L(s) = 1 | + (−0.707 − 0.707i)2-s + 1.00i·4-s + (3.09 + 3.09i)5-s + (2.51 + 2.51i)7-s + (0.707 − 0.707i)8-s − 4.37i·10-s + (1.30 − 1.30i)11-s + (3.38 + 1.24i)13-s − 3.55i·14-s − 1.00·16-s − 7.96·17-s + (1.81 − 1.81i)19-s + (−3.09 + 3.09i)20-s − 1.83·22-s − 4.57·23-s + ⋯ |
L(s) = 1 | + (−0.499 − 0.499i)2-s + 0.500i·4-s + (1.38 + 1.38i)5-s + (0.949 + 0.949i)7-s + (0.250 − 0.250i)8-s − 1.38i·10-s + (0.392 − 0.392i)11-s + (0.938 + 0.346i)13-s − 0.949i·14-s − 0.250·16-s − 1.93·17-s + (0.416 − 0.416i)19-s + (−0.691 + 0.691i)20-s − 0.392·22-s − 0.954·23-s + ⋯ |
Λ(s)=(=(702s/2ΓC(s)L(s)(0.747−0.663i)Λ(2−s)
Λ(s)=(=(702s/2ΓC(s+1/2)L(s)(0.747−0.663i)Λ(1−s)
Degree: |
2 |
Conductor: |
702
= 2⋅33⋅13
|
Sign: |
0.747−0.663i
|
Analytic conductor: |
5.60549 |
Root analytic conductor: |
2.36759 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ702(161,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 702, ( :1/2), 0.747−0.663i)
|
Particular Values
L(1) |
≈ |
1.52796+0.580420i |
L(21) |
≈ |
1.52796+0.580420i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.707+0.707i)T |
| 3 | 1 |
| 13 | 1+(−3.38−1.24i)T |
good | 5 | 1+(−3.09−3.09i)T+5iT2 |
| 7 | 1+(−2.51−2.51i)T+7iT2 |
| 11 | 1+(−1.30+1.30i)T−11iT2 |
| 17 | 1+7.96T+17T2 |
| 19 | 1+(−1.81+1.81i)T−19iT2 |
| 23 | 1+4.57T+23T2 |
| 29 | 1+2.20iT−29T2 |
| 31 | 1+(−1.85+1.85i)T−31iT2 |
| 37 | 1+(2.39+2.39i)T+37iT2 |
| 41 | 1+(2.35+2.35i)T+41iT2 |
| 43 | 1+6.20iT−43T2 |
| 47 | 1+(2.43−2.43i)T−47iT2 |
| 53 | 1+8.05iT−53T2 |
| 59 | 1+(−9.17+9.17i)T−59iT2 |
| 61 | 1+6.76T+61T2 |
| 67 | 1+(−4.76+4.76i)T−67iT2 |
| 71 | 1+(−7.32−7.32i)T+71iT2 |
| 73 | 1+(−5.48−5.48i)T+73iT2 |
| 79 | 1+2.87T+79T2 |
| 83 | 1+(−7.25−7.25i)T+83iT2 |
| 89 | 1+(−4.33+4.33i)T−89iT2 |
| 97 | 1+(−3.13+3.13i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.68353868500336382650946660262, −9.663205071835046060760610276781, −8.988518113811479419701835226173, −8.237799426473348098411907311011, −6.83911035271743039206390629488, −6.28351573129571724916905354150, −5.26753557106014613207704300344, −3.73971689565266401457989537195, −2.37373764345493484397546611577, −1.90721041760434689305410043506,
1.12850555057758015229686655069, 1.91554529049869622832799579576, 4.27473488603013439675244570995, 4.91685868908074216122233416966, 5.95238252741821278130290815099, 6.72992957480503814619574378171, 8.009638626561743536273508978484, 8.629565681832592424737022488291, 9.336422161421721051229313510980, 10.19693918148644169526254589700