Properties

Label 2-702-39.5-c1-0-9
Degree 22
Conductor 702702
Sign 0.7470.663i0.747 - 0.663i
Analytic cond. 5.605495.60549
Root an. cond. 2.367592.36759
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.707 − 0.707i)2-s + 1.00i·4-s + (3.09 + 3.09i)5-s + (2.51 + 2.51i)7-s + (0.707 − 0.707i)8-s − 4.37i·10-s + (1.30 − 1.30i)11-s + (3.38 + 1.24i)13-s − 3.55i·14-s − 1.00·16-s − 7.96·17-s + (1.81 − 1.81i)19-s + (−3.09 + 3.09i)20-s − 1.83·22-s − 4.57·23-s + ⋯
L(s)  = 1  + (−0.499 − 0.499i)2-s + 0.500i·4-s + (1.38 + 1.38i)5-s + (0.949 + 0.949i)7-s + (0.250 − 0.250i)8-s − 1.38i·10-s + (0.392 − 0.392i)11-s + (0.938 + 0.346i)13-s − 0.949i·14-s − 0.250·16-s − 1.93·17-s + (0.416 − 0.416i)19-s + (−0.691 + 0.691i)20-s − 0.392·22-s − 0.954·23-s + ⋯

Functional equation

Λ(s)=(702s/2ΓC(s)L(s)=((0.7470.663i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 702 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.747 - 0.663i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(702s/2ΓC(s+1/2)L(s)=((0.7470.663i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 702 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.747 - 0.663i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 702702    =    233132 \cdot 3^{3} \cdot 13
Sign: 0.7470.663i0.747 - 0.663i
Analytic conductor: 5.605495.60549
Root analytic conductor: 2.367592.36759
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ702(161,)\chi_{702} (161, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 702, ( :1/2), 0.7470.663i)(2,\ 702,\ (\ :1/2),\ 0.747 - 0.663i)

Particular Values

L(1)L(1) \approx 1.52796+0.580420i1.52796 + 0.580420i
L(12)L(\frac12) \approx 1.52796+0.580420i1.52796 + 0.580420i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.707+0.707i)T 1 + (0.707 + 0.707i)T
3 1 1
13 1+(3.381.24i)T 1 + (-3.38 - 1.24i)T
good5 1+(3.093.09i)T+5iT2 1 + (-3.09 - 3.09i)T + 5iT^{2}
7 1+(2.512.51i)T+7iT2 1 + (-2.51 - 2.51i)T + 7iT^{2}
11 1+(1.30+1.30i)T11iT2 1 + (-1.30 + 1.30i)T - 11iT^{2}
17 1+7.96T+17T2 1 + 7.96T + 17T^{2}
19 1+(1.81+1.81i)T19iT2 1 + (-1.81 + 1.81i)T - 19iT^{2}
23 1+4.57T+23T2 1 + 4.57T + 23T^{2}
29 1+2.20iT29T2 1 + 2.20iT - 29T^{2}
31 1+(1.85+1.85i)T31iT2 1 + (-1.85 + 1.85i)T - 31iT^{2}
37 1+(2.39+2.39i)T+37iT2 1 + (2.39 + 2.39i)T + 37iT^{2}
41 1+(2.35+2.35i)T+41iT2 1 + (2.35 + 2.35i)T + 41iT^{2}
43 1+6.20iT43T2 1 + 6.20iT - 43T^{2}
47 1+(2.432.43i)T47iT2 1 + (2.43 - 2.43i)T - 47iT^{2}
53 1+8.05iT53T2 1 + 8.05iT - 53T^{2}
59 1+(9.17+9.17i)T59iT2 1 + (-9.17 + 9.17i)T - 59iT^{2}
61 1+6.76T+61T2 1 + 6.76T + 61T^{2}
67 1+(4.76+4.76i)T67iT2 1 + (-4.76 + 4.76i)T - 67iT^{2}
71 1+(7.327.32i)T+71iT2 1 + (-7.32 - 7.32i)T + 71iT^{2}
73 1+(5.485.48i)T+73iT2 1 + (-5.48 - 5.48i)T + 73iT^{2}
79 1+2.87T+79T2 1 + 2.87T + 79T^{2}
83 1+(7.257.25i)T+83iT2 1 + (-7.25 - 7.25i)T + 83iT^{2}
89 1+(4.33+4.33i)T89iT2 1 + (-4.33 + 4.33i)T - 89iT^{2}
97 1+(3.13+3.13i)T97iT2 1 + (-3.13 + 3.13i)T - 97iT^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.68353868500336382650946660262, −9.663205071835046060760610276781, −8.988518113811479419701835226173, −8.237799426473348098411907311011, −6.83911035271743039206390629488, −6.28351573129571724916905354150, −5.26753557106014613207704300344, −3.73971689565266401457989537195, −2.37373764345493484397546611577, −1.90721041760434689305410043506, 1.12850555057758015229686655069, 1.91554529049869622832799579576, 4.27473488603013439675244570995, 4.91685868908074216122233416966, 5.95238252741821278130290815099, 6.72992957480503814619574378171, 8.009638626561743536273508978484, 8.629565681832592424737022488291, 9.336422161421721051229313510980, 10.19693918148644169526254589700

Graph of the ZZ-function along the critical line