L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.499 + 0.866i)4-s + 2.30·5-s + (1.65 − 2.86i)7-s − 0.999·8-s + (1.15 + 1.99i)10-s + (−0.348 − 0.603i)11-s + (1.80 − 3.12i)13-s + 3.30·14-s + (−0.5 − 0.866i)16-s + (1.95 − 3.38i)17-s + (−0.197 + 0.341i)19-s + (−1.15 + 1.99i)20-s + (0.348 − 0.603i)22-s + (0.802 + 1.39i)23-s + ⋯ |
L(s) = 1 | + (0.353 + 0.612i)2-s + (−0.249 + 0.433i)4-s + 1.02·5-s + (0.624 − 1.08i)7-s − 0.353·8-s + (0.364 + 0.630i)10-s + (−0.105 − 0.182i)11-s + (0.499 − 0.866i)13-s + 0.882·14-s + (−0.125 − 0.216i)16-s + (0.473 − 0.820i)17-s + (−0.0452 + 0.0783i)19-s + (−0.257 + 0.445i)20-s + (0.0743 − 0.128i)22-s + (0.167 + 0.289i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 702 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.964 - 0.265i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 702 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.964 - 0.265i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.20937 + 0.298078i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.20937 + 0.298078i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 - 0.866i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (-1.80 + 3.12i)T \) |
good | 5 | \( 1 - 2.30T + 5T^{2} \) |
| 7 | \( 1 + (-1.65 + 2.86i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (0.348 + 0.603i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-1.95 + 3.38i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (0.197 - 0.341i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.802 - 1.39i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-3.80 - 6.58i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 7.21T + 31T^{2} \) |
| 37 | \( 1 + (3.65 + 6.32i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-5.40 - 9.36i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (0.302 - 0.524i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 4.60T + 47T^{2} \) |
| 53 | \( 1 - 3T + 53T^{2} \) |
| 59 | \( 1 + (7.15 - 12.3i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (2.84 - 4.93i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.15 - 5.45i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (3.34 - 5.79i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 11.9T + 73T^{2} \) |
| 79 | \( 1 + 1.90T + 79T^{2} \) |
| 83 | \( 1 + 83T^{2} \) |
| 89 | \( 1 + (8.40 + 14.5i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (4.90 - 8.50i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.51704440999512226450231814508, −9.598248352773422311182738289456, −8.674739355117514559701129834657, −7.65474017058673662464117824566, −7.04978983255978034289662667015, −5.83683665687215791952549977896, −5.27786471653958429536602100601, −4.13405019361891599841001095803, −2.94295667457664057063841697905, −1.24149652574381936140579056937,
1.69428987950209548240702949921, 2.36715786900079416652273695234, 3.83411503509831759783413542754, 5.02963971157197880670249197722, 5.78118850307618146031729945867, 6.53038239759625173192531350412, 8.036264461569206541386794302055, 8.942627431177712714831083123820, 9.552934366082786627613081045250, 10.49580853129725126603180970912