Properties

Label 8-702e4-1.1-c1e4-0-0
Degree 88
Conductor 242855782416242855782416
Sign 11
Analytic cond. 987.317987.317
Root an. cond. 2.367592.36759
Motivic weight 11
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 00

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 4-s + 2·5-s + 3·7-s − 2·8-s + 4·10-s − 5·11-s + 6·14-s − 4·16-s − 3·17-s − 8·19-s + 2·20-s − 10·22-s − 4·23-s − 11·25-s + 3·28-s + 8·29-s − 2·32-s − 6·34-s + 6·35-s − 11·37-s − 16·38-s − 4·40-s + 6·43-s − 5·44-s − 8·46-s + 4·47-s + ⋯
L(s)  = 1  + 1.41·2-s + 1/2·4-s + 0.894·5-s + 1.13·7-s − 0.707·8-s + 1.26·10-s − 1.50·11-s + 1.60·14-s − 16-s − 0.727·17-s − 1.83·19-s + 0.447·20-s − 2.13·22-s − 0.834·23-s − 2.19·25-s + 0.566·28-s + 1.48·29-s − 0.353·32-s − 1.02·34-s + 1.01·35-s − 1.80·37-s − 2.59·38-s − 0.632·40-s + 0.914·43-s − 0.753·44-s − 1.17·46-s + 0.583·47-s + ⋯

Functional equation

Λ(s)=((24312134)s/2ΓC(s)4L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{12} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}
Λ(s)=((24312134)s/2ΓC(s+1/2)4L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{12} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}

Invariants

Degree: 88
Conductor: 243121342^{4} \cdot 3^{12} \cdot 13^{4}
Sign: 11
Analytic conductor: 987.317987.317
Root analytic conductor: 2.367592.36759
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 00
Selberg data: (8, 24312134, ( :1/2,1/2,1/2,1/2), 1)(8,\ 2^{4} \cdot 3^{12} \cdot 13^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )

Particular Values

L(1)L(1) \approx 1.1251595501.125159550
L(12)L(\frac12) \approx 1.1251595501.125159550
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)
bad2C2C_2 (1T+T2)2 ( 1 - T + T^{2} )^{2}
3 1 1
13C22C_2^2 1+pT2+p2T4 1 + p T^{2} + p^{2} T^{4}
good5D4D_{4} (1T+7T2pT3+p2T4)2 ( 1 - T + 7 T^{2} - p T^{3} + p^{2} T^{4} )^{2}
7D4×C2D_4\times C_2 13T4T2+3T3+57T4+3pT54p2T63p3T7+p4T8 1 - 3 T - 4 T^{2} + 3 T^{3} + 57 T^{4} + 3 p T^{5} - 4 p^{2} T^{6} - 3 p^{3} T^{7} + p^{4} T^{8}
11D4×C2D_4\times C_2 1+5T+15T3+229T4+15pT5+5p3T7+p4T8 1 + 5 T + 15 T^{3} + 229 T^{4} + 15 p T^{5} + 5 p^{3} T^{7} + p^{4} T^{8}
17D4×C2D_4\times C_2 1+3T+2T281T3393T481pT5+2p2T6+3p3T7+p4T8 1 + 3 T + 2 T^{2} - 81 T^{3} - 393 T^{4} - 81 p T^{5} + 2 p^{2} T^{6} + 3 p^{3} T^{7} + p^{4} T^{8}
19D4×C2D_4\times C_2 1+8T+23T2+24T3+104T4+24pT5+23p2T6+8p3T7+p4T8 1 + 8 T + 23 T^{2} + 24 T^{3} + 104 T^{4} + 24 p T^{5} + 23 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8}
23D4×C2D_4\times C_2 1+4T21T236T3+472T436pT521p2T6+4p3T7+p4T8 1 + 4 T - 21 T^{2} - 36 T^{3} + 472 T^{4} - 36 p T^{5} - 21 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8}
29D4×C2D_4\times C_2 18T+3T224T3+1024T424pT5+3p2T68p3T7+p4T8 1 - 8 T + 3 T^{2} - 24 T^{3} + 1024 T^{4} - 24 p T^{5} + 3 p^{2} T^{6} - 8 p^{3} T^{7} + p^{4} T^{8}
31C22C_2^2 (1+10T2+p2T4)2 ( 1 + 10 T^{2} + p^{2} T^{4} )^{2}
37D4×C2D_4\times C_2 1+11T+20T2+297T3+4355T4+297pT5+20p2T6+11p3T7+p4T8 1 + 11 T + 20 T^{2} + 297 T^{3} + 4355 T^{4} + 297 p T^{5} + 20 p^{2} T^{6} + 11 p^{3} T^{7} + p^{4} T^{8}
41C23C_2^3 1+35T2456T4+35p2T6+p4T8 1 + 35 T^{2} - 456 T^{4} + 35 p^{2} T^{6} + p^{4} T^{8}
43D4×C2D_4\times C_2 16T46T2+24T3+3327T4+24pT546p2T66p3T7+p4T8 1 - 6 T - 46 T^{2} + 24 T^{3} + 3327 T^{4} + 24 p T^{5} - 46 p^{2} T^{6} - 6 p^{3} T^{7} + p^{4} T^{8}
47D4D_{4} (12T+82T22pT3+p2T4)2 ( 1 - 2 T + 82 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2}
53C2C_2 (13T+pT2)4 ( 1 - 3 T + p T^{2} )^{4}
59D4×C2D_4\times C_2 1+25T+6pT2+3825T3+33085T4+3825pT5+6p3T6+25p3T7+p4T8 1 + 25 T + 6 p T^{2} + 3825 T^{3} + 33085 T^{4} + 3825 p T^{5} + 6 p^{3} T^{6} + 25 p^{3} T^{7} + p^{4} T^{8}
61D4×C2D_4\times C_2 1+15T+50T2+795T3+13179T4+795pT5+50p2T6+15p3T7+p4T8 1 + 15 T + 50 T^{2} + 795 T^{3} + 13179 T^{4} + 795 p T^{5} + 50 p^{2} T^{6} + 15 p^{3} T^{7} + p^{4} T^{8}
67D4×C2D_4\times C_2 19T70T2153T3+12885T4153pT570p2T69p3T7+p4T8 1 - 9 T - 70 T^{2} - 153 T^{3} + 12885 T^{4} - 153 p T^{5} - 70 p^{2} T^{6} - 9 p^{3} T^{7} + p^{4} T^{8}
71D4×C2D_4\times C_2 1+17T+78T2+1173T3+18961T4+1173pT5+78p2T6+17p3T7+p4T8 1 + 17 T + 78 T^{2} + 1173 T^{3} + 18961 T^{4} + 1173 p T^{5} + 78 p^{2} T^{6} + 17 p^{3} T^{7} + p^{4} T^{8}
73D4D_{4} (113T+159T213pT3+p2T4)2 ( 1 - 13 T + 159 T^{2} - 13 p T^{3} + p^{2} T^{4} )^{2}
79D4D_{4} (17T+141T27pT3+p2T4)2 ( 1 - 7 T + 141 T^{2} - 7 p T^{3} + p^{2} T^{4} )^{2}
83C2C_2 (1+pT2)4 ( 1 + p T^{2} )^{4}
89D4×C2D_4\times C_2 1+12T+47T2972T311328T4972pT5+47p2T6+12p3T7+p4T8 1 + 12 T + 47 T^{2} - 972 T^{3} - 11328 T^{4} - 972 p T^{5} + 47 p^{2} T^{6} + 12 p^{3} T^{7} + p^{4} T^{8}
97D4×C2D_4\times C_2 12T74T2+232T33713T4+232pT574p2T62p3T7+p4T8 1 - 2 T - 74 T^{2} + 232 T^{3} - 3713 T^{4} + 232 p T^{5} - 74 p^{2} T^{6} - 2 p^{3} T^{7} + p^{4} T^{8}
show more
show less
   L(s)=p j=18(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−7.44931710155077606701573428231, −7.39336877213513045991341390559, −7.04978983255978034289662667015, −6.53038239759625173192531350412, −6.45083983970373677243994309033, −6.32283785767617856387873362745, −5.83683665687215791952549977896, −5.78118850307618146031729945867, −5.77762306615379169465255777428, −5.27786471653958429536602100601, −5.02963971157197880670249197722, −4.91945304089873147997206047390, −4.63187556954007289097846632475, −4.35951409709449011408945432981, −4.13405019361891599841001095803, −3.83411503509831759783413542754, −3.78131676387272725834947081726, −3.15902558402276383427883431045, −2.94295667457664057063841697905, −2.36715786900079416652273695234, −2.25012810494293363524167302470, −2.23222473214889527123274306491, −1.69428987950209548240702949921, −1.24149652574381936140579056937, −0.20582211314878541047355333241, 0.20582211314878541047355333241, 1.24149652574381936140579056937, 1.69428987950209548240702949921, 2.23222473214889527123274306491, 2.25012810494293363524167302470, 2.36715786900079416652273695234, 2.94295667457664057063841697905, 3.15902558402276383427883431045, 3.78131676387272725834947081726, 3.83411503509831759783413542754, 4.13405019361891599841001095803, 4.35951409709449011408945432981, 4.63187556954007289097846632475, 4.91945304089873147997206047390, 5.02963971157197880670249197722, 5.27786471653958429536602100601, 5.77762306615379169465255777428, 5.78118850307618146031729945867, 5.83683665687215791952549977896, 6.32283785767617856387873362745, 6.45083983970373677243994309033, 6.53038239759625173192531350412, 7.04978983255978034289662667015, 7.39336877213513045991341390559, 7.44931710155077606701573428231

Graph of the ZZ-function along the critical line