Properties

Label 702.2.h.l
Level 702702
Weight 22
Character orbit 702.h
Analytic conductor 5.6055.605
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [702,2,Mod(55,702)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(702, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("702.55");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 702=23313 702 = 2 \cdot 3^{3} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 702.h (of order 33, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 5.605498221895.60549822189
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q(3,13)\Q(\sqrt{-3}, \sqrt{13})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x3+4x2+3x+9 x^{4} - x^{3} + 4x^{2} + 3x + 9 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β2+1)q2+β2q4+(β3+1)q5+(β3β2β1+1)q7q8+β1q10+(3β2+β13)q11+(2β3+β22β1+2)q13++(3β3+3β2++3)q98+O(q100) q + (\beta_{2} + 1) q^{2} + \beta_{2} q^{4} + ( - \beta_{3} + 1) q^{5} + ( - \beta_{3} - \beta_{2} - \beta_1 + 1) q^{7} - q^{8} + \beta_1 q^{10} + ( - 3 \beta_{2} + \beta_1 - 3) q^{11} + ( - 2 \beta_{3} + \beta_{2} - 2 \beta_1 + 2) q^{13}+ \cdots + ( - 3 \beta_{3} + 3 \beta_{2} + \cdots + 3) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+2q22q4+2q5+3q74q8+q105q11+6q142q163q178q19q20+5q224q236q25+3q28+8q29+2q326q34+3q98+O(q100) 4 q + 2 q^{2} - 2 q^{4} + 2 q^{5} + 3 q^{7} - 4 q^{8} + q^{10} - 5 q^{11} + 6 q^{14} - 2 q^{16} - 3 q^{17} - 8 q^{19} - q^{20} + 5 q^{22} - 4 q^{23} - 6 q^{25} + 3 q^{28} + 8 q^{29} + 2 q^{32} - 6 q^{34}+ \cdots - 3 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4x3+4x2+3x+9 x^{4} - x^{3} + 4x^{2} + 3x + 9 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν3+4ν24ν3)/12 ( -\nu^{3} + 4\nu^{2} - 4\nu - 3 ) / 12 Copy content Toggle raw display
β3\beta_{3}== (ν3+7)/4 ( \nu^{3} + 7 ) / 4 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β3+3β2+β11 \beta_{3} + 3\beta_{2} + \beta _1 - 1 Copy content Toggle raw display
ν3\nu^{3}== 4β37 4\beta_{3} - 7 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/702Z)×\left(\mathbb{Z}/702\mathbb{Z}\right)^\times.

nn 379379 677677
χ(n)\chi(n) β2\beta_{2} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
55.1
−0.651388 1.12824i
1.15139 + 1.99426i
−0.651388 + 1.12824i
1.15139 1.99426i
0.500000 + 0.866025i 0 −0.500000 + 0.866025i −1.30278 0 −0.151388 + 0.262211i −1.00000 0 −0.651388 1.12824i
55.2 0.500000 + 0.866025i 0 −0.500000 + 0.866025i 2.30278 0 1.65139 2.86029i −1.00000 0 1.15139 + 1.99426i
217.1 0.500000 0.866025i 0 −0.500000 0.866025i −1.30278 0 −0.151388 0.262211i −1.00000 0 −0.651388 + 1.12824i
217.2 0.500000 0.866025i 0 −0.500000 0.866025i 2.30278 0 1.65139 + 2.86029i −1.00000 0 1.15139 1.99426i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 702.2.h.l yes 4
3.b odd 2 1 702.2.h.g 4
13.c even 3 1 inner 702.2.h.l yes 4
13.c even 3 1 9126.2.a.bt 2
13.e even 6 1 9126.2.a.bw 2
39.h odd 6 1 9126.2.a.bu 2
39.i odd 6 1 702.2.h.g 4
39.i odd 6 1 9126.2.a.bv 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
702.2.h.g 4 3.b odd 2 1
702.2.h.g 4 39.i odd 6 1
702.2.h.l yes 4 1.a even 1 1 trivial
702.2.h.l yes 4 13.c even 3 1 inner
9126.2.a.bt 2 13.c even 3 1
9126.2.a.bu 2 39.h odd 6 1
9126.2.a.bv 2 39.i odd 6 1
9126.2.a.bw 2 13.e even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(702,[χ])S_{2}^{\mathrm{new}}(702, [\chi]):

T52T53 T_{5}^{2} - T_{5} - 3 Copy content Toggle raw display
T743T73+10T72+3T7+1 T_{7}^{4} - 3T_{7}^{3} + 10T_{7}^{2} + 3T_{7} + 1 Copy content Toggle raw display
T114+5T113+22T112+15T11+9 T_{11}^{4} + 5T_{11}^{3} + 22T_{11}^{2} + 15T_{11} + 9 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2T+1)2 (T^{2} - T + 1)^{2} Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 (T2T3)2 (T^{2} - T - 3)^{2} Copy content Toggle raw display
77 T43T3++1 T^{4} - 3 T^{3} + \cdots + 1 Copy content Toggle raw display
1111 T4+5T3++9 T^{4} + 5 T^{3} + \cdots + 9 Copy content Toggle raw display
1313 T4+13T2+169 T^{4} + 13T^{2} + 169 Copy content Toggle raw display
1717 T4+3T3++729 T^{4} + 3 T^{3} + \cdots + 729 Copy content Toggle raw display
1919 T4+8T3++9 T^{4} + 8 T^{3} + \cdots + 9 Copy content Toggle raw display
2323 T4+4T3++81 T^{4} + 4 T^{3} + \cdots + 81 Copy content Toggle raw display
2929 T48T3++9 T^{4} - 8 T^{3} + \cdots + 9 Copy content Toggle raw display
3131 (T252)2 (T^{2} - 52)^{2} Copy content Toggle raw display
3737 T4+11T3++729 T^{4} + 11 T^{3} + \cdots + 729 Copy content Toggle raw display
4141 T4+117T2+13689 T^{4} + 117 T^{2} + 13689 Copy content Toggle raw display
4343 T46T3++16 T^{4} - 6 T^{3} + \cdots + 16 Copy content Toggle raw display
4747 (T22T12)2 (T^{2} - 2 T - 12)^{2} Copy content Toggle raw display
5353 (T3)4 (T - 3)^{4} Copy content Toggle raw display
5959 T4+25T3++23409 T^{4} + 25 T^{3} + \cdots + 23409 Copy content Toggle raw display
6161 T4+15T3++2809 T^{4} + 15 T^{3} + \cdots + 2809 Copy content Toggle raw display
6767 T49T3++289 T^{4} - 9 T^{3} + \cdots + 289 Copy content Toggle raw display
7171 T4+17T3++4761 T^{4} + 17 T^{3} + \cdots + 4761 Copy content Toggle raw display
7373 (T213T+13)2 (T^{2} - 13 T + 13)^{2} Copy content Toggle raw display
7979 (T27T17)2 (T^{2} - 7 T - 17)^{2} Copy content Toggle raw display
8383 T4 T^{4} Copy content Toggle raw display
8989 T4+12T3++6561 T^{4} + 12 T^{3} + \cdots + 6561 Copy content Toggle raw display
9797 T42T3++13456 T^{4} - 2 T^{3} + \cdots + 13456 Copy content Toggle raw display
show more
show less