Properties

Label 702.2.h.c
Level 702702
Weight 22
Character orbit 702.h
Analytic conductor 5.6055.605
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [702,2,Mod(55,702)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(702, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("702.55");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 702=23313 702 = 2 \cdot 3^{3} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 702.h (of order 33, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 5.605498221895.60549822189
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ61)q2ζ6q4+2q5+2ζ6q7+q8+(2ζ62)q10+(5ζ6+5)q11+(ζ6+3)q132q14+(ζ61)q16++3ζ6q98+O(q100) q + (\zeta_{6} - 1) q^{2} - \zeta_{6} q^{4} + 2 q^{5} + 2 \zeta_{6} q^{7} + q^{8} + (2 \zeta_{6} - 2) q^{10} + ( - 5 \zeta_{6} + 5) q^{11} + (\zeta_{6} + 3) q^{13} - 2 q^{14} + (\zeta_{6} - 1) q^{16} + \cdots + 3 \zeta_{6} q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2qq2q4+4q5+2q7+2q82q10+5q11+7q134q14q166q172q20+5q225q232q255q26+2q28+4q29+20q31++3q98+O(q100) 2 q - q^{2} - q^{4} + 4 q^{5} + 2 q^{7} + 2 q^{8} - 2 q^{10} + 5 q^{11} + 7 q^{13} - 4 q^{14} - q^{16} - 6 q^{17} - 2 q^{20} + 5 q^{22} - 5 q^{23} - 2 q^{25} - 5 q^{26} + 2 q^{28} + 4 q^{29} + 20 q^{31}+ \cdots + 3 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/702Z)×\left(\mathbb{Z}/702\mathbb{Z}\right)^\times.

nn 379379 677677
χ(n)\chi(n) ζ6-\zeta_{6} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
55.1
0.500000 0.866025i
0.500000 + 0.866025i
−0.500000 0.866025i 0 −0.500000 + 0.866025i 2.00000 0 1.00000 1.73205i 1.00000 0 −1.00000 1.73205i
217.1 −0.500000 + 0.866025i 0 −0.500000 0.866025i 2.00000 0 1.00000 + 1.73205i 1.00000 0 −1.00000 + 1.73205i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 702.2.h.c 2
3.b odd 2 1 702.2.h.e yes 2
13.c even 3 1 inner 702.2.h.c 2
13.c even 3 1 9126.2.a.bh 1
13.e even 6 1 9126.2.a.f 1
39.h odd 6 1 9126.2.a.bj 1
39.i odd 6 1 702.2.h.e yes 2
39.i odd 6 1 9126.2.a.d 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
702.2.h.c 2 1.a even 1 1 trivial
702.2.h.c 2 13.c even 3 1 inner
702.2.h.e yes 2 3.b odd 2 1
702.2.h.e yes 2 39.i odd 6 1
9126.2.a.d 1 39.i odd 6 1
9126.2.a.f 1 13.e even 6 1
9126.2.a.bh 1 13.c even 3 1
9126.2.a.bj 1 39.h odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(702,[χ])S_{2}^{\mathrm{new}}(702, [\chi]):

T52 T_{5} - 2 Copy content Toggle raw display
T722T7+4 T_{7}^{2} - 2T_{7} + 4 Copy content Toggle raw display
T1125T11+25 T_{11}^{2} - 5T_{11} + 25 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 (T2)2 (T - 2)^{2} Copy content Toggle raw display
77 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
1111 T25T+25 T^{2} - 5T + 25 Copy content Toggle raw display
1313 T27T+13 T^{2} - 7T + 13 Copy content Toggle raw display
1717 T2+6T+36 T^{2} + 6T + 36 Copy content Toggle raw display
1919 T2 T^{2} Copy content Toggle raw display
2323 T2+5T+25 T^{2} + 5T + 25 Copy content Toggle raw display
2929 T24T+16 T^{2} - 4T + 16 Copy content Toggle raw display
3131 (T10)2 (T - 10)^{2} Copy content Toggle raw display
3737 T2+6T+36 T^{2} + 6T + 36 Copy content Toggle raw display
4141 T2 T^{2} Copy content Toggle raw display
4343 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
4747 (T13)2 (T - 13)^{2} Copy content Toggle raw display
5353 (T+6)2 (T + 6)^{2} Copy content Toggle raw display
5959 T2+5T+25 T^{2} + 5T + 25 Copy content Toggle raw display
6161 T214T+196 T^{2} - 14T + 196 Copy content Toggle raw display
6767 T2+10T+100 T^{2} + 10T + 100 Copy content Toggle raw display
7171 T28T+64 T^{2} - 8T + 64 Copy content Toggle raw display
7373 (T+7)2 (T + 7)^{2} Copy content Toggle raw display
7979 (T2)2 (T - 2)^{2} Copy content Toggle raw display
8383 (T+3)2 (T + 3)^{2} Copy content Toggle raw display
8989 T2 T^{2} Copy content Toggle raw display
9797 T2+17T+289 T^{2} + 17T + 289 Copy content Toggle raw display
show more
show less