L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.499 + 0.866i)4-s + 2.30·5-s + (1.65 − 2.86i)7-s − 0.999·8-s + (1.15 + 1.99i)10-s + (−0.348 − 0.603i)11-s + (1.80 − 3.12i)13-s + 3.30·14-s + (−0.5 − 0.866i)16-s + (1.95 − 3.38i)17-s + (−0.197 + 0.341i)19-s + (−1.15 + 1.99i)20-s + (0.348 − 0.603i)22-s + (0.802 + 1.39i)23-s + ⋯ |
L(s) = 1 | + (0.353 + 0.612i)2-s + (−0.249 + 0.433i)4-s + 1.02·5-s + (0.624 − 1.08i)7-s − 0.353·8-s + (0.364 + 0.630i)10-s + (−0.105 − 0.182i)11-s + (0.499 − 0.866i)13-s + 0.882·14-s + (−0.125 − 0.216i)16-s + (0.473 − 0.820i)17-s + (−0.0452 + 0.0783i)19-s + (−0.257 + 0.445i)20-s + (0.0743 − 0.128i)22-s + (0.167 + 0.289i)23-s + ⋯ |
Λ(s)=(=(702s/2ΓC(s)L(s)(0.964−0.265i)Λ(2−s)
Λ(s)=(=(702s/2ΓC(s+1/2)L(s)(0.964−0.265i)Λ(1−s)
Degree: |
2 |
Conductor: |
702
= 2⋅33⋅13
|
Sign: |
0.964−0.265i
|
Analytic conductor: |
5.60549 |
Root analytic conductor: |
2.36759 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ702(55,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 702, ( :1/2), 0.964−0.265i)
|
Particular Values
L(1) |
≈ |
2.20937+0.298078i |
L(21) |
≈ |
2.20937+0.298078i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.5−0.866i)T |
| 3 | 1 |
| 13 | 1+(−1.80+3.12i)T |
good | 5 | 1−2.30T+5T2 |
| 7 | 1+(−1.65+2.86i)T+(−3.5−6.06i)T2 |
| 11 | 1+(0.348+0.603i)T+(−5.5+9.52i)T2 |
| 17 | 1+(−1.95+3.38i)T+(−8.5−14.7i)T2 |
| 19 | 1+(0.197−0.341i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−0.802−1.39i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−3.80−6.58i)T+(−14.5+25.1i)T2 |
| 31 | 1+7.21T+31T2 |
| 37 | 1+(3.65+6.32i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−5.40−9.36i)T+(−20.5+35.5i)T2 |
| 43 | 1+(0.302−0.524i)T+(−21.5−37.2i)T2 |
| 47 | 1−4.60T+47T2 |
| 53 | 1−3T+53T2 |
| 59 | 1+(7.15−12.3i)T+(−29.5−51.0i)T2 |
| 61 | 1+(2.84−4.93i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−3.15−5.45i)T+(−33.5+58.0i)T2 |
| 71 | 1+(3.34−5.79i)T+(−35.5−61.4i)T2 |
| 73 | 1−11.9T+73T2 |
| 79 | 1+1.90T+79T2 |
| 83 | 1+83T2 |
| 89 | 1+(8.40+14.5i)T+(−44.5+77.0i)T2 |
| 97 | 1+(4.90−8.50i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.51704440999512226450231814508, −9.598248352773422311182738289456, −8.674739355117514559701129834657, −7.65474017058673662464117824566, −7.04978983255978034289662667015, −5.83683665687215791952549977896, −5.27786471653958429536602100601, −4.13405019361891599841001095803, −2.94295667457664057063841697905, −1.24149652574381936140579056937,
1.69428987950209548240702949921, 2.36715786900079416652273695234, 3.83411503509831759783413542754, 5.02963971157197880670249197722, 5.78118850307618146031729945867, 6.53038239759625173192531350412, 8.036264461569206541386794302055, 8.942627431177712714831083123820, 9.552934366082786627613081045250, 10.49580853129725126603180970912