Properties

Label 702.2.h.l
Level $702$
Weight $2$
Character orbit 702.h
Analytic conductor $5.605$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [702,2,Mod(55,702)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(702, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("702.55");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 702 = 2 \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 702.h (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.60549822189\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{13})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 4x^{2} + 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} + 1) q^{2} + \beta_{2} q^{4} + ( - \beta_{3} + 1) q^{5} + ( - \beta_{3} - \beta_{2} - \beta_1 + 1) q^{7} - q^{8} + \beta_1 q^{10} + ( - 3 \beta_{2} + \beta_1 - 3) q^{11} + ( - 2 \beta_{3} + \beta_{2} - 2 \beta_1 + 2) q^{13}+ \cdots + ( - 3 \beta_{3} + 3 \beta_{2} + \cdots + 3) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - 2 q^{4} + 2 q^{5} + 3 q^{7} - 4 q^{8} + q^{10} - 5 q^{11} + 6 q^{14} - 2 q^{16} - 3 q^{17} - 8 q^{19} - q^{20} + 5 q^{22} - 4 q^{23} - 6 q^{25} + 3 q^{28} + 8 q^{29} + 2 q^{32} - 6 q^{34}+ \cdots - 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} + 4x^{2} + 3x + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{3} + 4\nu^{2} - 4\nu - 3 ) / 12 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} + 7 ) / 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + 3\beta_{2} + \beta _1 - 1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 4\beta_{3} - 7 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/702\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(677\)
\(\chi(n)\) \(\beta_{2}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
55.1
−0.651388 1.12824i
1.15139 + 1.99426i
−0.651388 + 1.12824i
1.15139 1.99426i
0.500000 + 0.866025i 0 −0.500000 + 0.866025i −1.30278 0 −0.151388 + 0.262211i −1.00000 0 −0.651388 1.12824i
55.2 0.500000 + 0.866025i 0 −0.500000 + 0.866025i 2.30278 0 1.65139 2.86029i −1.00000 0 1.15139 + 1.99426i
217.1 0.500000 0.866025i 0 −0.500000 0.866025i −1.30278 0 −0.151388 0.262211i −1.00000 0 −0.651388 + 1.12824i
217.2 0.500000 0.866025i 0 −0.500000 0.866025i 2.30278 0 1.65139 + 2.86029i −1.00000 0 1.15139 1.99426i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 702.2.h.l yes 4
3.b odd 2 1 702.2.h.g 4
13.c even 3 1 inner 702.2.h.l yes 4
13.c even 3 1 9126.2.a.bt 2
13.e even 6 1 9126.2.a.bw 2
39.h odd 6 1 9126.2.a.bu 2
39.i odd 6 1 702.2.h.g 4
39.i odd 6 1 9126.2.a.bv 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
702.2.h.g 4 3.b odd 2 1
702.2.h.g 4 39.i odd 6 1
702.2.h.l yes 4 1.a even 1 1 trivial
702.2.h.l yes 4 13.c even 3 1 inner
9126.2.a.bt 2 13.c even 3 1
9126.2.a.bu 2 39.h odd 6 1
9126.2.a.bv 2 39.i odd 6 1
9126.2.a.bw 2 13.e even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(702, [\chi])\):

\( T_{5}^{2} - T_{5} - 3 \) Copy content Toggle raw display
\( T_{7}^{4} - 3T_{7}^{3} + 10T_{7}^{2} + 3T_{7} + 1 \) Copy content Toggle raw display
\( T_{11}^{4} + 5T_{11}^{3} + 22T_{11}^{2} + 15T_{11} + 9 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} - T - 3)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} - 3 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{4} + 5 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$13$ \( T^{4} + 13T^{2} + 169 \) Copy content Toggle raw display
$17$ \( T^{4} + 3 T^{3} + \cdots + 729 \) Copy content Toggle raw display
$19$ \( T^{4} + 8 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$23$ \( T^{4} + 4 T^{3} + \cdots + 81 \) Copy content Toggle raw display
$29$ \( T^{4} - 8 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$31$ \( (T^{2} - 52)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + 11 T^{3} + \cdots + 729 \) Copy content Toggle raw display
$41$ \( T^{4} + 117 T^{2} + 13689 \) Copy content Toggle raw display
$43$ \( T^{4} - 6 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$47$ \( (T^{2} - 2 T - 12)^{2} \) Copy content Toggle raw display
$53$ \( (T - 3)^{4} \) Copy content Toggle raw display
$59$ \( T^{4} + 25 T^{3} + \cdots + 23409 \) Copy content Toggle raw display
$61$ \( T^{4} + 15 T^{3} + \cdots + 2809 \) Copy content Toggle raw display
$67$ \( T^{4} - 9 T^{3} + \cdots + 289 \) Copy content Toggle raw display
$71$ \( T^{4} + 17 T^{3} + \cdots + 4761 \) Copy content Toggle raw display
$73$ \( (T^{2} - 13 T + 13)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} - 7 T - 17)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( T^{4} + 12 T^{3} + \cdots + 6561 \) Copy content Toggle raw display
$97$ \( T^{4} - 2 T^{3} + \cdots + 13456 \) Copy content Toggle raw display
show more
show less