Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [702,2,Mod(161,702)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(702, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([2, 3]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("702.161");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 702 = 2 \cdot 3^{3} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 702.j (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.60549822189\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(12\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
161.1 | −0.707107 | − | 0.707107i | 0 | 1.00000i | −2.82990 | − | 2.82990i | 0 | −1.76787 | − | 1.76787i | 0.707107 | − | 0.707107i | 0 | 4.00208i | ||||||||||
161.2 | −0.707107 | − | 0.707107i | 0 | 1.00000i | −2.08925 | − | 2.08925i | 0 | −0.0160989 | − | 0.0160989i | 0.707107 | − | 0.707107i | 0 | 2.95464i | ||||||||||
161.3 | −0.707107 | − | 0.707107i | 0 | 1.00000i | −0.136488 | − | 0.136488i | 0 | 3.40994 | + | 3.40994i | 0.707107 | − | 0.707107i | 0 | 0.193023i | ||||||||||
161.4 | −0.707107 | − | 0.707107i | 0 | 1.00000i | 0.730953 | + | 0.730953i | 0 | −2.49696 | − | 2.49696i | 0.707107 | − | 0.707107i | 0 | − | 1.03372i | |||||||||
161.5 | −0.707107 | − | 0.707107i | 0 | 1.00000i | 1.23433 | + | 1.23433i | 0 | −1.64208 | − | 1.64208i | 0.707107 | − | 0.707107i | 0 | − | 1.74561i | |||||||||
161.6 | −0.707107 | − | 0.707107i | 0 | 1.00000i | 3.09035 | + | 3.09035i | 0 | 2.51306 | + | 2.51306i | 0.707107 | − | 0.707107i | 0 | − | 4.37041i | |||||||||
161.7 | 0.707107 | + | 0.707107i | 0 | 1.00000i | −3.09035 | − | 3.09035i | 0 | 2.51306 | + | 2.51306i | −0.707107 | + | 0.707107i | 0 | − | 4.37041i | |||||||||
161.8 | 0.707107 | + | 0.707107i | 0 | 1.00000i | −1.23433 | − | 1.23433i | 0 | −1.64208 | − | 1.64208i | −0.707107 | + | 0.707107i | 0 | − | 1.74561i | |||||||||
161.9 | 0.707107 | + | 0.707107i | 0 | 1.00000i | −0.730953 | − | 0.730953i | 0 | −2.49696 | − | 2.49696i | −0.707107 | + | 0.707107i | 0 | − | 1.03372i | |||||||||
161.10 | 0.707107 | + | 0.707107i | 0 | 1.00000i | 0.136488 | + | 0.136488i | 0 | 3.40994 | + | 3.40994i | −0.707107 | + | 0.707107i | 0 | 0.193023i | ||||||||||
161.11 | 0.707107 | + | 0.707107i | 0 | 1.00000i | 2.08925 | + | 2.08925i | 0 | −0.0160989 | − | 0.0160989i | −0.707107 | + | 0.707107i | 0 | 2.95464i | ||||||||||
161.12 | 0.707107 | + | 0.707107i | 0 | 1.00000i | 2.82990 | + | 2.82990i | 0 | −1.76787 | − | 1.76787i | −0.707107 | + | 0.707107i | 0 | 4.00208i | ||||||||||
593.1 | −0.707107 | + | 0.707107i | 0 | − | 1.00000i | −2.82990 | + | 2.82990i | 0 | −1.76787 | + | 1.76787i | 0.707107 | + | 0.707107i | 0 | − | 4.00208i | ||||||||
593.2 | −0.707107 | + | 0.707107i | 0 | − | 1.00000i | −2.08925 | + | 2.08925i | 0 | −0.0160989 | + | 0.0160989i | 0.707107 | + | 0.707107i | 0 | − | 2.95464i | ||||||||
593.3 | −0.707107 | + | 0.707107i | 0 | − | 1.00000i | −0.136488 | + | 0.136488i | 0 | 3.40994 | − | 3.40994i | 0.707107 | + | 0.707107i | 0 | − | 0.193023i | ||||||||
593.4 | −0.707107 | + | 0.707107i | 0 | − | 1.00000i | 0.730953 | − | 0.730953i | 0 | −2.49696 | + | 2.49696i | 0.707107 | + | 0.707107i | 0 | 1.03372i | |||||||||
593.5 | −0.707107 | + | 0.707107i | 0 | − | 1.00000i | 1.23433 | − | 1.23433i | 0 | −1.64208 | + | 1.64208i | 0.707107 | + | 0.707107i | 0 | 1.74561i | |||||||||
593.6 | −0.707107 | + | 0.707107i | 0 | − | 1.00000i | 3.09035 | − | 3.09035i | 0 | 2.51306 | − | 2.51306i | 0.707107 | + | 0.707107i | 0 | 4.37041i | |||||||||
593.7 | 0.707107 | − | 0.707107i | 0 | − | 1.00000i | −3.09035 | + | 3.09035i | 0 | 2.51306 | − | 2.51306i | −0.707107 | − | 0.707107i | 0 | 4.37041i | |||||||||
593.8 | 0.707107 | − | 0.707107i | 0 | − | 1.00000i | −1.23433 | + | 1.23433i | 0 | −1.64208 | + | 1.64208i | −0.707107 | − | 0.707107i | 0 | 1.74561i | |||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
13.d | odd | 4 | 1 | inner |
39.f | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 702.2.j.b | ✓ | 24 |
3.b | odd | 2 | 1 | inner | 702.2.j.b | ✓ | 24 |
13.d | odd | 4 | 1 | inner | 702.2.j.b | ✓ | 24 |
39.f | even | 4 | 1 | inner | 702.2.j.b | ✓ | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
702.2.j.b | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
702.2.j.b | ✓ | 24 | 3.b | odd | 2 | 1 | inner |
702.2.j.b | ✓ | 24 | 13.d | odd | 4 | 1 | inner |
702.2.j.b | ✓ | 24 | 39.f | even | 4 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{24} + 708T_{5}^{20} + 148230T_{5}^{16} + 8609868T_{5}^{12} + 75878289T_{5}^{8} + 75728520T_{5}^{4} + 104976 \) acting on \(S_{2}^{\mathrm{new}}(702, [\chi])\).