406i 1.35608 + 0.782933i
\(426\) 0 0
\(427\) 12.7539 47.5982i 0.617205 2.30344i
\(428\) −4.43721 7.68547i −0.214481 0.371491i
\(429\) 0 0
\(430\) −4.45280 + 7.71248i −0.214733 + 0.371929i
\(431\) −14.5640 14.5640i −0.701523 0.701523i 0.263214 0.964737i \(-0.415217\pi\)
−0.964737 + 0.263214i \(0.915217\pi\)
\(432\) 0 0
\(433\) 18.5433i 0.891136i −0.895248 0.445568i \(-0.853002\pi\)
0.895248 0.445568i \(-0.146998\pi\)
\(434\) 39.7798 10.6590i 1.90949 0.511647i
\(435\) 0 0
\(436\) −4.88185 + 18.2193i −0.233798 + 0.872546i
\(437\) −12.2614 3.28543i −0.586541 0.157163i
\(438\) 0 0
\(439\) 3.74229 + 2.16061i 0.178610 + 0.103120i 0.586639 0.809848i \(-0.300451\pi\)
−0.408030 + 0.912969i \(0.633784\pi\)
\(440\) 2.71337 2.71337i 0.129355 0.129355i
\(441\) 0 0
\(442\) 12.8588 7.54077i 0.611633 0.358678i
\(443\) −27.7852 16.0418i −1.32011 0.762168i −0.336368 0.941731i \(-0.609199\pi\)
−0.983747 + 0.179562i \(0.942532\pi\)
\(444\) 0 0
\(445\) 17.6365 + 30.5474i 0.836052 + 1.44808i
\(446\) −7.84574 13.5892i −0.371507 0.643468i
\(447\) 0 0
\(448\) −1.18545 4.42416i −0.0560072 0.209022i
\(449\) 25.3608 25.3608i 1.19685 1.19685i 0.221743 0.975105i \(-0.428825\pi\)
0.975105 0.221743i \(-0.0711746\pi\)
\(450\) 0 0
\(451\) −0.465401 −0.0219149
\(452\) −0.963564 + 1.66894i −0.0453222 + 0.0785004i
\(453\) 0 0
\(454\) −13.8392 + 7.99009i −0.649508 + 0.374994i
\(455\) 15.6833 + 56.9826i 0.735245 + 2.67138i
\(456\) 0 0
\(457\) 6.84032 + 25.5284i 0.319977 + 1.19417i 0.919266 + 0.393637i \(0.128783\pi\)
−0.599289 + 0.800533i \(0.704550\pi\)
\(458\) 9.15150i 0.427622i
\(459\) 0 0
\(460\) 6.39718 6.39718i 0.298270 0.298270i
\(461\) 13.1223 3.51611i 0.611166 0.163762i 0.0600575 0.998195i \(-0.480872\pi\)
0.551109 + 0.834433i \(0.314205\pi\)
\(462\) 0 0
\(463\) −0.373475 + 1.39383i −0.0173568 + 0.0647766i −0.974061 0.226285i \(-0.927342\pi\)
0.956704 + 0.291062i \(0.0940085\pi\)
\(464\) 0.654210 0.377708i 0.0303709 0.0175347i
\(465\) 0 0
\(466\) 23.8466 6.38967i 1.10467 0.295996i
\(467\) 13.3760 0.618969 0.309485 0.950904i \(-0.399843\pi\)
0.309485 + 0.950904i \(0.399843\pi\)
\(468\) 0 0
\(469\) 41.8285 1.93146
\(470\) −4.88882 + 1.30996i −0.225504 + 0.0604237i
\(471\) 0 0
\(472\) −8.66354 + 5.00190i −0.398772 + 0.230231i
\(473\) 0.690565 2.57722i 0.0317522 0.118501i
\(474\) 0 0
\(475\) 37.8714 10.1476i 1.73766 0.465604i
\(476\) −13.3901 + 13.3901i −0.613736 + 0.613736i
\(477\) 0 0
\(478\) 15.6710i 0.716776i
\(479\) −8.96153 33.4449i −0.409463 1.52814i −0.795673 0.605726i \(-0.792883\pi\)
0.386210 0.922411i \(-0.373784\pi\)
\(480\) 0 0
\(481\) −6.80342 3.86669i −0.310209 0.176306i
\(482\) −3.14656 + 1.81667i −0.143322 + 0.0827469i
\(483\) 0 0
\(484\) 4.92517 8.53065i 0.223871 0.387757i
\(485\) 9.21900 0.418613
\(486\) 0 0
\(487\) −7.44349 + 7.44349i −0.337297 + 0.337297i −0.855349 0.518052i \(-0.826657\pi\)
0.518052 + 0.855349i \(0.326657\pi\)
\(488\) −2.78456 10.3921i −0.126051 0.470429i
\(489\) 0 0
\(490\) −25.0132 43.3241i −1.12998 1.95718i
\(491\) −10.6286 18.4092i −0.479660 0.830795i 0.520068 0.854125i \(-0.325907\pi\)
−0.999728 + 0.0233295i \(0.992573\pi\)
\(492\) 0 0
\(493\) −2.70477 1.56160i −0.121817 0.0703309i
\(494\) 4.56728 17.5196i 0.205492 0.788246i
\(495\) 0 0
\(496\) 6.35795 6.35795i 0.285480 0.285480i
\(497\) −13.6239 7.86576i −0.611116 0.352828i
\(498\) 0 0
\(499\) 2.61532 + 0.700773i 0.117078 + 0.0313709i 0.316882 0.948465i \(-0.397364\pi\)
−0.199804 + 0.979836i \(0.564031\pi\)
\(500\) −2.60089 + 9.70665i −0.116315 + 0.434095i
\(501\) 0 0
\(502\) −23.4918 + 6.29460i −1.04849 + 0.280942i
\(503\) 12.3938i 0.552614i 0.961069 + 0.276307i \(0.0891107\pi\)
−0.961069 + 0.276307i \(0.910889\pi\)
\(504\) 0 0
\(505\) −24.3366 24.3366i −1.08296 1.08296i
\(506\) −1.35525 + 2.34736i −0.0602480 + 0.104353i
\(507\) 0 0
\(508\) −2.77896 4.81330i −0.123297 0.213556i
\(509\) 5.30979 19.8164i 0.235352 0.878347i −0.742637 0.669694i \(-0.766425\pi\)
0.977990 0.208653i \(-0.0669079\pi\)
\(510\) 0 0
\(511\) 17.8210 + 10.2889i 0.788352 + 0.455155i
\(512\) −0.707107 0.707107i −0.0312500 0.0312500i
\(513\) 0 0
\(514\) −5.37262 5.37262i −0.236976 0.236976i
\(515\) 9.77526 + 36.4818i 0.430749 + 1.60758i
\(516\) 0 0
\(517\) 1.31321 0.758185i 0.0577551 0.0333449i
\(518\) 9.60215 + 2.57289i 0.421894 + 0.113046i
\(519\) 0 0
\(520\) 9.18589 + 9.06215i 0.402828 + 0.397402i
\(521\) 14.6532i 0.641968i −0.947085 0.320984i \(-0.895986\pi\)
0.947085 0.320984i \(-0.104014\pi\)
\(522\) 0 0
\(523\) 14.9734 0.654740 0.327370 0.944896i \(-0.393838\pi\)
0.327370 + 0.944896i \(0.393838\pi\)
\(524\) −2.67388 + 4.63129i −0.116809 + 0.202319i
\(525\) 0 0
\(526\) 26.3653 + 7.06456i 1.14958 + 0.308030i
\(527\) −35.9078 9.62146i −1.56417 0.419118i
\(528\) 0 0
\(529\) 8.30480 14.3843i 0.361078 0.625406i
\(530\) 39.7004 1.72448
\(531\) 0 0
\(532\) 22.9995i 0.997154i
\(533\) −0.0106116 1.56497i −0.000459641 0.0677862i
\(534\) 0 0
\(535\) −30.6777 8.22007i −1.32631 0.355385i
\(536\) 7.90889 4.56620i 0.341612 0.197230i
\(537\) 0 0
\(538\) 3.83882 + 14.3267i 0.165503 + 0.617667i
\(539\) 10.5981 + 10.5981i 0.456493 + 0.456493i
\(540\) 0 0
\(541\) −24.2888 24.2888i −1.04426 1.04426i −0.998974 0.0452820i \(-0.985581\pi\)
−0.0452820 0.998974i \(-0.514419\pi\)
\(542\) −19.6809 11.3628i −0.845368 0.488073i
\(543\) 0 0
\(544\) −1.07006 + 3.99353i −0.0458786 + 0.171221i
\(545\) 33.7518 + 58.4599i 1.44577 + 2.50415i
\(546\) 0 0
\(547\) 0.832021 1.44110i 0.0355746 0.0616171i −0.847690 0.530492i \(-0.822007\pi\)
0.883265 + 0.468875i \(0.155341\pi\)
\(548\) 0.359681 + 0.359681i 0.0153648 + 0.0153648i
\(549\) 0 0
\(550\) 8.37182i 0.356976i
\(551\) −3.66405 + 0.981780i −0.156094 + 0.0418252i
\(552\) 0 0
\(553\) −1.51371 + 5.64924i −0.0643695 + 0.240230i
\(554\) −22.4816 6.02392i −0.955150 0.255932i
\(555\) 0 0
\(556\) −6.05008 3.49301i −0.256580 0.148137i
\(557\) −22.6692 + 22.6692i −0.960523 + 0.960523i −0.999250 0.0387266i \(-0.987670\pi\)
0.0387266 + 0.999250i \(0.487670\pi\)
\(558\) 0 0
\(559\) 8.68196 + 2.26334i 0.367208 + 0.0957292i
\(560\) −14.1957 8.19589i −0.599878 0.346340i
\(561\) 0 0
\(562\) −1.61999 2.80591i −0.0683354 0.118360i
\(563\) −5.22488 9.04976i −0.220203 0.381402i 0.734667 0.678428i \(-0.237338\pi\)
−0.954869 + 0.297026i \(0.904005\pi\)
\(564\) 0 0
\(565\) 1.78503 + 6.66183i 0.0750969 + 0.280265i
\(566\) −3.92537 + 3.92537i −0.164996 + 0.164996i
\(567\) 0 0
\(568\) −3.43466 −0.144115
\(569\) −5.22038 + 9.04197i −0.218850 + 0.379059i −0.954457 0.298350i \(-0.903564\pi\)
0.735607 + 0.677409i \(0.236897\pi\)
\(570\) 0 0
\(571\) 14.9685 8.64209i 0.626414 0.361660i −0.152948 0.988234i \(-0.548877\pi\)
0.779362 + 0.626574i \(0.215543\pi\)
\(572\) −3.36104 1.91023i −0.140532 0.0798706i
\(573\) 0 0
\(574\) 0.514549 + 1.92032i 0.0214768 + 0.0801527i
\(575\) 19.7379i 0.823126i
\(576\) 0 0
\(577\) −13.1381 + 13.1381i −0.546947 + 0.546947i −0.925557 0.378609i \(-0.876402\pi\)
0.378609 + 0.925557i \(0.376402\pi\)
\(578\) 0.0901213 0.0241479i 0.00374855 0.00100442i
\(579\) 0 0
\(580\) 0.699717 2.61138i 0.0290542 0.108432i
\(581\) 25.1853 14.5408i 1.04486 0.603253i
\(582\) 0 0
\(583\) −11.4890 + 3.07848i −0.475827 + 0.127497i
\(584\) 4.49276 0.185912
\(585\) 0 0
\(586\) −17.2467 −0.712455
\(587\) 22.9881 6.15965i 0.948822 0.254236i 0.248960 0.968514i \(-0.419911\pi\)
0.699862 + 0.714278i \(0.253245\pi\)
\(588\) 0 0
\(589\) −39.1015 + 22.5753i −1.61115 + 0.930198i
\(590\) −9.26618 + 34.5818i −0.381482 + 1.42371i
\(591\) 0 0
\(592\) 2.09644 0.561739i 0.0861630 0.0230873i
\(593\) −23.2354 + 23.2354i −0.954164 + 0.954164i −0.998995 0.0448310i \(-0.985725\pi\)
0.0448310 + 0.998995i \(0.485725\pi\)
\(594\) 0 0
\(595\) 67.7703i 2.77831i
\(596\) 4.16059 + 15.5275i 0.170424 + 0.636032i
\(597\) 0 0
\(598\) −7.92416 4.50365i −0.324043 0.184168i
\(599\) 3.73418 2.15593i 0.152575 0.0880889i −0.421769 0.906703i \(-0.638591\pi\)
0.574344 + 0.818614i \(0.305257\pi\)
\(600\) 0 0
\(601\) −15.6036 + 27.0262i −0.636484 + 1.10242i 0.349714 + 0.936856i \(0.386279\pi\)
−0.986199 + 0.165567i \(0.947055\pi\)
\(602\) −11.3975 −0.464529
\(603\) 0 0
\(604\) 1.96587 1.96587i 0.0799901 0.0799901i
\(605\) −9.12404 34.0514i −0.370945 1.38439i
\(606\) 0 0
\(607\) −4.69953 8.13983i −0.190748 0.330385i 0.754750 0.656012i \(-0.227758\pi\)
−0.945498 + 0.325627i \(0.894425\pi\)
\(608\) 2.51074 + 4.34872i 0.101824 + 0.176364i
\(609\) 0 0
\(610\) −33.3450 19.2517i −1.35010 0.779480i
\(611\) 2.57943 + 4.39855i 0.104352 + 0.177946i
\(612\) 0 0
\(613\) −17.1072 + 17.1072i −0.690954 + 0.690954i −0.962442 0.271488i \(-0.912484\pi\)
0.271488 + 0.962442i \(0.412484\pi\)
\(614\) −0.770508 0.444853i −0.0310952 0.0179528i
\(615\) 0 0
\(616\) 4.74367 + 1.27106i 0.191128 + 0.0512126i
\(617\) −11.7214 + 43.7450i −0.471888 + 1.76111i 0.161091 + 0.986940i \(0.448499\pi\)
−0.632979 + 0.774169i \(0.718168\pi\)
\(618\) 0 0
\(619\) 37.1618 9.95749i 1.49366 0.400225i 0.582689 0.812695i \(-0.302000\pi\)
0.910971 + 0.412470i \(0.135334\pi\)
\(620\) 32.1789i 1.29234i
\(621\) 0 0
\(622\) −10.7050 10.7050i −0.429233 0.429233i
\(623\) −22.5715 + 39.0950i −0.904308 + 1.56631i
\(624\) 0 0
\(625\) −1.53794 2.66379i −0.0615175 0.106551i
\(626\) −3.36993 + 12.5768i −0.134690 + 0.502668i
\(627\) 0 0
\(628\) −11.9767 6.91473i −0.477921 0.275928i
\(629\) −6.34506 6.34506i −0.252994 0.252994i
\(630\) 0 0
\(631\) 27.9315 + 27.9315i 1.11193 + 1.11193i 0.992889 + 0.119045i \(0.0379833\pi\)
0.119045 + 0.992889i \(0.462017\pi\)
\(632\) 0.330488 + 1.23340i 0.0131461 + 0.0490619i
\(633\) 0 0
\(634\) 10.6184 6.13056i 0.421712 0.243476i
\(635\) −19.2130 5.14812i −0.762446 0.204297i
\(636\) 0 0
\(637\) −35.3958 + 35.8791i −1.40243 + 1.42158i
\(638\) 0.809974i 0.0320672i
\(639\) 0 0
\(640\) −3.57882 −0.141465
\(641\) −1.42504 + 2.46825i −0.0562859 + 0.0974900i −0.892795 0.450462i \(-0.851259\pi\)
0.836510 + 0.547952i \(0.184592\pi\)
\(642\) 0 0
\(643\) 17.8708 + 4.78846i 0.704755 + 0.188838i 0.593359 0.804938i \(-0.297801\pi\)
0.111395 + 0.993776i \(0.464468\pi\)
\(644\) 11.1839 + 2.99673i 0.440709 + 0.118088i
\(645\) 0 0
\(646\) 10.3804 17.9794i 0.408412 0.707390i
\(647\) 35.2511 1.38587 0.692933 0.721002i \(-0.256318\pi\)
0.692933 + 0.721002i \(0.256318\pi\)
\(648\) 0 0
\(649\) 10.7263i 0.421043i
\(650\) 28.1512 0.190886i 1.10418 0.00748718i
\(651\) 0 0
\(652\) −21.0026 5.62762i −0.822524 0.220395i
\(653\) 2.91654 1.68387i 0.114133 0.0658948i −0.441847 0.897091i \(-0.645677\pi\)
0.555980 + 0.831196i \(0.312343\pi\)
\(654\) 0 0
\(655\) 4.95344 + 18.4865i 0.193547 + 0.722327i
\(656\) 0.306922 + 0.306922i 0.0119833 + 0.0119833i
\(657\) 0 0
\(658\) −4.58029 4.58029i −0.178558 0.178558i
\(659\) −4.83089 2.78912i −0.188185 0.108649i 0.402948 0.915223i \(-0.367986\pi\)
−0.591133 + 0.806574i \(0.701319\pi\)
\(660\) 0 0
\(661\) 0.662272 2.47163i 0.0257594 0.0961353i −0.951849 0.306566i \(-0.900820\pi\)
0.977609 + 0.210431i \(0.0674866\pi\)
\(662\) −4.24581 7.35397i −0.165018 0.285820i
\(663\) 0 0
\(664\) 3.17468 5.49871i 0.123202 0.213391i
\(665\) 58.2026 + 58.2026i 2.25700 + 2.25700i
\(666\) 0 0
\(667\) 1.90964i 0.0739414i
\(668\) 14.2638 3.82198i 0.551885 0.147877i
\(669\) 0 0
\(670\) 8.45903 31.5695i 0.326801 1.21964i
\(671\) 11.1426 + 2.98566i 0.430157 + 0.115260i
\(672\) 0 0
\(673\) 8.56847 + 4.94701i 0.330290 + 0.190693i 0.655970 0.754787i \(-0.272260\pi\)
−0.325680 + 0.945480i \(0.605593\pi\)
\(674\) −8.33903 + 8.33903i −0.321207 + 0.321207i
\(675\) 0 0
\(676\) 6.34673 11.3454i 0.244105 0.436363i
\(677\) 21.3304 + 12.3151i 0.819796 + 0.473309i 0.850346 0.526224i \(-0.176393\pi\)
−0.0305503 + 0.999533i \(0.509726\pi\)
\(678\) 0 0
\(679\) 5.89931 + 10.2179i 0.226395 + 0.392127i
\(680\) 7.39814 + 12.8140i 0.283706 + 0.491393i
\(681\) 0 0
\(682\) 2.49524 + 9.31236i 0.0955477 + 0.356589i
\(683\) −23.4615 + 23.4615i −0.897728 + 0.897728i −0.995235 0.0975073i \(-0.968913\pi\)
0.0975073 + 0.995235i \(0.468913\pi\)
\(684\) 0 0
\(685\) 1.82042 0.0695548
\(686\) 15.9815 27.6807i 0.610176 1.05685i
\(687\) 0 0
\(688\) −2.15504 + 1.24421i −0.0821600 + 0.0474351i
\(689\) −10.6137 38.5630i −0.404350 1.46913i
\(690\) 0 0
\(691\) −3.98917 14.8878i −0.151755 0.566359i −0.999361 0.0357326i \(-0.988624\pi\)
0.847606 0.530626i \(-0.178043\pi\)
\(692\) 9.88975i 0.375952i
\(693\) 0 0
\(694\) −19.7015 + 19.7015i −0.747857 + 0.747857i
\(695\) −24.1498 + 6.47092i −0.916054 + 0.245456i
\(696\) 0 0
\(697\) 0.464464 1.73341i 0.0175928 0.0656574i
\(698\) 7.03951 4.06426i 0.266449 0.153835i
\(699\) 0 0
\(700\) −34.5435 + 9.25591i −1.30562 + 0.349840i
\(701\) −19.3754 −0.731800 −0.365900 0.930654i \(-0.619239\pi\)
−0.365900 + 0.930654i \(0.619239\pi\)
\(702\) 0 0
\(703\) −10.8986 −0.411047
\(704\) 1.03569 0.277511i 0.0390339 0.0104591i
\(705\) 0 0
\(706\) −0.685971 + 0.396046i −0.0258169 + 0.0149054i
\(707\) 11.4004 42.5467i 0.428754 1.60013i
\(708\) 0 0
\(709\) 21.3837 5.72975i 0.803082 0.215185i 0.166145 0.986101i \(-0.446868\pi\)
0.636937 + 0.770916i \(0.280201\pi\)
\(710\) −8.69178 + 8.69178i −0.326197 + 0.326197i
\(711\) 0 0
\(712\) 9.85607i 0.369372i
\(713\) 5.88291 + 21.9553i 0.220317 + 0.822233i
\(714\) 0 0
\(715\) −13.3395 + 3.67143i −0.498869 + 0.137304i
\(716\) −5.00351 + 2.88878i −0.186990 + 0.107959i
\(717\) 0 0
\(718\) 15.5019 26.8500i 0.578525 1.00203i
\(719\) 28.0174 1.04487 0.522436 0.852679i \(-0.325023\pi\)
0.522436 + 0.852679i \(0.325023\pi\)
\(720\) 0 0
\(721\) −34.1794 + 34.1794i −1.27291 + 1.27291i
\(722\) −1.60861 6.00343i −0.0598664 0.223425i
\(723\) 0 0
\(724\) −0.190358 0.329709i −0.00707458 0.0122535i
\(725\) −2.94912 5.10803i −0.109528 0.189707i
\(726\) 0 0
\(727\) −26.1468 15.0959i −0.969733 0.559876i −0.0705781 0.997506i \(-0.522484\pi\)
−0.899155 + 0.437631i \(0.855818\pi\)
\(728\) −4.16594 + 15.9801i −0.154400 + 0.592264i
\(729\) 0 0
\(730\) 11.3694 11.3694i 0.420801 0.420801i
\(731\) 8.90979 + 5.14407i 0.329541 + 0.190260i
\(732\) 0 0
\(733\) −30.2965 8.11792i −1.11903 0.299842i −0.348537 0.937295i \(-0.613321\pi\)
−0.770489 + 0.637453i \(0.779988\pi\)
\(734\) 0.739774 2.76087i 0.0273056 0.101906i
\(735\) 0 0
\(736\) 2.44179 0.654275i 0.0900055 0.0241169i
\(737\) 9.79195i 0.360691i
\(738\) 0 0
\(739\) 36.3493 + 36.3493i 1.33713 + 1.33713i 0.898825 + 0.438307i \(0.144422\pi\)
0.438307 + 0.898825i \(0.355578\pi\)
\(740\) 3.88372 6.72679i 0.142768 0.247282i
\(741\) 0 0
\(742\) 25.4046 + 44.0021i 0.932632 + 1.61537i
\(743\) 0.788263 2.94184i 0.0289186 0.107926i −0.949958 0.312378i \(-0.898875\pi\)
0.978877 + 0.204452i \(0.0655412\pi\)
\(744\) 0 0
\(745\) 49.8228 + 28.7652i 1.82537 + 1.05388i
\(746\) 13.9901 + 13.9901i 0.512214 + 0.512214i
\(747\) 0 0
\(748\) −3.13460 3.13460i −0.114612 0.114612i
\(749\) −10.5202 39.2618i −0.384399 1.43460i
\(750\) 0 0
\(751\) 3.94059 2.27510i 0.143794 0.0830196i −0.426377 0.904546i \(-0.640210\pi\)
0.570171 + 0.821526i \(0.306877\pi\)
\(752\) −1.36604 0.366030i −0.0498145 0.0133478i
\(753\) 0 0
\(754\) −2.72363 + 0.0184683i −0.0991888 + 0.000672574i
\(755\) 9.94968i 0.362106i
\(756\) 0 0
\(757\) 12.8805 0.468150 0.234075 0.972218i \(-0.424794\pi\)
0.234075 + 0.972218i \(0.424794\pi\)
\(758\) −2.30806 + 3.99768i −0.0838327 + 0.145202i
\(759\) 0 0
\(760\) 17.3586 + 4.65122i 0.629662 + 0.168718i
\(761\) 33.8916 + 9.08124i 1.22857 + 0.329195i 0.814023 0.580833i \(-0.197273\pi\)
0.414548 + 0.910027i \(0.363940\pi\)
\(762\) 0 0
\(763\) −43.1961 + 74.8179i −1.56380 + 2.70859i
\(764\) 10.5217 0.380662
\(765\) 0 0
\(766\) 5.36599i 0.193881i
\(767\) 36.0684 0.244570i 1.30235 0.00883093i
\(768\) 0 0
\(769\) 24.4941 + 6.56317i 0.883279 + 0.236674i 0.671821 0.740713i \(-0.265512\pi\)
0.211458 + 0.977387i \(0.432179\pi\)
\(770\) 15.2209 8.78781i 0.548524 0.316691i
\(771\) 0 0
\(772\) 2.06271 + 7.69813i 0.0742385 + 0.277062i
\(773\) −12.4785 12.4785i −0.448821 0.448821i 0.446142 0.894962i \(-0.352798\pi\)
−0.894962 + 0.446142i \(0.852798\pi\)
\(774\) 0 0
\(775\) −49.6424 49.6424i −1.78321 1.78321i
\(776\) 2.23087 + 1.28800i 0.0800837 + 0.0462364i
\(777\) 0 0
\(778\) −6.67364 + 24.9064i −0.239262 + 0.892936i
\(779\) −1.08979 1.88758i −0.0390459 0.0676295i
\(780\) 0 0
\(781\) 1.84136 3.18933i 0.0658890 0.114123i
\(782\) −7.39030 7.39030i −0.264277 0.264277i
\(783\) 0 0
\(784\) 13.9785i 0.499231i
\(785\) −47.8067 + 12.8098i −1.70629 + 0.457200i
\(786\) 0 0
\(787\) 8.78278 32.7778i 0.313072 1.16840i −0.612698 0.790317i \(-0.709916\pi\)
0.925771 0.378085i \(-0.123417\pi\)
\(788\) 21.7107 + 5.81737i 0.773412 + 0.207235i
\(789\) 0 0
\(790\) 3.95758 + 2.28491i 0.140804 + 0.0812934i
\(791\) −6.24141 + 6.24141i −0.221919 + 0.221919i
\(792\) 0 0
\(793\) −9.78558 + 37.5365i −0.347496 + 1.33296i
\(794\) −13.3484 7.70668i −0.473716 0.273500i
\(795\) 0 0
\(796\) 5.89163 + 10.2046i 0.208823 + 0.361692i
\(797\) 4.36366 + 7.55809i 0.154569 + 0.267721i 0.932902 0.360130i \(-0.117268\pi\)
−0.778333 + 0.627852i \(0.783934\pi\)
\(798\) 0 0
\(799\) 1.51332 + 5.64778i 0.0535373 + 0.199804i
\(800\) −5.52104 + 5.52104i −0.195198 + 0.195198i
\(801\) 0 0
\(802\) −3.97739 −0.140446
\(803\) −2.40862 + 4.17185i −0.0849982 + 0.147221i
\(804\) 0 0
\(805\) 35.8857 20.7186i 1.26480 0.730235i
\(806\) −31.2570 + 8.60287i −1.10098 + 0.303023i
\(807\) 0 0
\(808\) −2.48904 9.28922i −0.0875640 0.326793i
\(809\) 16.8882i 0.593758i 0.954915 + 0.296879i \(0.0959458\pi\)
−0.954915 + 0.296879i \(0.904054\pi\)
\(810\) 0 0
\(811\) −22.1364 + 22.1364i −0.777313 + 0.777313i −0.979373 0.202060i \(-0.935236\pi\)
0.202060 + 0.979373i \(0.435236\pi\)
\(812\) 3.34208 0.895509i 0.117284 0.0314262i
\(813\) 0 0
\(814\) −0.602308 + 2.24784i −0.0211109 + 0.0787869i
\(815\) −67.3905 + 38.9079i −2.36059 + 1.36289i
\(816\) 0 0
\(817\) 12.0698 3.23409i 0.422268 0.113146i
\(818\) −27.9018 −0.975563
\(819\) 0 0
\(820\) 1.55340 0.0542470
\(821\) −34.4115 + 9.22053i −1.20097 + 0.321799i −0.803213 0.595692i \(-0.796878\pi\)
−0.397756 + 0.917491i \(0.630211\pi\)
\(822\) 0 0
\(823\) −26.7859 + 15.4649i −0.933699 + 0.539071i −0.887980 0.459883i \(-0.847891\pi\)
−0.0457195 + 0.998954i \(0.514558\pi\)
\(824\) −2.73142 + 10.1938i −0.0951536 + 0.355118i
\(825\) 0 0
\(826\) −44.2584 + 11.8590i −1.53995 + 0.412627i
\(827\) 35.1434 35.1434i 1.22206 1.22206i 0.255158 0.966899i \(-0.417873\pi\)
0.966899 0.255158i \(-0.0821273\pi\)
\(828\) 0 0
\(829\) 19.6669i 0.683058i −0.939871 0.341529i \(-0.889055\pi\)
0.939871 0.341529i \(-0.110945\pi\)
\(830\) −5.88120 21.9489i −0.204140 0.761859i
\(831\) 0 0
\(832\) 0.956779 + 3.47629i 0.0331703 + 0.120519i
\(833\) −50.0499 + 28.8963i −1.73413 + 1.00120i
\(834\) 0 0
\(835\) 26.4242 45.7681i 0.914448 1.58387i
\(836\) −5.38413 −0.186214
\(837\) 0 0
\(838\) 12.9825 12.9825i 0.448474 0.448474i
\(839\) −10.2614 38.2961i −0.354263 1.32213i −0.881410 0.472353i \(-0.843405\pi\)
0.527147 0.849774i \(-0.323262\pi\)
\(840\) 0 0
\(841\) −14.2147 24.6205i −0.490161 0.848984i
\(842\) −12.2412 21.2024i −0.421860 0.730684i
\(843\) 0 0
\(844\) 17.9145 + 10.3429i 0.616642 + 0.356019i
\(845\) −12.6498 44.7719i −0.435165 1.54020i
\(846\) 0 0
\(847\) 31.9024 31.9024i 1.09618 1.09618i
\(848\) 9.60696 + 5.54658i 0.329904 + 0.190470i
\(849\) 0 0
\(850\) 31.1812 + 8.35497i 1.06951 + 0.286573i
\(851\) −1.42003 + 5.29963i −0.0486781 + 0.181669i
\(852\) 0 0
\(853\) −0.0667930 + 0.0178971i −0.00228695 + 0.000612786i −0.259962 0.965619i \(-0.583710\pi\)
0.257675 + 0.966232i \(0.417043\pi\)
\(854\) 49.2773i 1.68624i
\(855\) 0 0
\(856\) −6.27516 6.27516i −0.214481 0.214481i
\(857\) −9.61874 + 16.6601i −0.328570 + 0.569099i −0.982228 0.187690i \(-0.939900\pi\)
0.653659 + 0.756790i \(0.273233\pi\)
\(858\) 0 0
\(859\) 2.13530 + 3.69845i 0.0728556 + 0.126190i 0.900152 0.435576i \(-0.143455\pi\)
−0.827296 + 0.561766i \(0.810122\pi\)
\(860\) −2.30494 + 8.60215i −0.0785978 + 0.293331i
\(861\) 0 0
\(862\) −17.8372 10.2983i −0.607537 0.350762i
\(863\) −20.8127 20.8127i −0.708471 0.708471i 0.257743 0.966214i \(-0.417021\pi\)
−0.966214 + 0.257743i \(0.917021\pi\)
\(864\) 0 0
\(865\) 25.0271 + 25.0271i 0.850946 + 0.850946i
\(866\) −4.79937 17.9115i −0.163089 0.608657i
\(867\) 0 0
\(868\) 35.6656 20.5915i 1.21057 0.698922i
\(869\) −1.32247 0.354356i −0.0448619 0.0120207i
\(870\) 0 0
\(871\) −32.9266 + 0.223267i −1.11567 + 0.00756511i
\(872\) 18.8620i 0.638748i
\(873\) 0 0
\(874\) −12.6939 −0.429378
\(875\) −23.0135 + 39.8605i −0.777998 + 1.34753i
\(876\) 0 0
\(877\) −43.8456 11.7484i −1.48056 0.396715i −0.574022 0.818840i \(-0.694618\pi\)
−0.906537 + 0.422125i \(0.861284\pi\)
\(878\) 4.17398 + 1.11842i 0.140865 + 0.0377447i
\(879\) 0 0
\(880\) 1.91864 3.32318i 0.0646774 0.112024i
\(881\) 32.8947 1.10825 0.554125 0.832434i \(-0.313053\pi\)
0.554125 + 0.832434i \(0.313053\pi\)
\(882\) 0 0
\(883\) 14.1665i 0.476742i 0.971174 + 0.238371i \(0.0766134\pi\)
−0.971174 + 0.238371i \(0.923387\pi\)
\(884\) 10.4690 10.6119i 0.352110 0.356918i
\(885\) 0 0
\(886\) −30.9904 8.30384i −1.04114 0.278973i
\(887\) 3.64939 2.10697i 0.122534 0.0707453i −0.437480 0.899228i \(-0.644129\pi\)
0.560014 + 0.828483i \(0.310796\pi\)
\(888\) 0 0
\(889\) −6.58864 24.5891i −0.220976 0.824693i
\(890\) 24.9418 + 24.9418i 0.836052 + 0.836052i
\(891\) 0 0
\(892\) −11.0956 11.0956i −0.371507 0.371507i
\(893\) 6.15011 + 3.55077i 0.205805 + 0.118822i
\(894\) 0 0
\(895\) −5.35155 + 19.9723i −0.178883 + 0.667599i
\(896\) −2.29011 3.96659i −0.0765073 0.132515i
\(897\) 0 0
\(898\) 17.9328 31.0605i 0.598424 1.03650i
\(899\) 4.80290 + 4.80290i 0.160186 + 0.160186i
\(900\) 0 0
\(901\) 45.8636i 1.52794i
\(902\) −0.449543 + 0.120455i −0.0149681 + 0.00401070i
\(903\) 0 0
\(904\) −0.498777 + 1.86146i −0.0165891 + 0.0619113i
\(905\) −1.31608 0.352644i −0.0437481 0.0117223i
\(906\) 0 0
\(907\) −21.0079 12.1289i −0.697556 0.402734i 0.108881 0.994055i \(-0.465273\pi\)
−0.806436 + 0.591321i \(0.798607\pi\)
\(908\) −11.2997 + 11.2997i −0.374994 + 0.374994i
\(909\) 0 0
\(910\) 29.8971 + 50.9818i 0.991079 + 1.69003i
\(911\) 19.1529 + 11.0580i 0.634565 + 0.366366i 0.782518 0.622628i \(-0.213935\pi\)
−0.147953 + 0.988994i \(0.547268\pi\)
\(912\) 0 0
\(913\) 3.40396 + 5.89583i 0.112655 + 0.195124i
\(914\) 13.2145 + 22.8882i 0.437097 + 0.757073i
\(915\) 0 0
\(916\) −2.36858 8.83967i −0.0782602 0.292071i
\(917\) −17.3198 + 17.3198i −0.571951 + 0.571951i
\(918\) 0 0
\(919\) 10.7824 0.355679 0.177839 0.984060i \(-0.443089\pi\)
0.177839 + 0.984060i \(0.443089\pi\)
\(920\) 4.52349 7.83491i 0.149135 0.258309i
\(921\) 0 0
\(922\) 11.7651 6.79260i 0.387464 0.223702i
\(923\) 10.7665 + 6.11906i 0.354383 + 0.201411i
\(924\) 0 0
\(925\) −4.38602 16.3688i −0.144211 0.538204i
\(926\) 1.44300i 0.0474198i
\(927\) 0 0
\(928\) 0.534160 0.534160i 0.0175347 0.0175347i
\(929\) −14.0136 + 3.75492i −0.459770 + 0.123195i −0.481267 0.876574i \(-0.659823\pi\)
0.0214972 + 0.999769i \(0.493157\pi\)
\(930\) 0 0
\(931\) −18.1672 + 67.8008i −0.595405 + 2.22208i
\(932\) 21.3803 12.3439i 0.700334 0.404338i
\(933\) 0 0
\(934\) 12.9203 3.46197i 0.422764 0.113279i
\(935\) −15.8649 −0.518837
\(936\) 0 0
\(937\) 6.22872 0.203483 0.101742 0.994811i \(-0.467558\pi\)
0.101742 + 0.994811i \(0.467558\pi\)
\(938\) 40.4032 10.8260i 1.31921 0.353481i
\(939\) 0 0
\(940\) −4.38320 + 2.53064i −0.142964 + 0.0825404i
\(941\) −5.52621 + 20.6241i −0.180149 + 0.672326i 0.815468 + 0.578802i \(0.196480\pi\)
−0.995617 + 0.0935237i \(0.970187\pi\)
\(942\) 0 0
\(943\) −1.05987 + 0.283990i −0.0345140 + 0.00924800i
\(944\) −7.07375 + 7.07375i −0.230231 + 0.230231i
\(945\) 0 0
\(946\) 2.66814i 0.0867486i
\(947\) 12.5429 + 46.8109i 0.407590 + 1.52115i 0.799228 + 0.601029i \(0.205242\pi\)
−0.391637 + 0.920120i \(0.628091\pi\)
\(948\) 0 0
\(949\) −14.0832 8.00413i −0.457161 0.259825i
\(950\) 33.9545 19.6037i 1.10163 0.636027i
\(951\) 0 0
\(952\) −9.46825 + 16.3995i −0.306868 + 0.531511i
\(953\) 41.9198 1.35791 0.678957 0.734178i \(-0.262432\pi\)
0.678957 + 0.734178i \(0.262432\pi\)
\(954\) 0 0
\(955\) 26.6263 26.6263i 0.861606 0.861606i
\(956\) −4.05596 15.1370i −0.131179 0.489567i
\(957\) 0 0
\(958\) −17.3124 29.9859i −0.559337 0.968800i
\(959\) 1.16490 + 2.01767i 0.0376167 + 0.0651540i
\(960\) 0 0
\(961\) 43.1688 + 24.9235i 1.39254 + 0.803984i
\(962\) −7.57237 1.97408i −0.244143 0.0636468i
\(963\) 0 0
\(964\) −2.56916 + 2.56916i −0.0827469 + 0.0827469i
\(965\) 24.7008 + 14.2610i 0.795148 + 0.459079i
\(966\) 0 0
\(967\) 24.8884 + 6.66882i 0.800356 + 0.214455i 0.635740 0.771903i \(-0.280695\pi\)
0.164616 + 0.986358i \(0.447362\pi\)
\(968\) 2.54946 9.51470i 0.0819426 0.305814i
\(969\) 0 0
\(970\) 8.90487 2.38605i 0.285918 0.0766116i
\(971\) 34.0629i 1.09313i −0.837417 0.546565i \(-0.815935\pi\)
0.837417 0.546565i \(-0.184065\pi\)
\(972\) 0 0
\(973\) −22.6257 22.6257i −0.725347 0.725347i
\(974\) −5.26334 + 9.11638i −0.168648 + 0.292108i
\(975\) 0 0
\(976\) −5.37935 9.31732i −0.172189 0.298240i
\(977\) 4.44761 16.5987i 0.142292 0.531040i −0.857569 0.514368i \(-0.828026\pi\)
0.999861 0.0166715i \(-0.00530693\pi\)
\(978\) 0 0
\(979\) −9.15205 5.28394i −0.292501 0.168875i
\(980\) −35.3740 35.3740i −1.12998 1.12998i
\(981\) 0 0
\(982\) −15.0310 15.0310i −0.479660 0.479660i
\(983\) 0.120461 + 0.449565i 0.00384210 + 0.0143389i 0.967820 0.251642i \(-0.0809707\pi\)
−0.963978 + 0.265981i \(0.914304\pi\)
\(984\) 0 0
\(985\) 69.6628 40.2198i 2.21964 1.28151i
\(986\) −3.01678 0.808343i −0.0960738 0.0257429i
\(987\) 0 0
\(988\) −0.122764 18.1048i −0.00390564 0.575989i
\(989\) 6.29054i 0.200028i
\(990\) 0 0
\(991\) 37.1861 1.18126 0.590628 0.806944i \(-0.298880\pi\)
0.590628 + 0.806944i \(0.298880\pi\)
\(992\) 4.49575 7.78686i 0.142740 0.247233i
\(993\) 0 0
\(994\) −15.1955 4.07162i −0.481972 0.129144i
\(995\) 40.7332 + 10.9144i 1.29133 + 0.346011i
\(996\) 0 0
\(997\) 23.5272 40.7502i 0.745113 1.29057i −0.205029 0.978756i \(-0.565729\pi\)
0.950142 0.311817i \(-0.100938\pi\)
\(998\) 2.70758 0.0857070
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 702.2.bg.a.629.14 56
3.2 odd 2 234.2.bd.a.83.4 yes 56
9.4 even 3 234.2.bd.a.5.4 56
9.5 odd 6 inner 702.2.bg.a.395.14 56
13.8 odd 4 inner 702.2.bg.a.359.14 56
39.8 even 4 234.2.bd.a.47.4 yes 56
117.86 even 12 inner 702.2.bg.a.125.14 56
117.112 odd 12 234.2.bd.a.203.4 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
234.2.bd.a.5.4 56 9.4 even 3
234.2.bd.a.47.4 yes 56 39.8 even 4
234.2.bd.a.83.4 yes 56 3.2 odd 2
234.2.bd.a.203.4 yes 56 117.112 odd 12
702.2.bg.a.125.14 56 117.86 even 12 inner
702.2.bg.a.359.14 56 13.8 odd 4 inner
702.2.bg.a.395.14 56 9.5 odd 6 inner
702.2.bg.a.629.14 56 1.1 even 1 trivial