Properties

Label 9126.2.a.bw
Level $9126$
Weight $2$
Character orbit 9126.a
Self dual yes
Analytic conductor $72.871$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9126,2,Mod(1,9126)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9126, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9126.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9126 = 2 \cdot 3^{3} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9126.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.8714768846\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{13}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 702)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{13})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + q^{4} - \beta q^{5} + (\beta + 1) q^{7} + q^{8} - \beta q^{10} + (\beta - 3) q^{11} + (\beta + 1) q^{14} + q^{16} + ( - 3 \beta + 3) q^{17} + (2 \beta - 5) q^{19} - \beta q^{20} + (\beta - 3) q^{22} + \cdots + (3 \beta - 3) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{4} - q^{5} + 3 q^{7} + 2 q^{8} - q^{10} - 5 q^{11} + 3 q^{14} + 2 q^{16} + 3 q^{17} - 8 q^{19} - q^{20} - 5 q^{22} + 4 q^{23} - 3 q^{25} + 3 q^{28} - 8 q^{29} + 2 q^{32} + 3 q^{34}+ \cdots - 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.30278
−1.30278
1.00000 0 1.00000 −2.30278 0 3.30278 1.00000 0 −2.30278
1.2 1.00000 0 1.00000 1.30278 0 −0.302776 1.00000 0 1.30278
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9126.2.a.bw 2
3.b odd 2 1 9126.2.a.bu 2
13.b even 2 1 9126.2.a.bt 2
13.e even 6 2 702.2.h.l yes 4
39.d odd 2 1 9126.2.a.bv 2
39.h odd 6 2 702.2.h.g 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
702.2.h.g 4 39.h odd 6 2
702.2.h.l yes 4 13.e even 6 2
9126.2.a.bt 2 13.b even 2 1
9126.2.a.bu 2 3.b odd 2 1
9126.2.a.bv 2 39.d odd 2 1
9126.2.a.bw 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9126))\):

\( T_{5}^{2} + T_{5} - 3 \) Copy content Toggle raw display
\( T_{7}^{2} - 3T_{7} - 1 \) Copy content Toggle raw display
\( T_{11}^{2} + 5T_{11} + 3 \) Copy content Toggle raw display
\( T_{17}^{2} - 3T_{17} - 27 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + T - 3 \) Copy content Toggle raw display
$7$ \( T^{2} - 3T - 1 \) Copy content Toggle raw display
$11$ \( T^{2} + 5T + 3 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 3T - 27 \) Copy content Toggle raw display
$19$ \( T^{2} + 8T + 3 \) Copy content Toggle raw display
$23$ \( T^{2} - 4T - 9 \) Copy content Toggle raw display
$29$ \( T^{2} + 8T + 3 \) Copy content Toggle raw display
$31$ \( T^{2} - 52 \) Copy content Toggle raw display
$37$ \( T^{2} + 11T + 27 \) Copy content Toggle raw display
$41$ \( T^{2} - 117 \) Copy content Toggle raw display
$43$ \( T^{2} + 6T - 4 \) Copy content Toggle raw display
$47$ \( T^{2} + 2T - 12 \) Copy content Toggle raw display
$53$ \( (T - 3)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 25T + 153 \) Copy content Toggle raw display
$61$ \( T^{2} - 15T + 53 \) Copy content Toggle raw display
$67$ \( T^{2} - 9T + 17 \) Copy content Toggle raw display
$71$ \( T^{2} + 17T + 69 \) Copy content Toggle raw display
$73$ \( T^{2} + 13T + 13 \) Copy content Toggle raw display
$79$ \( T^{2} - 7T - 17 \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 12T - 81 \) Copy content Toggle raw display
$97$ \( T^{2} - 2T - 116 \) Copy content Toggle raw display
show more
show less