Properties

Label 702.2.j.b
Level $702$
Weight $2$
Character orbit 702.j
Analytic conductor $5.605$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [702,2,Mod(161,702)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(702, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("702.161");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 702 = 2 \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 702.j (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.60549822189\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 24 q - 24 q^{16} - 24 q^{19} + 24 q^{34} + 24 q^{37} + 24 q^{46} + 48 q^{70} - 24 q^{73} - 24 q^{76} - 24 q^{79} - 24 q^{91} + 72 q^{94} + 96 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
161.1 −0.707107 0.707107i 0 1.00000i −2.82990 2.82990i 0 −1.76787 1.76787i 0.707107 0.707107i 0 4.00208i
161.2 −0.707107 0.707107i 0 1.00000i −2.08925 2.08925i 0 −0.0160989 0.0160989i 0.707107 0.707107i 0 2.95464i
161.3 −0.707107 0.707107i 0 1.00000i −0.136488 0.136488i 0 3.40994 + 3.40994i 0.707107 0.707107i 0 0.193023i
161.4 −0.707107 0.707107i 0 1.00000i 0.730953 + 0.730953i 0 −2.49696 2.49696i 0.707107 0.707107i 0 1.03372i
161.5 −0.707107 0.707107i 0 1.00000i 1.23433 + 1.23433i 0 −1.64208 1.64208i 0.707107 0.707107i 0 1.74561i
161.6 −0.707107 0.707107i 0 1.00000i 3.09035 + 3.09035i 0 2.51306 + 2.51306i 0.707107 0.707107i 0 4.37041i
161.7 0.707107 + 0.707107i 0 1.00000i −3.09035 3.09035i 0 2.51306 + 2.51306i −0.707107 + 0.707107i 0 4.37041i
161.8 0.707107 + 0.707107i 0 1.00000i −1.23433 1.23433i 0 −1.64208 1.64208i −0.707107 + 0.707107i 0 1.74561i
161.9 0.707107 + 0.707107i 0 1.00000i −0.730953 0.730953i 0 −2.49696 2.49696i −0.707107 + 0.707107i 0 1.03372i
161.10 0.707107 + 0.707107i 0 1.00000i 0.136488 + 0.136488i 0 3.40994 + 3.40994i −0.707107 + 0.707107i 0 0.193023i
161.11 0.707107 + 0.707107i 0 1.00000i 2.08925 + 2.08925i 0 −0.0160989 0.0160989i −0.707107 + 0.707107i 0 2.95464i
161.12 0.707107 + 0.707107i 0 1.00000i 2.82990 + 2.82990i 0 −1.76787 1.76787i −0.707107 + 0.707107i 0 4.00208i
593.1 −0.707107 + 0.707107i 0 1.00000i −2.82990 + 2.82990i 0 −1.76787 + 1.76787i 0.707107 + 0.707107i 0 4.00208i
593.2 −0.707107 + 0.707107i 0 1.00000i −2.08925 + 2.08925i 0 −0.0160989 + 0.0160989i 0.707107 + 0.707107i 0 2.95464i
593.3 −0.707107 + 0.707107i 0 1.00000i −0.136488 + 0.136488i 0 3.40994 3.40994i 0.707107 + 0.707107i 0 0.193023i
593.4 −0.707107 + 0.707107i 0 1.00000i 0.730953 0.730953i 0 −2.49696 + 2.49696i 0.707107 + 0.707107i 0 1.03372i
593.5 −0.707107 + 0.707107i 0 1.00000i 1.23433 1.23433i 0 −1.64208 + 1.64208i 0.707107 + 0.707107i 0 1.74561i
593.6 −0.707107 + 0.707107i 0 1.00000i 3.09035 3.09035i 0 2.51306 2.51306i 0.707107 + 0.707107i 0 4.37041i
593.7 0.707107 0.707107i 0 1.00000i −3.09035 + 3.09035i 0 2.51306 2.51306i −0.707107 0.707107i 0 4.37041i
593.8 0.707107 0.707107i 0 1.00000i −1.23433 + 1.23433i 0 −1.64208 + 1.64208i −0.707107 0.707107i 0 1.74561i
See all 24 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 161.12
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
13.d odd 4 1 inner
39.f even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 702.2.j.b 24
3.b odd 2 1 inner 702.2.j.b 24
13.d odd 4 1 inner 702.2.j.b 24
39.f even 4 1 inner 702.2.j.b 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
702.2.j.b 24 1.a even 1 1 trivial
702.2.j.b 24 3.b odd 2 1 inner
702.2.j.b 24 13.d odd 4 1 inner
702.2.j.b 24 39.f even 4 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{24} + 708T_{5}^{20} + 148230T_{5}^{16} + 8609868T_{5}^{12} + 75878289T_{5}^{8} + 75728520T_{5}^{4} + 104976 \) acting on \(S_{2}^{\mathrm{new}}(702, [\chi])\). Copy content Toggle raw display