L(s) = 1 | − 2-s + 4·5-s + 2·7-s + 8-s − 4·10-s + 5·11-s + 7·13-s − 2·14-s − 16-s − 6·17-s − 5·22-s − 5·23-s + 2·25-s − 7·26-s + 4·29-s + 20·31-s + 6·34-s + 8·35-s − 6·37-s + 4·40-s + 2·43-s + 5·46-s + 26·47-s + 7·49-s − 2·50-s − 12·53-s + 20·55-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1.78·5-s + 0.755·7-s + 0.353·8-s − 1.26·10-s + 1.50·11-s + 1.94·13-s − 0.534·14-s − 1/4·16-s − 1.45·17-s − 1.06·22-s − 1.04·23-s + 2/5·25-s − 1.37·26-s + 0.742·29-s + 3.59·31-s + 1.02·34-s + 1.35·35-s − 0.986·37-s + 0.632·40-s + 0.304·43-s + 0.737·46-s + 3.79·47-s + 49-s − 0.282·50-s − 1.64·53-s + 2.69·55-s + ⋯ |
Λ(s)=(=(492804s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(492804s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
492804
= 22⋅36⋅132
|
Sign: |
1
|
Analytic conductor: |
31.4216 |
Root analytic conductor: |
2.36759 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 492804, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.524897185 |
L(21) |
≈ |
2.524897185 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+T+T2 |
| 3 | | 1 |
| 13 | C2 | 1−7T+pT2 |
good | 5 | C2 | (1−2T+pT2)2 |
| 7 | C22 | 1−2T−3T2−2pT3+p2T4 |
| 11 | C22 | 1−5T+14T2−5pT3+p2T4 |
| 17 | C22 | 1+6T+19T2+6pT3+p2T4 |
| 19 | C22 | 1−pT2+p2T4 |
| 23 | C22 | 1+5T+2T2+5pT3+p2T4 |
| 29 | C22 | 1−4T−13T2−4pT3+p2T4 |
| 31 | C2 | (1−10T+pT2)2 |
| 37 | C22 | 1+6T−T2+6pT3+p2T4 |
| 41 | C22 | 1−pT2+p2T4 |
| 43 | C22 | 1−2T−39T2−2pT3+p2T4 |
| 47 | C2 | (1−13T+pT2)2 |
| 53 | C2 | (1+6T+pT2)2 |
| 59 | C22 | 1+5T−34T2+5pT3+p2T4 |
| 61 | C2 | (1−13T+pT2)(1−T+pT2) |
| 67 | C22 | 1+10T+33T2+10pT3+p2T4 |
| 71 | C22 | 1−8T−7T2−8pT3+p2T4 |
| 73 | C2 | (1+7T+pT2)2 |
| 79 | C2 | (1−2T+pT2)2 |
| 83 | C2 | (1+3T+pT2)2 |
| 89 | C22 | 1−pT2+p2T4 |
| 97 | C22 | 1+17T+192T2+17pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.50034096822641886117538386922, −10.31980084018333179725570999432, −9.636891065324781429435712905438, −9.423882734394497125807968345295, −8.806292826762759857454750949693, −8.792763787445136309272789331210, −8.151556563677392041227260128995, −7.972069724836776738087836246446, −6.81627541764353897232085021577, −6.80869108916040031238838285987, −6.05185208606848493716219875607, −6.04861569875053879470978792493, −5.48508711354488382383005589466, −4.58476305409998666295127218709, −4.18538243305469637014629575394, −3.88631947451703367998879168970, −2.66180625516763470328315366953, −2.25387442779167571507744502693, −1.34177446234938717115764028993, −1.21476067643273336426326355457,
1.21476067643273336426326355457, 1.34177446234938717115764028993, 2.25387442779167571507744502693, 2.66180625516763470328315366953, 3.88631947451703367998879168970, 4.18538243305469637014629575394, 4.58476305409998666295127218709, 5.48508711354488382383005589466, 6.04861569875053879470978792493, 6.05185208606848493716219875607, 6.80869108916040031238838285987, 6.81627541764353897232085021577, 7.972069724836776738087836246446, 8.151556563677392041227260128995, 8.792763787445136309272789331210, 8.806292826762759857454750949693, 9.423882734394497125807968345295, 9.636891065324781429435712905438, 10.31980084018333179725570999432, 10.50034096822641886117538386922