Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [702,2,Mod(125,702)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(702, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([10, 3]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("702.125");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 702 = 2 \cdot 3^{3} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 702.bg (of order \(12\), degree \(4\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.60549822189\) |
Analytic rank: | \(0\) |
Dimension: | \(56\) |
Relative dimension: | \(14\) over \(\Q(\zeta_{12})\) |
Twist minimal: | no (minimal twist has level 234) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
125.1 | −0.965926 | − | 0.258819i | 0 | 0.866025 | + | 0.500000i | −1.08814 | − | 4.06098i | 0 | −1.10431 | − | 0.295899i | −0.707107 | − | 0.707107i | 0 | 4.20424i | ||||||||
125.2 | −0.965926 | − | 0.258819i | 0 | 0.866025 | + | 0.500000i | −0.603112 | − | 2.25085i | 0 | −1.18901 | − | 0.318594i | −0.707107 | − | 0.707107i | 0 | 2.33025i | ||||||||
125.3 | −0.965926 | − | 0.258819i | 0 | 0.866025 | + | 0.500000i | −0.320826 | − | 1.19734i | 0 | 0.0195586 | + | 0.00524071i | −0.707107 | − | 0.707107i | 0 | 1.23958i | ||||||||
125.4 | −0.965926 | − | 0.258819i | 0 | 0.866025 | + | 0.500000i | −0.0365170 | − | 0.136283i | 0 | −2.57622 | − | 0.690296i | −0.707107 | − | 0.707107i | 0 | 0.141091i | ||||||||
125.5 | −0.965926 | − | 0.258819i | 0 | 0.866025 | + | 0.500000i | 0.437284 | + | 1.63197i | 0 | 3.59443 | + | 0.963125i | −0.707107 | − | 0.707107i | 0 | − | 1.68954i | |||||||
125.6 | −0.965926 | − | 0.258819i | 0 | 0.866025 | + | 0.500000i | 0.795294 | + | 2.96808i | 0 | 4.26716 | + | 1.14338i | −0.707107 | − | 0.707107i | 0 | − | 3.07278i | |||||||
125.7 | −0.965926 | − | 0.258819i | 0 | 0.866025 | + | 0.500000i | 0.816014 | + | 3.04540i | 0 | −1.64558 | − | 0.440933i | −0.707107 | − | 0.707107i | 0 | − | 3.15283i | |||||||
125.8 | 0.965926 | + | 0.258819i | 0 | 0.866025 | + | 0.500000i | −0.945094 | − | 3.52714i | 0 | −3.38290 | − | 0.906445i | 0.707107 | + | 0.707107i | 0 | − | 3.65156i | |||||||
125.9 | 0.965926 | + | 0.258819i | 0 | 0.866025 | + | 0.500000i | −0.586717 | − | 2.18966i | 0 | 0.211451 | + | 0.0566582i | 0.707107 | + | 0.707107i | 0 | − | 2.26690i | |||||||
125.10 | 0.965926 | + | 0.258819i | 0 | 0.866025 | + | 0.500000i | −0.137818 | − | 0.514345i | 0 | 2.18767 | + | 0.586183i | 0.707107 | + | 0.707107i | 0 | − | 0.532489i | |||||||
125.11 | 0.965926 | + | 0.258819i | 0 | 0.866025 | + | 0.500000i | −0.100432 | − | 0.374818i | 0 | 1.26805 | + | 0.339772i | 0.707107 | + | 0.707107i | 0 | − | 0.388040i | |||||||
125.12 | 0.965926 | + | 0.258819i | 0 | 0.866025 | + | 0.500000i | 0.372850 | + | 1.39150i | 0 | −4.70013 | − | 1.25940i | 0.707107 | + | 0.707107i | 0 | 1.44058i | ||||||||
125.13 | 0.965926 | + | 0.258819i | 0 | 0.866025 | + | 0.500000i | 0.470946 | + | 1.75759i | 0 | 1.35773 | + | 0.363802i | 0.707107 | + | 0.707107i | 0 | 1.81960i | ||||||||
125.14 | 0.965926 | + | 0.258819i | 0 | 0.866025 | + | 0.500000i | 0.926266 | + | 3.45687i | 0 | 4.42416 | + | 1.18545i | 0.707107 | + | 0.707107i | 0 | 3.57882i | ||||||||
359.1 | −0.258819 | − | 0.965926i | 0 | −0.866025 | + | 0.500000i | −4.06098 | − | 1.08814i | 0 | 0.295899 | + | 1.10431i | 0.707107 | + | 0.707107i | 0 | 4.20424i | ||||||||
359.2 | −0.258819 | − | 0.965926i | 0 | −0.866025 | + | 0.500000i | −2.25085 | − | 0.603112i | 0 | 0.318594 | + | 1.18901i | 0.707107 | + | 0.707107i | 0 | 2.33025i | ||||||||
359.3 | −0.258819 | − | 0.965926i | 0 | −0.866025 | + | 0.500000i | −1.19734 | − | 0.320826i | 0 | −0.00524071 | − | 0.0195586i | 0.707107 | + | 0.707107i | 0 | 1.23958i | ||||||||
359.4 | −0.258819 | − | 0.965926i | 0 | −0.866025 | + | 0.500000i | −0.136283 | − | 0.0365170i | 0 | 0.690296 | + | 2.57622i | 0.707107 | + | 0.707107i | 0 | 0.141091i | ||||||||
359.5 | −0.258819 | − | 0.965926i | 0 | −0.866025 | + | 0.500000i | 1.63197 | + | 0.437284i | 0 | −0.963125 | − | 3.59443i | 0.707107 | + | 0.707107i | 0 | − | 1.68954i | |||||||
359.6 | −0.258819 | − | 0.965926i | 0 | −0.866025 | + | 0.500000i | 2.96808 | + | 0.795294i | 0 | −1.14338 | − | 4.26716i | 0.707107 | + | 0.707107i | 0 | − | 3.07278i | |||||||
See all 56 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
9.d | odd | 6 | 1 | inner |
13.d | odd | 4 | 1 | inner |
117.z | even | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 702.2.bg.a | 56 | |
3.b | odd | 2 | 1 | 234.2.bd.a | ✓ | 56 | |
9.c | even | 3 | 1 | 234.2.bd.a | ✓ | 56 | |
9.d | odd | 6 | 1 | inner | 702.2.bg.a | 56 | |
13.d | odd | 4 | 1 | inner | 702.2.bg.a | 56 | |
39.f | even | 4 | 1 | 234.2.bd.a | ✓ | 56 | |
117.y | odd | 12 | 1 | 234.2.bd.a | ✓ | 56 | |
117.z | even | 12 | 1 | inner | 702.2.bg.a | 56 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
234.2.bd.a | ✓ | 56 | 3.b | odd | 2 | 1 | |
234.2.bd.a | ✓ | 56 | 9.c | even | 3 | 1 | |
234.2.bd.a | ✓ | 56 | 39.f | even | 4 | 1 | |
234.2.bd.a | ✓ | 56 | 117.y | odd | 12 | 1 | |
702.2.bg.a | 56 | 1.a | even | 1 | 1 | trivial | |
702.2.bg.a | 56 | 9.d | odd | 6 | 1 | inner | |
702.2.bg.a | 56 | 13.d | odd | 4 | 1 | inner | |
702.2.bg.a | 56 | 117.z | even | 12 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(702, [\chi])\).