Properties

Label 702.2.j.b.161.6
Level $702$
Weight $2$
Character 702.161
Analytic conductor $5.605$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [702,2,Mod(161,702)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(702, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("702.161");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 702 = 2 \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 702.j (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.60549822189\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 161.6
Character \(\chi\) \(=\) 702.161
Dual form 702.2.j.b.593.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 0.707107i) q^{2} +1.00000i q^{4} +(3.09035 + 3.09035i) q^{5} +(2.51306 + 2.51306i) q^{7} +(0.707107 - 0.707107i) q^{8} -4.37041i q^{10} +(1.30078 - 1.30078i) q^{11} +(3.38281 + 1.24764i) q^{13} -3.55400i q^{14} -1.00000 q^{16} -7.96266 q^{17} +(1.81357 - 1.81357i) q^{19} +(-3.09035 + 3.09035i) q^{20} -1.83958 q^{22} -4.57533 q^{23} +14.1005i q^{25} +(-1.50979 - 3.27422i) q^{26} +(-2.51306 + 2.51306i) q^{28} -2.20171i q^{29} +(1.85735 - 1.85735i) q^{31} +(0.707107 + 0.707107i) q^{32} +(5.63045 + 5.63045i) q^{34} +15.5324i q^{35} +(-2.39642 - 2.39642i) q^{37} -2.56477 q^{38} +4.37041 q^{40} +(-2.35810 - 2.35810i) q^{41} -6.20999i q^{43} +(1.30078 + 1.30078i) q^{44} +(3.23524 + 3.23524i) q^{46} +(-2.43756 + 2.43756i) q^{47} +5.63091i q^{49} +(9.97054 - 9.97054i) q^{50} +(-1.24764 + 3.38281i) q^{52} -8.05668i q^{53} +8.03972 q^{55} +3.55400 q^{56} +(-1.55684 + 1.55684i) q^{58} +(9.17514 - 9.17514i) q^{59} -6.76562 q^{61} -2.62669 q^{62} -1.00000i q^{64} +(6.59840 + 14.3097i) q^{65} +(4.76607 - 4.76607i) q^{67} -7.96266i q^{68} +(10.9831 - 10.9831i) q^{70} +(7.32632 + 7.32632i) q^{71} +(5.48780 + 5.48780i) q^{73} +3.38905i q^{74} +(1.81357 + 1.81357i) q^{76} +6.53787 q^{77} -2.87513 q^{79} +(-3.09035 - 3.09035i) q^{80} +3.33486i q^{82} +(7.25822 + 7.25822i) q^{83} +(-24.6074 - 24.6074i) q^{85} +(-4.39113 + 4.39113i) q^{86} -1.83958i q^{88} +(4.33187 - 4.33187i) q^{89} +(5.36579 + 11.6366i) q^{91} -4.57533i q^{92} +3.44723 q^{94} +11.2091 q^{95} +(3.13933 - 3.13933i) q^{97} +(3.98165 - 3.98165i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 24 q^{16} - 24 q^{19} + 24 q^{34} + 24 q^{37} + 24 q^{46} + 48 q^{70} - 24 q^{73} - 24 q^{76} - 24 q^{79} - 24 q^{91} + 72 q^{94} + 96 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/702\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(677\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 0.707107i −0.500000 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) 3.09035 + 3.09035i 1.38204 + 1.38204i 0.840982 + 0.541062i \(0.181978\pi\)
0.541062 + 0.840982i \(0.318022\pi\)
\(6\) 0 0
\(7\) 2.51306 + 2.51306i 0.949846 + 0.949846i 0.998801 0.0489549i \(-0.0155891\pi\)
−0.0489549 + 0.998801i \(0.515589\pi\)
\(8\) 0.707107 0.707107i 0.250000 0.250000i
\(9\) 0 0
\(10\) 4.37041i 1.38204i
\(11\) 1.30078 1.30078i 0.392200 0.392200i −0.483271 0.875471i \(-0.660551\pi\)
0.875471 + 0.483271i \(0.160551\pi\)
\(12\) 0 0
\(13\) 3.38281 + 1.24764i 0.938222 + 0.346034i
\(14\) 3.55400i 0.949846i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) −7.96266 −1.93123 −0.965614 0.259979i \(-0.916284\pi\)
−0.965614 + 0.259979i \(0.916284\pi\)
\(18\) 0 0
\(19\) 1.81357 1.81357i 0.416061 0.416061i −0.467783 0.883844i \(-0.654947\pi\)
0.883844 + 0.467783i \(0.154947\pi\)
\(20\) −3.09035 + 3.09035i −0.691022 + 0.691022i
\(21\) 0 0
\(22\) −1.83958 −0.392200
\(23\) −4.57533 −0.954021 −0.477011 0.878898i \(-0.658280\pi\)
−0.477011 + 0.878898i \(0.658280\pi\)
\(24\) 0 0
\(25\) 14.1005i 2.82010i
\(26\) −1.50979 3.27422i −0.296094 0.642128i
\(27\) 0 0
\(28\) −2.51306 + 2.51306i −0.474923 + 0.474923i
\(29\) 2.20171i 0.408847i −0.978883 0.204423i \(-0.934468\pi\)
0.978883 0.204423i \(-0.0655319\pi\)
\(30\) 0 0
\(31\) 1.85735 1.85735i 0.333590 0.333590i −0.520358 0.853948i \(-0.674201\pi\)
0.853948 + 0.520358i \(0.174201\pi\)
\(32\) 0.707107 + 0.707107i 0.125000 + 0.125000i
\(33\) 0 0
\(34\) 5.63045 + 5.63045i 0.965614 + 0.965614i
\(35\) 15.5324i 2.62546i
\(36\) 0 0
\(37\) −2.39642 2.39642i −0.393969 0.393969i 0.482130 0.876100i \(-0.339863\pi\)
−0.876100 + 0.482130i \(0.839863\pi\)
\(38\) −2.56477 −0.416061
\(39\) 0 0
\(40\) 4.37041 0.691022
\(41\) −2.35810 2.35810i −0.368274 0.368274i 0.498573 0.866847i \(-0.333857\pi\)
−0.866847 + 0.498573i \(0.833857\pi\)
\(42\) 0 0
\(43\) 6.20999i 0.947015i −0.880790 0.473507i \(-0.842988\pi\)
0.880790 0.473507i \(-0.157012\pi\)
\(44\) 1.30078 + 1.30078i 0.196100 + 0.196100i
\(45\) 0 0
\(46\) 3.23524 + 3.23524i 0.477011 + 0.477011i
\(47\) −2.43756 + 2.43756i −0.355555 + 0.355555i −0.862171 0.506617i \(-0.830896\pi\)
0.506617 + 0.862171i \(0.330896\pi\)
\(48\) 0 0
\(49\) 5.63091i 0.804415i
\(50\) 9.97054 9.97054i 1.41005 1.41005i
\(51\) 0 0
\(52\) −1.24764 + 3.38281i −0.173017 + 0.469111i
\(53\) 8.05668i 1.10667i −0.832959 0.553335i \(-0.813355\pi\)
0.832959 0.553335i \(-0.186645\pi\)
\(54\) 0 0
\(55\) 8.03972 1.08408
\(56\) 3.55400 0.474923
\(57\) 0 0
\(58\) −1.55684 + 1.55684i −0.204423 + 0.204423i
\(59\) 9.17514 9.17514i 1.19450 1.19450i 0.218712 0.975789i \(-0.429815\pi\)
0.975789 0.218712i \(-0.0701855\pi\)
\(60\) 0 0
\(61\) −6.76562 −0.866248 −0.433124 0.901334i \(-0.642589\pi\)
−0.433124 + 0.901334i \(0.642589\pi\)
\(62\) −2.62669 −0.333590
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 6.59840 + 14.3097i 0.818431 + 1.77490i
\(66\) 0 0
\(67\) 4.76607 4.76607i 0.582268 0.582268i −0.353258 0.935526i \(-0.614926\pi\)
0.935526 + 0.353258i \(0.114926\pi\)
\(68\) 7.96266i 0.965614i
\(69\) 0 0
\(70\) 10.9831 10.9831i 1.31273 1.31273i
\(71\) 7.32632 + 7.32632i 0.869474 + 0.869474i 0.992414 0.122940i \(-0.0392323\pi\)
−0.122940 + 0.992414i \(0.539232\pi\)
\(72\) 0 0
\(73\) 5.48780 + 5.48780i 0.642299 + 0.642299i 0.951120 0.308821i \(-0.0999345\pi\)
−0.308821 + 0.951120i \(0.599935\pi\)
\(74\) 3.38905i 0.393969i
\(75\) 0 0
\(76\) 1.81357 + 1.81357i 0.208031 + 0.208031i
\(77\) 6.53787 0.745059
\(78\) 0 0
\(79\) −2.87513 −0.323477 −0.161738 0.986834i \(-0.551710\pi\)
−0.161738 + 0.986834i \(0.551710\pi\)
\(80\) −3.09035 3.09035i −0.345511 0.345511i
\(81\) 0 0
\(82\) 3.33486i 0.368274i
\(83\) 7.25822 + 7.25822i 0.796693 + 0.796693i 0.982573 0.185880i \(-0.0595134\pi\)
−0.185880 + 0.982573i \(0.559513\pi\)
\(84\) 0 0
\(85\) −24.6074 24.6074i −2.66904 2.66904i
\(86\) −4.39113 + 4.39113i −0.473507 + 0.473507i
\(87\) 0 0
\(88\) 1.83958i 0.196100i
\(89\) 4.33187 4.33187i 0.459177 0.459177i −0.439208 0.898385i \(-0.644741\pi\)
0.898385 + 0.439208i \(0.144741\pi\)
\(90\) 0 0
\(91\) 5.36579 + 11.6366i 0.562488 + 1.21985i
\(92\) 4.57533i 0.477011i
\(93\) 0 0
\(94\) 3.44723 0.355555
\(95\) 11.2091 1.15003
\(96\) 0 0
\(97\) 3.13933 3.13933i 0.318751 0.318751i −0.529536 0.848287i \(-0.677634\pi\)
0.848287 + 0.529536i \(0.177634\pi\)
\(98\) 3.98165 3.98165i 0.402208 0.402208i
\(99\) 0 0
\(100\) −14.1005 −1.41005
\(101\) −4.88116 −0.485693 −0.242847 0.970065i \(-0.578081\pi\)
−0.242847 + 0.970065i \(0.578081\pi\)
\(102\) 0 0
\(103\) 7.58040i 0.746919i 0.927646 + 0.373459i \(0.121829\pi\)
−0.927646 + 0.373459i \(0.878171\pi\)
\(104\) 3.27422 1.50979i 0.321064 0.148047i
\(105\) 0 0
\(106\) −5.69693 + 5.69693i −0.553335 + 0.553335i
\(107\) 4.74027i 0.458259i 0.973396 + 0.229130i \(0.0735880\pi\)
−0.973396 + 0.229130i \(0.926412\pi\)
\(108\) 0 0
\(109\) −7.39311 + 7.39311i −0.708131 + 0.708131i −0.966142 0.258011i \(-0.916933\pi\)
0.258011 + 0.966142i \(0.416933\pi\)
\(110\) −5.68494 5.68494i −0.542038 0.542038i
\(111\) 0 0
\(112\) −2.51306 2.51306i −0.237462 0.237462i
\(113\) 1.11846i 0.105216i −0.998615 0.0526079i \(-0.983247\pi\)
0.998615 0.0526079i \(-0.0167533\pi\)
\(114\) 0 0
\(115\) −14.1393 14.1393i −1.31850 1.31850i
\(116\) 2.20171 0.204423
\(117\) 0 0
\(118\) −12.9756 −1.19450
\(119\) −20.0106 20.0106i −1.83437 1.83437i
\(120\) 0 0
\(121\) 7.61594i 0.692359i
\(122\) 4.78401 + 4.78401i 0.433124 + 0.433124i
\(123\) 0 0
\(124\) 1.85735 + 1.85735i 0.166795 + 0.166795i
\(125\) −28.1236 + 28.1236i −2.51545 + 2.51545i
\(126\) 0 0
\(127\) 16.8438i 1.49464i −0.664464 0.747321i \(-0.731340\pi\)
0.664464 0.747321i \(-0.268660\pi\)
\(128\) −0.707107 + 0.707107i −0.0625000 + 0.0625000i
\(129\) 0 0
\(130\) 5.45271 14.7843i 0.478234 1.29667i
\(131\) 7.04715i 0.615712i −0.951433 0.307856i \(-0.900388\pi\)
0.951433 0.307856i \(-0.0996115\pi\)
\(132\) 0 0
\(133\) 9.11520 0.790388
\(134\) −6.74024 −0.582268
\(135\) 0 0
\(136\) −5.63045 + 5.63045i −0.482807 + 0.482807i
\(137\) −9.76774 + 9.76774i −0.834514 + 0.834514i −0.988131 0.153616i \(-0.950908\pi\)
0.153616 + 0.988131i \(0.450908\pi\)
\(138\) 0 0
\(139\) 17.2006 1.45893 0.729466 0.684017i \(-0.239769\pi\)
0.729466 + 0.684017i \(0.239769\pi\)
\(140\) −15.5324 −1.31273
\(141\) 0 0
\(142\) 10.3610i 0.869474i
\(143\) 6.02319 2.77738i 0.503685 0.232256i
\(144\) 0 0
\(145\) 6.80403 6.80403i 0.565044 0.565044i
\(146\) 7.76093i 0.642299i
\(147\) 0 0
\(148\) 2.39642 2.39642i 0.196985 0.196985i
\(149\) 3.57725 + 3.57725i 0.293060 + 0.293060i 0.838288 0.545228i \(-0.183557\pi\)
−0.545228 + 0.838288i \(0.683557\pi\)
\(150\) 0 0
\(151\) −12.6135 12.6135i −1.02648 1.02648i −0.999640 0.0268352i \(-0.991457\pi\)
−0.0268352 0.999640i \(-0.508543\pi\)
\(152\) 2.56477i 0.208031i
\(153\) 0 0
\(154\) −4.62297 4.62297i −0.372529 0.372529i
\(155\) 11.4797 0.922074
\(156\) 0 0
\(157\) 4.22074 0.336852 0.168426 0.985714i \(-0.446132\pi\)
0.168426 + 0.985714i \(0.446132\pi\)
\(158\) 2.03302 + 2.03302i 0.161738 + 0.161738i
\(159\) 0 0
\(160\) 4.37041i 0.345511i
\(161\) −11.4981 11.4981i −0.906173 0.906173i
\(162\) 0 0
\(163\) 8.05910 + 8.05910i 0.631238 + 0.631238i 0.948378 0.317141i \(-0.102723\pi\)
−0.317141 + 0.948378i \(0.602723\pi\)
\(164\) 2.35810 2.35810i 0.184137 0.184137i
\(165\) 0 0
\(166\) 10.2647i 0.796693i
\(167\) 1.49165 1.49165i 0.115427 0.115427i −0.647034 0.762461i \(-0.723991\pi\)
0.762461 + 0.647034i \(0.223991\pi\)
\(168\) 0 0
\(169\) 9.88678 + 8.44107i 0.760522 + 0.649313i
\(170\) 34.8001i 2.66904i
\(171\) 0 0
\(172\) 6.20999 0.473507
\(173\) −9.13714 −0.694684 −0.347342 0.937739i \(-0.612916\pi\)
−0.347342 + 0.937739i \(0.612916\pi\)
\(174\) 0 0
\(175\) −35.4353 + 35.4353i −2.67866 + 2.67866i
\(176\) −1.30078 + 1.30078i −0.0980499 + 0.0980499i
\(177\) 0 0
\(178\) −6.12619 −0.459177
\(179\) 10.5948 0.791895 0.395947 0.918273i \(-0.370416\pi\)
0.395947 + 0.918273i \(0.370416\pi\)
\(180\) 0 0
\(181\) 16.5929i 1.23334i −0.787221 0.616671i \(-0.788481\pi\)
0.787221 0.616671i \(-0.211519\pi\)
\(182\) 4.43412 12.0225i 0.328679 0.891167i
\(183\) 0 0
\(184\) −3.23524 + 3.23524i −0.238505 + 0.238505i
\(185\) 14.8115i 1.08897i
\(186\) 0 0
\(187\) −10.3577 + 10.3577i −0.757427 + 0.757427i
\(188\) −2.43756 2.43756i −0.177777 0.177777i
\(189\) 0 0
\(190\) −7.92604 7.92604i −0.575015 0.575015i
\(191\) 9.37809i 0.678575i 0.940683 + 0.339287i \(0.110186\pi\)
−0.940683 + 0.339287i \(0.889814\pi\)
\(192\) 0 0
\(193\) −4.25587 4.25587i −0.306344 0.306344i 0.537145 0.843490i \(-0.319503\pi\)
−0.843490 + 0.537145i \(0.819503\pi\)
\(194\) −4.43969 −0.318751
\(195\) 0 0
\(196\) −5.63091 −0.402208
\(197\) −3.88777 3.88777i −0.276992 0.276992i 0.554915 0.831907i \(-0.312751\pi\)
−0.831907 + 0.554915i \(0.812751\pi\)
\(198\) 0 0
\(199\) 20.6546i 1.46416i −0.681217 0.732082i \(-0.738549\pi\)
0.681217 0.732082i \(-0.261451\pi\)
\(200\) 9.97054 + 9.97054i 0.705024 + 0.705024i
\(201\) 0 0
\(202\) 3.45150 + 3.45150i 0.242847 + 0.242847i
\(203\) 5.53301 5.53301i 0.388341 0.388341i
\(204\) 0 0
\(205\) 14.5747i 1.01794i
\(206\) 5.36015 5.36015i 0.373459 0.373459i
\(207\) 0 0
\(208\) −3.38281 1.24764i −0.234556 0.0865084i
\(209\) 4.71810i 0.326358i
\(210\) 0 0
\(211\) −8.78470 −0.604764 −0.302382 0.953187i \(-0.597782\pi\)
−0.302382 + 0.953187i \(0.597782\pi\)
\(212\) 8.05668 0.553335
\(213\) 0 0
\(214\) 3.35188 3.35188i 0.229130 0.229130i
\(215\) 19.1910 19.1910i 1.30882 1.30882i
\(216\) 0 0
\(217\) 9.33527 0.633719
\(218\) 10.4554 0.708131
\(219\) 0 0
\(220\) 8.03972i 0.542038i
\(221\) −26.9361 9.93455i −1.81192 0.668270i
\(222\) 0 0
\(223\) −16.8918 + 16.8918i −1.13116 + 1.13116i −0.141174 + 0.989985i \(0.545088\pi\)
−0.989985 + 0.141174i \(0.954912\pi\)
\(224\) 3.55400i 0.237462i
\(225\) 0 0
\(226\) −0.790870 + 0.790870i −0.0526079 + 0.0526079i
\(227\) 2.59459 + 2.59459i 0.172209 + 0.172209i 0.787949 0.615740i \(-0.211143\pi\)
−0.615740 + 0.787949i \(0.711143\pi\)
\(228\) 0 0
\(229\) −5.71471 5.71471i −0.377638 0.377638i 0.492611 0.870250i \(-0.336043\pi\)
−0.870250 + 0.492611i \(0.836043\pi\)
\(230\) 19.9960i 1.31850i
\(231\) 0 0
\(232\) −1.55684 1.55684i −0.102212 0.102212i
\(233\) −5.51719 −0.361443 −0.180721 0.983534i \(-0.557843\pi\)
−0.180721 + 0.983534i \(0.557843\pi\)
\(234\) 0 0
\(235\) −15.0658 −0.982785
\(236\) 9.17514 + 9.17514i 0.597251 + 0.597251i
\(237\) 0 0
\(238\) 28.2993i 1.83437i
\(239\) 0.973712 + 0.973712i 0.0629842 + 0.0629842i 0.737897 0.674913i \(-0.235819\pi\)
−0.674913 + 0.737897i \(0.735819\pi\)
\(240\) 0 0
\(241\) −10.2868 10.2868i −0.662632 0.662632i 0.293368 0.956000i \(-0.405224\pi\)
−0.956000 + 0.293368i \(0.905224\pi\)
\(242\) 5.38529 5.38529i 0.346179 0.346179i
\(243\) 0 0
\(244\) 6.76562i 0.433124i
\(245\) −17.4015 + 17.4015i −1.11174 + 1.11174i
\(246\) 0 0
\(247\) 8.39764 3.87227i 0.534329 0.246387i
\(248\) 2.62669i 0.166795i
\(249\) 0 0
\(250\) 39.7728 2.51545
\(251\) 19.2774 1.21678 0.608391 0.793638i \(-0.291815\pi\)
0.608391 + 0.793638i \(0.291815\pi\)
\(252\) 0 0
\(253\) −5.95149 + 5.95149i −0.374167 + 0.374167i
\(254\) −11.9103 + 11.9103i −0.747321 + 0.747321i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 13.1347 0.819323 0.409662 0.912238i \(-0.365647\pi\)
0.409662 + 0.912238i \(0.365647\pi\)
\(258\) 0 0
\(259\) 12.0447i 0.748420i
\(260\) −14.3097 + 6.59840i −0.887450 + 0.409216i
\(261\) 0 0
\(262\) −4.98309 + 4.98309i −0.307856 + 0.307856i
\(263\) 12.9572i 0.798976i −0.916738 0.399488i \(-0.869188\pi\)
0.916738 0.399488i \(-0.130812\pi\)
\(264\) 0 0
\(265\) 24.8979 24.8979i 1.52947 1.52947i
\(266\) −6.44542 6.44542i −0.395194 0.395194i
\(267\) 0 0
\(268\) 4.76607 + 4.76607i 0.291134 + 0.291134i
\(269\) 6.46246i 0.394023i −0.980401 0.197012i \(-0.936876\pi\)
0.980401 0.197012i \(-0.0631237\pi\)
\(270\) 0 0
\(271\) 1.66930 + 1.66930i 0.101403 + 0.101403i 0.755988 0.654585i \(-0.227157\pi\)
−0.654585 + 0.755988i \(0.727157\pi\)
\(272\) 7.96266 0.482807
\(273\) 0 0
\(274\) 13.8137 0.834514
\(275\) 18.3416 + 18.3416i 1.10604 + 1.10604i
\(276\) 0 0
\(277\) 5.19050i 0.311867i 0.987768 + 0.155934i \(0.0498386\pi\)
−0.987768 + 0.155934i \(0.950161\pi\)
\(278\) −12.1626 12.1626i −0.729466 0.729466i
\(279\) 0 0
\(280\) 10.9831 + 10.9831i 0.656365 + 0.656365i
\(281\) 9.69297 9.69297i 0.578234 0.578234i −0.356182 0.934416i \(-0.615922\pi\)
0.934416 + 0.356182i \(0.115922\pi\)
\(282\) 0 0
\(283\) 11.8852i 0.706502i 0.935529 + 0.353251i \(0.114924\pi\)
−0.935529 + 0.353251i \(0.885076\pi\)
\(284\) −7.32632 + 7.32632i −0.434737 + 0.434737i
\(285\) 0 0
\(286\) −6.22295 2.29514i −0.367971 0.135714i
\(287\) 11.8521i 0.699607i
\(288\) 0 0
\(289\) 46.4039 2.72964
\(290\) −9.62236 −0.565044
\(291\) 0 0
\(292\) −5.48780 + 5.48780i −0.321149 + 0.321149i
\(293\) 2.46536 2.46536i 0.144028 0.144028i −0.631416 0.775444i \(-0.717526\pi\)
0.775444 + 0.631416i \(0.217526\pi\)
\(294\) 0 0
\(295\) 56.7087 3.30171
\(296\) −3.38905 −0.196985
\(297\) 0 0
\(298\) 5.05900i 0.293060i
\(299\) −15.4774 5.70837i −0.895084 0.330123i
\(300\) 0 0
\(301\) 15.6061 15.6061i 0.899518 0.899518i
\(302\) 17.8382i 1.02648i
\(303\) 0 0
\(304\) −1.81357 + 1.81357i −0.104015 + 0.104015i
\(305\) −20.9081 20.9081i −1.19719 1.19719i
\(306\) 0 0
\(307\) −5.84034 5.84034i −0.333326 0.333326i 0.520522 0.853848i \(-0.325737\pi\)
−0.853848 + 0.520522i \(0.825737\pi\)
\(308\) 6.53787i 0.372529i
\(309\) 0 0
\(310\) −8.11739 8.11739i −0.461037 0.461037i
\(311\) −20.8091 −1.17998 −0.589988 0.807412i \(-0.700867\pi\)
−0.589988 + 0.807412i \(0.700867\pi\)
\(312\) 0 0
\(313\) −30.9223 −1.74783 −0.873916 0.486078i \(-0.838427\pi\)
−0.873916 + 0.486078i \(0.838427\pi\)
\(314\) −2.98451 2.98451i −0.168426 0.168426i
\(315\) 0 0
\(316\) 2.87513i 0.161738i
\(317\) 22.5211 + 22.5211i 1.26491 + 1.26491i 0.948684 + 0.316226i \(0.102416\pi\)
0.316226 + 0.948684i \(0.397584\pi\)
\(318\) 0 0
\(319\) −2.86393 2.86393i −0.160350 0.160350i
\(320\) 3.09035 3.09035i 0.172756 0.172756i
\(321\) 0 0
\(322\) 16.2607i 0.906173i
\(323\) −14.4408 + 14.4408i −0.803509 + 0.803509i
\(324\) 0 0
\(325\) −17.5923 + 47.6992i −0.975848 + 2.64588i
\(326\) 11.3973i 0.631238i
\(327\) 0 0
\(328\) −3.33486 −0.184137
\(329\) −12.2515 −0.675444
\(330\) 0 0
\(331\) −19.1783 + 19.1783i −1.05413 + 1.05413i −0.0556841 + 0.998448i \(0.517734\pi\)
−0.998448 + 0.0556841i \(0.982266\pi\)
\(332\) −7.25822 + 7.25822i −0.398346 + 0.398346i
\(333\) 0 0
\(334\) −2.10951 −0.115427
\(335\) 29.4576 1.60944
\(336\) 0 0
\(337\) 15.5870i 0.849079i 0.905409 + 0.424540i \(0.139564\pi\)
−0.905409 + 0.424540i \(0.860436\pi\)
\(338\) −1.02227 12.9597i −0.0556044 0.704917i
\(339\) 0 0
\(340\) 24.6074 24.6074i 1.33452 1.33452i
\(341\) 4.83201i 0.261668i
\(342\) 0 0
\(343\) 3.44061 3.44061i 0.185775 0.185775i
\(344\) −4.39113 4.39113i −0.236754 0.236754i
\(345\) 0 0
\(346\) 6.46093 + 6.46093i 0.347342 + 0.347342i
\(347\) 13.4196i 0.720404i −0.932874 0.360202i \(-0.882708\pi\)
0.932874 0.360202i \(-0.117292\pi\)
\(348\) 0 0
\(349\) −13.8258 13.8258i −0.740080 0.740080i 0.232513 0.972593i \(-0.425305\pi\)
−0.972593 + 0.232513i \(0.925305\pi\)
\(350\) 50.1131 2.67866
\(351\) 0 0
\(352\) 1.83958 0.0980499
\(353\) −9.67851 9.67851i −0.515135 0.515135i 0.400960 0.916095i \(-0.368677\pi\)
−0.916095 + 0.400960i \(0.868677\pi\)
\(354\) 0 0
\(355\) 45.2817i 2.40330i
\(356\) 4.33187 + 4.33187i 0.229589 + 0.229589i
\(357\) 0 0
\(358\) −7.49167 7.49167i −0.395947 0.395947i
\(359\) 8.13457 8.13457i 0.429326 0.429326i −0.459073 0.888399i \(-0.651818\pi\)
0.888399 + 0.459073i \(0.151818\pi\)
\(360\) 0 0
\(361\) 12.4219i 0.653786i
\(362\) −11.7330 + 11.7330i −0.616671 + 0.616671i
\(363\) 0 0
\(364\) −11.6366 + 5.36579i −0.609923 + 0.281244i
\(365\) 33.9184i 1.77537i
\(366\) 0 0
\(367\) 5.65303 0.295086 0.147543 0.989056i \(-0.452864\pi\)
0.147543 + 0.989056i \(0.452864\pi\)
\(368\) 4.57533 0.238505
\(369\) 0 0
\(370\) −10.4733 + 10.4733i −0.544483 + 0.544483i
\(371\) 20.2469 20.2469i 1.05117 1.05117i
\(372\) 0 0
\(373\) −20.0334 −1.03729 −0.518644 0.854990i \(-0.673563\pi\)
−0.518644 + 0.854990i \(0.673563\pi\)
\(374\) 14.6479 0.757427
\(375\) 0 0
\(376\) 3.44723i 0.177777i
\(377\) 2.74694 7.44795i 0.141475 0.383589i
\(378\) 0 0
\(379\) 16.6434 16.6434i 0.854914 0.854914i −0.135820 0.990734i \(-0.543367\pi\)
0.990734 + 0.135820i \(0.0433668\pi\)
\(380\) 11.2091i 0.575015i
\(381\) 0 0
\(382\) 6.63131 6.63131i 0.339287 0.339287i
\(383\) 2.11934 + 2.11934i 0.108293 + 0.108293i 0.759177 0.650884i \(-0.225602\pi\)
−0.650884 + 0.759177i \(0.725602\pi\)
\(384\) 0 0
\(385\) 20.2043 + 20.2043i 1.02970 + 1.02970i
\(386\) 6.01871i 0.306344i
\(387\) 0 0
\(388\) 3.13933 + 3.13933i 0.159376 + 0.159376i
\(389\) 26.8934 1.36355 0.681776 0.731561i \(-0.261208\pi\)
0.681776 + 0.731561i \(0.261208\pi\)
\(390\) 0 0
\(391\) 36.4318 1.84243
\(392\) 3.98165 + 3.98165i 0.201104 + 0.201104i
\(393\) 0 0
\(394\) 5.49814i 0.276992i
\(395\) −8.88513 8.88513i −0.447060 0.447060i
\(396\) 0 0
\(397\) 10.0839 + 10.0839i 0.506096 + 0.506096i 0.913326 0.407229i \(-0.133505\pi\)
−0.407229 + 0.913326i \(0.633505\pi\)
\(398\) −14.6050 + 14.6050i −0.732082 + 0.732082i
\(399\) 0 0
\(400\) 14.1005i 0.705024i
\(401\) −21.4453 + 21.4453i −1.07093 + 1.07093i −0.0736421 + 0.997285i \(0.523462\pi\)
−0.997285 + 0.0736421i \(0.976538\pi\)
\(402\) 0 0
\(403\) 8.60038 3.96576i 0.428415 0.197548i
\(404\) 4.88116i 0.242847i
\(405\) 0 0
\(406\) −7.82486 −0.388341
\(407\) −6.23443 −0.309029
\(408\) 0 0
\(409\) 6.53454 6.53454i 0.323112 0.323112i −0.526848 0.849960i \(-0.676626\pi\)
0.849960 + 0.526848i \(0.176626\pi\)
\(410\) −10.3059 + 10.3059i −0.508971 + 0.508971i
\(411\) 0 0
\(412\) −7.58040 −0.373459
\(413\) 46.1153 2.26918
\(414\) 0 0
\(415\) 44.8608i 2.20213i
\(416\) 1.50979 + 3.27422i 0.0740236 + 0.160532i
\(417\) 0 0
\(418\) −3.33620 + 3.33620i −0.163179 + 0.163179i
\(419\) 18.9957i 0.927999i −0.885835 0.464000i \(-0.846414\pi\)
0.885835 0.464000i \(-0.153586\pi\)
\(420\) 0 0
\(421\) 7.67992 7.67992i 0.374296 0.374296i −0.494743 0.869039i \(-0.664738\pi\)
0.869039 + 0.494743i \(0.164738\pi\)
\(422\) 6.21172 + 6.21172i 0.302382 + 0.302382i
\(423\) 0 0
\(424\) −5.69693 5.69693i −0.276668 0.276668i
\(425\) 112.277i 5.44625i
\(426\) 0 0
\(427\) −17.0024 17.0024i −0.822803 0.822803i
\(428\) −4.74027 −0.229130
\(429\) 0 0
\(430\) −27.1402 −1.30882
\(431\) 24.3980 + 24.3980i 1.17521 + 1.17521i 0.980950 + 0.194260i \(0.0622306\pi\)
0.194260 + 0.980950i \(0.437769\pi\)
\(432\) 0 0
\(433\) 13.5640i 0.651843i 0.945397 + 0.325921i \(0.105674\pi\)
−0.945397 + 0.325921i \(0.894326\pi\)
\(434\) −6.60103 6.60103i −0.316860 0.316860i
\(435\) 0 0
\(436\) −7.39311 7.39311i −0.354066 0.354066i
\(437\) −8.29766 + 8.29766i −0.396931 + 0.396931i
\(438\) 0 0
\(439\) 38.0568i 1.81635i −0.418590 0.908175i \(-0.637475\pi\)
0.418590 0.908175i \(-0.362525\pi\)
\(440\) 5.68494 5.68494i 0.271019 0.271019i
\(441\) 0 0
\(442\) 12.0219 + 26.0715i 0.571826 + 1.24010i
\(443\) 15.5746i 0.739972i 0.929037 + 0.369986i \(0.120638\pi\)
−0.929037 + 0.369986i \(0.879362\pi\)
\(444\) 0 0
\(445\) 26.7740 1.26921
\(446\) 23.8886 1.13116
\(447\) 0 0
\(448\) 2.51306 2.51306i 0.118731 0.118731i
\(449\) 2.64196 2.64196i 0.124682 0.124682i −0.642012 0.766694i \(-0.721900\pi\)
0.766694 + 0.642012i \(0.221900\pi\)
\(450\) 0 0
\(451\) −6.13475 −0.288874
\(452\) 1.11846 0.0526079
\(453\) 0 0
\(454\) 3.66931i 0.172209i
\(455\) −19.3789 + 52.5432i −0.908497 + 2.46326i
\(456\) 0 0
\(457\) −8.84419 + 8.84419i −0.413714 + 0.413714i −0.883030 0.469316i \(-0.844500\pi\)
0.469316 + 0.883030i \(0.344500\pi\)
\(458\) 8.08181i 0.377638i
\(459\) 0 0
\(460\) 14.1393 14.1393i 0.659250 0.659250i
\(461\) −5.63360 5.63360i −0.262383 0.262383i 0.563639 0.826021i \(-0.309401\pi\)
−0.826021 + 0.563639i \(0.809401\pi\)
\(462\) 0 0
\(463\) −20.5655 20.5655i −0.955759 0.955759i 0.0433029 0.999062i \(-0.486212\pi\)
−0.999062 + 0.0433029i \(0.986212\pi\)
\(464\) 2.20171i 0.102212i
\(465\) 0 0
\(466\) 3.90124 + 3.90124i 0.180721 + 0.180721i
\(467\) −35.1220 −1.62525 −0.812627 0.582784i \(-0.801963\pi\)
−0.812627 + 0.582784i \(0.801963\pi\)
\(468\) 0 0
\(469\) 23.9548 1.10613
\(470\) 10.6531 + 10.6531i 0.491392 + 0.491392i
\(471\) 0 0
\(472\) 12.9756i 0.597251i
\(473\) −8.07783 8.07783i −0.371419 0.371419i
\(474\) 0 0
\(475\) 25.5722 + 25.5722i 1.17333 + 1.17333i
\(476\) 20.0106 20.0106i 0.917185 0.917185i
\(477\) 0 0
\(478\) 1.37704i 0.0629842i
\(479\) 10.3373 10.3373i 0.472325 0.472325i −0.430341 0.902666i \(-0.641607\pi\)
0.902666 + 0.430341i \(0.141607\pi\)
\(480\) 0 0
\(481\) −5.11676 11.0965i −0.233304 0.505957i
\(482\) 14.5477i 0.662632i
\(483\) 0 0
\(484\) −7.61594 −0.346179
\(485\) 19.4033 0.881056
\(486\) 0 0
\(487\) −2.50980 + 2.50980i −0.113730 + 0.113730i −0.761682 0.647952i \(-0.775626\pi\)
0.647952 + 0.761682i \(0.275626\pi\)
\(488\) −4.78401 + 4.78401i −0.216562 + 0.216562i
\(489\) 0 0
\(490\) 24.6094 1.11174
\(491\) −31.6248 −1.42721 −0.713604 0.700550i \(-0.752938\pi\)
−0.713604 + 0.700550i \(0.752938\pi\)
\(492\) 0 0
\(493\) 17.5314i 0.789576i
\(494\) −8.67613 3.19992i −0.390358 0.143971i
\(495\) 0 0
\(496\) −1.85735 + 1.85735i −0.0833976 + 0.0833976i
\(497\) 36.8229i 1.65173i
\(498\) 0 0
\(499\) 23.1304 23.1304i 1.03546 1.03546i 0.0361094 0.999348i \(-0.488504\pi\)
0.999348 0.0361094i \(-0.0114965\pi\)
\(500\) −28.1236 28.1236i −1.25773 1.25773i
\(501\) 0 0
\(502\) −13.6312 13.6312i −0.608391 0.608391i
\(503\) 8.63482i 0.385008i 0.981296 + 0.192504i \(0.0616608\pi\)
−0.981296 + 0.192504i \(0.938339\pi\)
\(504\) 0 0
\(505\) −15.0845 15.0845i −0.671250 0.671250i
\(506\) 8.41668 0.374167
\(507\) 0 0
\(508\) 16.8438 0.747321
\(509\) −14.7012 14.7012i −0.651618 0.651618i 0.301765 0.953382i \(-0.402424\pi\)
−0.953382 + 0.301765i \(0.902424\pi\)
\(510\) 0 0
\(511\) 27.5823i 1.22017i
\(512\) −0.707107 0.707107i −0.0312500 0.0312500i
\(513\) 0 0
\(514\) −9.28767 9.28767i −0.409662 0.409662i
\(515\) −23.4261 + 23.4261i −1.03228 + 1.03228i
\(516\) 0 0
\(517\) 6.34146i 0.278897i
\(518\) −8.51688 + 8.51688i −0.374210 + 0.374210i
\(519\) 0 0
\(520\) 14.7843 + 5.45271i 0.648333 + 0.239117i
\(521\) 3.91650i 0.171585i −0.996313 0.0857926i \(-0.972658\pi\)
0.996313 0.0857926i \(-0.0273422\pi\)
\(522\) 0 0
\(523\) −6.87668 −0.300696 −0.150348 0.988633i \(-0.548039\pi\)
−0.150348 + 0.988633i \(0.548039\pi\)
\(524\) 7.04715 0.307856
\(525\) 0 0
\(526\) −9.16214 + 9.16214i −0.399488 + 0.399488i
\(527\) −14.7895 + 14.7895i −0.644239 + 0.644239i
\(528\) 0 0
\(529\) −2.06640 −0.0898435
\(530\) −35.2110 −1.52947
\(531\) 0 0
\(532\) 9.11520i 0.395194i
\(533\) −5.03495 10.9191i −0.218088 0.472958i
\(534\) 0 0
\(535\) −14.6491 + 14.6491i −0.633335 + 0.633335i
\(536\) 6.74024i 0.291134i
\(537\) 0 0
\(538\) −4.56965 + 4.56965i −0.197012 + 0.197012i
\(539\) 7.32457 + 7.32457i 0.315492 + 0.315492i
\(540\) 0 0
\(541\) −24.5620 24.5620i −1.05600 1.05600i −0.998336 0.0576658i \(-0.981634\pi\)
−0.0576658 0.998336i \(-0.518366\pi\)
\(542\) 2.36075i 0.101403i
\(543\) 0 0
\(544\) −5.63045 5.63045i −0.241404 0.241404i
\(545\) −45.6945 −1.95734
\(546\) 0 0
\(547\) 7.41566 0.317071 0.158535 0.987353i \(-0.449323\pi\)
0.158535 + 0.987353i \(0.449323\pi\)
\(548\) −9.76774 9.76774i −0.417257 0.417257i
\(549\) 0 0
\(550\) 25.9390i 1.10604i
\(551\) −3.99294 3.99294i −0.170105 0.170105i
\(552\) 0 0
\(553\) −7.22535 7.22535i −0.307253 0.307253i
\(554\) 3.67024 3.67024i 0.155934 0.155934i
\(555\) 0 0
\(556\) 17.2006i 0.729466i
\(557\) −23.7606 + 23.7606i −1.00677 + 1.00677i −0.00679291 + 0.999977i \(0.502162\pi\)
−0.999977 + 0.00679291i \(0.997838\pi\)
\(558\) 0 0
\(559\) 7.74784 21.0072i 0.327699 0.888510i
\(560\) 15.5324i 0.656365i
\(561\) 0 0
\(562\) −13.7079 −0.578234
\(563\) 38.0827 1.60499 0.802496 0.596657i \(-0.203505\pi\)
0.802496 + 0.596657i \(0.203505\pi\)
\(564\) 0 0
\(565\) 3.45642 3.45642i 0.145413 0.145413i
\(566\) 8.40411 8.40411i 0.353251 0.353251i
\(567\) 0 0
\(568\) 10.3610 0.434737
\(569\) −20.6163 −0.864281 −0.432141 0.901806i \(-0.642242\pi\)
−0.432141 + 0.901806i \(0.642242\pi\)
\(570\) 0 0
\(571\) 29.2202i 1.22283i 0.791311 + 0.611414i \(0.209399\pi\)
−0.791311 + 0.611414i \(0.790601\pi\)
\(572\) 2.77738 + 6.02319i 0.116128 + 0.251842i
\(573\) 0 0
\(574\) −8.38070 + 8.38070i −0.349804 + 0.349804i
\(575\) 64.5143i 2.69043i
\(576\) 0 0
\(577\) −8.66402 + 8.66402i −0.360688 + 0.360688i −0.864066 0.503378i \(-0.832090\pi\)
0.503378 + 0.864066i \(0.332090\pi\)
\(578\) −32.8125 32.8125i −1.36482 1.36482i
\(579\) 0 0
\(580\) 6.80403 + 6.80403i 0.282522 + 0.282522i
\(581\) 36.4806i 1.51347i
\(582\) 0 0
\(583\) −10.4800 10.4800i −0.434036 0.434036i
\(584\) 7.76093 0.321149
\(585\) 0 0
\(586\) −3.48655 −0.144028
\(587\) 3.98421 + 3.98421i 0.164446 + 0.164446i 0.784533 0.620087i \(-0.212903\pi\)
−0.620087 + 0.784533i \(0.712903\pi\)
\(588\) 0 0
\(589\) 6.73687i 0.277588i
\(590\) −40.0991 40.0991i −1.65085 1.65085i
\(591\) 0 0
\(592\) 2.39642 + 2.39642i 0.0984923 + 0.0984923i
\(593\) 15.0310 15.0310i 0.617247 0.617247i −0.327577 0.944824i \(-0.606232\pi\)
0.944824 + 0.327577i \(0.106232\pi\)
\(594\) 0 0
\(595\) 123.679i 5.07036i
\(596\) −3.57725 + 3.57725i −0.146530 + 0.146530i
\(597\) 0 0
\(598\) 6.90778 + 14.9806i 0.282480 + 0.612604i
\(599\) 30.7247i 1.25538i 0.778465 + 0.627688i \(0.215999\pi\)
−0.778465 + 0.627688i \(0.784001\pi\)
\(600\) 0 0
\(601\) −2.52289 −0.102911 −0.0514553 0.998675i \(-0.516386\pi\)
−0.0514553 + 0.998675i \(0.516386\pi\)
\(602\) −22.0703 −0.899518
\(603\) 0 0
\(604\) 12.6135 12.6135i 0.513238 0.513238i
\(605\) −23.5359 + 23.5359i −0.956871 + 0.956871i
\(606\) 0 0
\(607\) −38.9224 −1.57981 −0.789907 0.613227i \(-0.789871\pi\)
−0.789907 + 0.613227i \(0.789871\pi\)
\(608\) 2.56477 0.104015
\(609\) 0 0
\(610\) 29.5685i 1.19719i
\(611\) −11.2870 + 5.20460i −0.456623 + 0.210555i
\(612\) 0 0
\(613\) −9.25966 + 9.25966i −0.373994 + 0.373994i −0.868930 0.494936i \(-0.835192\pi\)
0.494936 + 0.868930i \(0.335192\pi\)
\(614\) 8.25949i 0.333326i
\(615\) 0 0
\(616\) 4.62297 4.62297i 0.186265 0.186265i
\(617\) 30.3934 + 30.3934i 1.22359 + 1.22359i 0.966345 + 0.257248i \(0.0828159\pi\)
0.257248 + 0.966345i \(0.417184\pi\)
\(618\) 0 0
\(619\) −13.2648 13.2648i −0.533156 0.533156i 0.388354 0.921510i \(-0.373044\pi\)
−0.921510 + 0.388354i \(0.873044\pi\)
\(620\) 11.4797i 0.461037i
\(621\) 0 0
\(622\) 14.7142 + 14.7142i 0.589988 + 0.589988i
\(623\) 21.7725 0.872296
\(624\) 0 0
\(625\) −103.321 −4.13285
\(626\) 21.8654 + 21.8654i 0.873916 + 0.873916i
\(627\) 0 0
\(628\) 4.22074i 0.168426i
\(629\) 19.0819 + 19.0819i 0.760845 + 0.760845i
\(630\) 0 0
\(631\) −27.8937 27.8937i −1.11043 1.11043i −0.993092 0.117339i \(-0.962564\pi\)
−0.117339 0.993092i \(-0.537436\pi\)
\(632\) −2.03302 + 2.03302i −0.0808692 + 0.0808692i
\(633\) 0 0
\(634\) 31.8496i 1.26491i
\(635\) 52.0530 52.0530i 2.06566 2.06566i
\(636\) 0 0
\(637\) −7.02536 + 19.0483i −0.278355 + 0.754720i
\(638\) 4.05021i 0.160350i
\(639\) 0 0
\(640\) −4.37041 −0.172756
\(641\) 1.53862 0.0607720 0.0303860 0.999538i \(-0.490326\pi\)
0.0303860 + 0.999538i \(0.490326\pi\)
\(642\) 0 0
\(643\) 21.9382 21.9382i 0.865157 0.865157i −0.126775 0.991932i \(-0.540463\pi\)
0.991932 + 0.126775i \(0.0404626\pi\)
\(644\) 11.4981 11.4981i 0.453087 0.453087i
\(645\) 0 0
\(646\) 20.4224 0.803509
\(647\) −2.31362 −0.0909579 −0.0454790 0.998965i \(-0.514481\pi\)
−0.0454790 + 0.998965i \(0.514481\pi\)
\(648\) 0 0
\(649\) 23.8697i 0.936966i
\(650\) 46.1681 21.2888i 1.81086 0.835014i
\(651\) 0 0
\(652\) −8.05910 + 8.05910i −0.315619 + 0.315619i
\(653\) 8.64626i 0.338354i 0.985586 + 0.169177i \(0.0541110\pi\)
−0.985586 + 0.169177i \(0.945889\pi\)
\(654\) 0 0
\(655\) 21.7781 21.7781i 0.850942 0.850942i
\(656\) 2.35810 + 2.35810i 0.0920685 + 0.0920685i
\(657\) 0 0
\(658\) 8.66308 + 8.66308i 0.337722 + 0.337722i
\(659\) 25.6721i 1.00004i −0.866013 0.500022i \(-0.833325\pi\)
0.866013 0.500022i \(-0.166675\pi\)
\(660\) 0 0
\(661\) 10.7953 + 10.7953i 0.419888 + 0.419888i 0.885165 0.465277i \(-0.154045\pi\)
−0.465277 + 0.885165i \(0.654045\pi\)
\(662\) 27.1222 1.05413
\(663\) 0 0
\(664\) 10.2647 0.398346
\(665\) 28.1691 + 28.1691i 1.09235 + 1.09235i
\(666\) 0 0
\(667\) 10.0735i 0.390048i
\(668\) 1.49165 + 1.49165i 0.0577136 + 0.0577136i
\(669\) 0 0
\(670\) −20.8297 20.8297i −0.804721 0.804721i
\(671\) −8.80058 + 8.80058i −0.339742 + 0.339742i
\(672\) 0 0
\(673\) 28.5527i 1.10063i 0.834958 + 0.550313i \(0.185492\pi\)
−0.834958 + 0.550313i \(0.814508\pi\)
\(674\) 11.0217 11.0217i 0.424540 0.424540i
\(675\) 0 0
\(676\) −8.44107 + 9.88678i −0.324656 + 0.380261i
\(677\) 16.5768i 0.637096i 0.947907 + 0.318548i \(0.103195\pi\)
−0.947907 + 0.318548i \(0.896805\pi\)
\(678\) 0 0
\(679\) 15.7786 0.605529
\(680\) −34.8001 −1.33452
\(681\) 0 0
\(682\) −3.41675 + 3.41675i −0.130834 + 0.130834i
\(683\) −16.5837 + 16.5837i −0.634558 + 0.634558i −0.949208 0.314650i \(-0.898113\pi\)
0.314650 + 0.949208i \(0.398113\pi\)
\(684\) 0 0
\(685\) −60.3714 −2.30667
\(686\) −4.86576 −0.185775
\(687\) 0 0
\(688\) 6.20999i 0.236754i
\(689\) 10.0519 27.2542i 0.382945 1.03830i
\(690\) 0 0
\(691\) −15.1382 + 15.1382i −0.575886 + 0.575886i −0.933767 0.357881i \(-0.883499\pi\)
0.357881 + 0.933767i \(0.383499\pi\)
\(692\) 9.13714i 0.347342i
\(693\) 0 0
\(694\) −9.48912 + 9.48912i −0.360202 + 0.360202i
\(695\) 53.1557 + 53.1557i 2.01631 + 2.01631i
\(696\) 0 0
\(697\) 18.7768 + 18.7768i 0.711221 + 0.711221i
\(698\) 19.5527i 0.740080i
\(699\) 0 0
\(700\) −35.4353 35.4353i −1.33933 1.33933i
\(701\) −21.7545 −0.821654 −0.410827 0.911713i \(-0.634760\pi\)
−0.410827 + 0.911713i \(0.634760\pi\)
\(702\) 0 0
\(703\) −8.69215 −0.327831
\(704\) −1.30078 1.30078i −0.0490250 0.0490250i
\(705\) 0 0
\(706\) 13.6875i 0.515135i
\(707\) −12.2666 12.2666i −0.461334 0.461334i
\(708\) 0 0
\(709\) −16.1111 16.1111i −0.605066 0.605066i 0.336586 0.941653i \(-0.390728\pi\)
−0.941653 + 0.336586i \(0.890728\pi\)
\(710\) 32.0190 32.0190i 1.20165 1.20165i
\(711\) 0 0
\(712\) 6.12619i 0.229589i
\(713\) −8.49799 + 8.49799i −0.318252 + 0.318252i
\(714\) 0 0
\(715\) 27.1968 + 10.0307i 1.01710 + 0.375127i
\(716\) 10.5948i 0.395947i
\(717\) 0 0
\(718\) −11.5040 −0.429326
\(719\) −5.99109 −0.223430 −0.111715 0.993740i \(-0.535634\pi\)
−0.111715 + 0.993740i \(0.535634\pi\)
\(720\) 0 0
\(721\) −19.0500 + 19.0500i −0.709458 + 0.709458i
\(722\) 8.78364 8.78364i 0.326893 0.326893i
\(723\) 0 0
\(724\) 16.5929 0.616671
\(725\) 31.0451 1.15299
\(726\) 0 0
\(727\) 9.23878i 0.342647i −0.985215 0.171324i \(-0.945196\pi\)
0.985215 0.171324i \(-0.0548044\pi\)
\(728\) 12.0225 + 4.43412i 0.445583 + 0.164339i
\(729\) 0 0
\(730\) 23.9839 23.9839i 0.887686 0.887686i
\(731\) 49.4480i 1.82890i
\(732\) 0 0
\(733\) 15.7923 15.7923i 0.583301 0.583301i −0.352508 0.935809i \(-0.614671\pi\)
0.935809 + 0.352508i \(0.114671\pi\)
\(734\) −3.99730 3.99730i −0.147543 0.147543i
\(735\) 0 0
\(736\) −3.23524 3.23524i −0.119253 0.119253i
\(737\) 12.3992i 0.456731i
\(738\) 0 0
\(739\) 23.6222 + 23.6222i 0.868958 + 0.868958i 0.992357 0.123399i \(-0.0393796\pi\)
−0.123399 + 0.992357i \(0.539380\pi\)
\(740\) 14.8115 0.544483
\(741\) 0 0
\(742\) −28.6334 −1.05117
\(743\) −21.4254 21.4254i −0.786022 0.786022i 0.194818 0.980839i \(-0.437589\pi\)
−0.980839 + 0.194818i \(0.937589\pi\)
\(744\) 0 0
\(745\) 22.1099i 0.810045i
\(746\) 14.1657 + 14.1657i 0.518644 + 0.518644i
\(747\) 0 0
\(748\) −10.3577 10.3577i −0.378714 0.378714i
\(749\) −11.9126 + 11.9126i −0.435276 + 0.435276i
\(750\) 0 0
\(751\) 5.78694i 0.211168i 0.994410 + 0.105584i \(0.0336712\pi\)
−0.994410 + 0.105584i \(0.966329\pi\)
\(752\) 2.43756 2.43756i 0.0888887 0.0888887i
\(753\) 0 0
\(754\) −7.20888 + 3.32411i −0.262532 + 0.121057i
\(755\) 77.9604i 2.83727i
\(756\) 0 0
\(757\) 40.9940 1.48995 0.744977 0.667091i \(-0.232461\pi\)
0.744977 + 0.667091i \(0.232461\pi\)
\(758\) −23.5373 −0.854914
\(759\) 0 0
\(760\) 7.92604 7.92604i 0.287508 0.287508i
\(761\) 29.1856 29.1856i 1.05798 1.05798i 0.0597661 0.998212i \(-0.480965\pi\)
0.998212 0.0597661i \(-0.0190355\pi\)
\(762\) 0 0
\(763\) −37.1586 −1.34523
\(764\) −9.37809 −0.339287
\(765\) 0 0
\(766\) 2.99719i 0.108293i
\(767\) 42.4850 19.5904i 1.53405 0.707370i
\(768\) 0 0
\(769\) 27.5194 27.5194i 0.992375 0.992375i −0.00759602 0.999971i \(-0.502418\pi\)
0.999971 + 0.00759602i \(0.00241791\pi\)
\(770\) 28.5731i 1.02970i
\(771\) 0 0
\(772\) 4.25587 4.25587i 0.153172 0.153172i
\(773\) 19.4578 + 19.4578i 0.699848 + 0.699848i 0.964378 0.264529i \(-0.0852166\pi\)
−0.264529 + 0.964378i \(0.585217\pi\)
\(774\) 0 0
\(775\) 26.1896 + 26.1896i 0.940757 + 0.940757i
\(776\) 4.43969i 0.159376i
\(777\) 0 0
\(778\) −19.0165 19.0165i −0.681776 0.681776i
\(779\) −8.55317 −0.306449
\(780\) 0 0
\(781\) 19.0598 0.682015
\(782\) −25.7611 25.7611i −0.921216 0.921216i
\(783\) 0 0
\(784\) 5.63091i 0.201104i
\(785\) 13.0435 + 13.0435i 0.465544 + 0.465544i
\(786\) 0 0
\(787\) 26.8883 + 26.8883i 0.958465 + 0.958465i 0.999171 0.0407063i \(-0.0129608\pi\)
−0.0407063 + 0.999171i \(0.512961\pi\)
\(788\) 3.88777 3.88777i 0.138496 0.138496i
\(789\) 0 0
\(790\) 12.5655i 0.447060i
\(791\) 2.81075 2.81075i 0.0999388 0.0999388i
\(792\) 0 0
\(793\) −22.8868 8.44107i −0.812733 0.299751i
\(794\) 14.2608i 0.506096i
\(795\) 0 0
\(796\) 20.6546 0.732082
\(797\) −14.6118 −0.517577 −0.258789 0.965934i \(-0.583323\pi\)
−0.258789 + 0.965934i \(0.583323\pi\)
\(798\) 0 0
\(799\) 19.4095 19.4095i 0.686657 0.686657i
\(800\) −9.97054 + 9.97054i −0.352512 + 0.352512i
\(801\) 0 0
\(802\) 30.3282 1.07093
\(803\) 14.2768 0.503819
\(804\) 0 0
\(805\) 71.0659i 2.50474i
\(806\) −8.88560 3.27717i −0.312982 0.115433i
\(807\) 0 0
\(808\) −3.45150 + 3.45150i −0.121423 + 0.121423i
\(809\) 32.4946i 1.14245i 0.820794 + 0.571224i \(0.193531\pi\)
−0.820794 + 0.571224i \(0.806469\pi\)
\(810\) 0 0
\(811\) −11.9664 + 11.9664i −0.420198 + 0.420198i −0.885272 0.465074i \(-0.846028\pi\)
0.465074 + 0.885272i \(0.346028\pi\)
\(812\) 5.53301 + 5.53301i 0.194171 + 0.194171i
\(813\) 0 0
\(814\) 4.40841 + 4.40841i 0.154515 + 0.154515i
\(815\) 49.8108i 1.74480i
\(816\) 0 0
\(817\) −11.2622 11.2622i −0.394016 0.394016i
\(818\) −9.24124 −0.323112
\(819\) 0 0
\(820\) 14.5747 0.508971
\(821\) −22.3655 22.3655i −0.780561 0.780561i 0.199365 0.979925i \(-0.436112\pi\)
−0.979925 + 0.199365i \(0.936112\pi\)
\(822\) 0 0
\(823\) 21.8009i 0.759933i −0.925000 0.379966i \(-0.875936\pi\)
0.925000 0.379966i \(-0.124064\pi\)
\(824\) 5.36015 + 5.36015i 0.186730 + 0.186730i
\(825\) 0 0
\(826\) −32.6084 32.6084i −1.13459 1.13459i
\(827\) −13.4359 + 13.4359i −0.467212 + 0.467212i −0.901010 0.433798i \(-0.857173\pi\)
0.433798 + 0.901010i \(0.357173\pi\)
\(828\) 0 0
\(829\) 52.1118i 1.80992i 0.425498 + 0.904959i \(0.360099\pi\)
−0.425498 + 0.904959i \(0.639901\pi\)
\(830\) 31.7214 31.7214i 1.10107 1.10107i
\(831\) 0 0
\(832\) 1.24764 3.38281i 0.0432542 0.117278i
\(833\) 44.8370i 1.55351i
\(834\) 0 0
\(835\) 9.21942 0.319051
\(836\) 4.71810 0.163179
\(837\) 0 0
\(838\) −13.4320 + 13.4320i −0.464000 + 0.464000i
\(839\) −14.6711 + 14.6711i −0.506503 + 0.506503i −0.913451 0.406949i \(-0.866593\pi\)
0.406949 + 0.913451i \(0.366593\pi\)
\(840\) 0 0
\(841\) 24.1525 0.832844
\(842\) −10.8610 −0.374296
\(843\) 0 0
\(844\) 8.78470i 0.302382i
\(845\) 4.46776 + 56.6394i 0.153695 + 1.94845i
\(846\) 0 0
\(847\) −19.1393 + 19.1393i −0.657634 + 0.657634i
\(848\) 8.05668i 0.276668i
\(849\) 0 0
\(850\) −79.3920 + 79.3920i −2.72312 + 2.72312i
\(851\) 10.9644 + 10.9644i 0.375855 + 0.375855i
\(852\) 0 0
\(853\) 7.09109 + 7.09109i 0.242794 + 0.242794i 0.818005 0.575211i \(-0.195080\pi\)
−0.575211 + 0.818005i \(0.695080\pi\)
\(854\) 24.0450i 0.822803i
\(855\) 0 0
\(856\) 3.35188 + 3.35188i 0.114565 + 0.114565i
\(857\) −28.2594 −0.965323 −0.482661 0.875807i \(-0.660330\pi\)
−0.482661 + 0.875807i \(0.660330\pi\)
\(858\) 0 0
\(859\) −52.5654 −1.79351 −0.896754 0.442529i \(-0.854081\pi\)
−0.896754 + 0.442529i \(0.854081\pi\)
\(860\) 19.1910 + 19.1910i 0.654408 + 0.654408i
\(861\) 0 0
\(862\) 34.5040i 1.17521i
\(863\) 0.667264 + 0.667264i 0.0227139 + 0.0227139i 0.718373 0.695659i \(-0.244887\pi\)
−0.695659 + 0.718373i \(0.744887\pi\)
\(864\) 0 0
\(865\) −28.2369 28.2369i −0.960084 0.960084i
\(866\) 9.59118 9.59118i 0.325921 0.325921i
\(867\) 0 0
\(868\) 9.33527i 0.316860i
\(869\) −3.73990 + 3.73990i −0.126868 + 0.126868i
\(870\) 0 0
\(871\) 22.0691 10.1764i 0.747782 0.344813i
\(872\) 10.4554i 0.354066i
\(873\) 0 0
\(874\) 11.7347 0.396931
\(875\) −141.353 −4.77859
\(876\) 0 0
\(877\) −0.845550 + 0.845550i −0.0285522 + 0.0285522i −0.721239 0.692687i \(-0.756427\pi\)
0.692687 + 0.721239i \(0.256427\pi\)
\(878\) −26.9102 + 26.9102i −0.908175 + 0.908175i
\(879\) 0 0
\(880\) −8.03972 −0.271019
\(881\) −28.4766 −0.959402 −0.479701 0.877432i \(-0.659255\pi\)
−0.479701 + 0.877432i \(0.659255\pi\)
\(882\) 0 0
\(883\) 1.46786i 0.0493973i 0.999695 + 0.0246987i \(0.00786263\pi\)
−0.999695 + 0.0246987i \(0.992137\pi\)
\(884\) 9.93455 26.9361i 0.334135 0.905961i
\(885\) 0 0
\(886\) 11.0129 11.0129i 0.369986 0.369986i
\(887\) 18.3816i 0.617194i 0.951193 + 0.308597i \(0.0998594\pi\)
−0.951193 + 0.308597i \(0.900141\pi\)
\(888\) 0 0
\(889\) 42.3293 42.3293i 1.41968 1.41968i
\(890\) −18.9320 18.9320i −0.634604 0.634604i
\(891\) 0 0
\(892\) −16.8918 16.8918i −0.565580 0.565580i
\(893\) 8.84136i 0.295865i
\(894\) 0 0
\(895\) 32.7417 + 32.7417i 1.09443 + 1.09443i
\(896\) −3.55400 −0.118731
\(897\) 0 0
\(898\) −3.73629 −0.124682
\(899\) −4.08935 4.08935i −0.136387 0.136387i
\(900\) 0 0
\(901\) 64.1526i 2.13723i
\(902\) 4.33792 + 4.33792i 0.144437 + 0.144437i
\(903\) 0 0
\(904\) −0.790870 0.790870i −0.0263039 0.0263039i
\(905\) 51.2778 51.2778i 1.70453 1.70453i
\(906\) 0 0
\(907\) 28.2736i 0.938808i −0.882983 0.469404i \(-0.844469\pi\)
0.882983 0.469404i \(-0.155531\pi\)
\(908\) −2.59459 + 2.59459i −0.0861046 + 0.0861046i
\(909\) 0 0
\(910\) 50.8566 23.4507i 1.68588 0.777384i
\(911\) 5.98117i 0.198165i −0.995079 0.0990825i \(-0.968409\pi\)
0.995079 0.0990825i \(-0.0315908\pi\)
\(912\) 0 0
\(913\) 18.8827 0.624926
\(914\) 12.5076 0.413714
\(915\) 0 0
\(916\) 5.71471 5.71471i 0.188819 0.188819i
\(917\) 17.7099 17.7099i 0.584832 0.584832i
\(918\) 0 0
\(919\) −25.5705 −0.843494 −0.421747 0.906714i \(-0.638583\pi\)
−0.421747 + 0.906714i \(0.638583\pi\)
\(920\) −19.9960 −0.659250
\(921\) 0 0
\(922\) 7.96711i 0.262383i
\(923\) 15.6429 + 33.9241i 0.514892 + 1.11663i
\(924\) 0 0
\(925\) 33.7907 33.7907i 1.11103 1.11103i
\(926\) 29.0840i 0.955759i
\(927\) 0 0
\(928\) 1.55684 1.55684i 0.0511058 0.0511058i
\(929\) 27.0373 + 27.0373i 0.887066 + 0.887066i 0.994240 0.107174i \(-0.0341803\pi\)
−0.107174 + 0.994240i \(0.534180\pi\)
\(930\) 0 0
\(931\) 10.2120 + 10.2120i 0.334686 + 0.334686i
\(932\) 5.51719i 0.180721i
\(933\) 0 0
\(934\) 24.8350 + 24.8350i 0.812627 + 0.812627i
\(935\) −64.0175 −2.09360
\(936\) 0 0
\(937\) 15.7883 0.515781 0.257891 0.966174i \(-0.416973\pi\)
0.257891 + 0.966174i \(0.416973\pi\)
\(938\) −16.9386 16.9386i −0.553065 0.553065i
\(939\) 0 0
\(940\) 15.0658i 0.491392i
\(941\) −14.2176 14.2176i −0.463480 0.463480i 0.436314 0.899794i \(-0.356284\pi\)
−0.899794 + 0.436314i \(0.856284\pi\)
\(942\) 0 0
\(943\) 10.7891 + 10.7891i 0.351341 + 0.351341i
\(944\) −9.17514 + 9.17514i −0.298625 + 0.298625i
\(945\) 0 0
\(946\) 11.4238i 0.371419i
\(947\) 14.9707 14.9707i 0.486484 0.486484i −0.420711 0.907195i \(-0.638219\pi\)
0.907195 + 0.420711i \(0.138219\pi\)
\(948\) 0 0
\(949\) 11.7174 + 25.4110i 0.380362 + 0.824876i
\(950\) 36.1645i 1.17333i
\(951\) 0 0
\(952\) −28.2993 −0.917185
\(953\) 58.3291 1.88947 0.944733 0.327842i \(-0.106321\pi\)
0.944733 + 0.327842i \(0.106321\pi\)
\(954\) 0 0
\(955\) −28.9815 + 28.9815i −0.937821 + 0.937821i
\(956\) −0.973712 + 0.973712i −0.0314921 + 0.0314921i
\(957\) 0 0
\(958\) −14.6192 −0.472325
\(959\) −49.0938 −1.58532
\(960\) 0 0
\(961\) 24.1005i 0.777435i
\(962\) −4.22832 + 11.4645i −0.136327 + 0.369631i
\(963\) 0 0
\(964\) 10.2868 10.2868i 0.331316 0.331316i
\(965\) 26.3042i 0.846763i
\(966\) 0 0
\(967\) −27.8650 + 27.8650i −0.896077 + 0.896077i −0.995086 0.0990097i \(-0.968433\pi\)
0.0990097 + 0.995086i \(0.468433\pi\)
\(968\) 5.38529 + 5.38529i 0.173090 + 0.173090i
\(969\) 0 0
\(970\) −13.7202 13.7202i −0.440528 0.440528i
\(971\) 31.6062i 1.01429i 0.861860 + 0.507146i \(0.169300\pi\)
−0.861860 + 0.507146i \(0.830700\pi\)
\(972\) 0 0
\(973\) 43.2260 + 43.2260i 1.38576 + 1.38576i
\(974\) 3.54940 0.113730
\(975\) 0 0
\(976\) 6.76562 0.216562
\(977\) 7.48118 + 7.48118i 0.239344 + 0.239344i 0.816578 0.577234i \(-0.195868\pi\)
−0.577234 + 0.816578i \(0.695868\pi\)
\(978\) 0 0
\(979\) 11.2696i 0.360179i
\(980\) −17.4015 17.4015i −0.555869 0.555869i
\(981\) 0 0
\(982\) 22.3621 + 22.3621i 0.713604 + 0.713604i
\(983\) 3.23414 3.23414i 0.103153 0.103153i −0.653647 0.756800i \(-0.726762\pi\)
0.756800 + 0.653647i \(0.226762\pi\)
\(984\) 0 0
\(985\) 24.0291i 0.765632i
\(986\) 12.3966 12.3966i 0.394788 0.394788i
\(987\) 0 0
\(988\) 3.87227 + 8.39764i 0.123193 + 0.267164i
\(989\) 28.4127i 0.903472i
\(990\) 0 0
\(991\) −43.3659 −1.37756 −0.688782 0.724968i \(-0.741854\pi\)
−0.688782 + 0.724968i \(0.741854\pi\)
\(992\) 2.62669 0.0833976
\(993\) 0 0
\(994\) 26.0377 26.0377i 0.825866 0.825866i
\(995\) 63.8298 63.8298i 2.02354 2.02354i
\(996\) 0 0
\(997\) 29.4750 0.933482 0.466741 0.884394i \(-0.345428\pi\)
0.466741 + 0.884394i \(0.345428\pi\)
\(998\) −32.7113 −1.03546
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 702.2.j.b.161.6 24
3.2 odd 2 inner 702.2.j.b.161.7 yes 24
13.8 odd 4 inner 702.2.j.b.593.7 yes 24
39.8 even 4 inner 702.2.j.b.593.6 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
702.2.j.b.161.6 24 1.1 even 1 trivial
702.2.j.b.161.7 yes 24 3.2 odd 2 inner
702.2.j.b.593.6 yes 24 39.8 even 4 inner
702.2.j.b.593.7 yes 24 13.8 odd 4 inner