L(s) = 1 | + (−0.707 + 0.707i)2-s − 1.00i·4-s + (0.730 − 0.730i)5-s + (−2.49 + 2.49i)7-s + (0.707 + 0.707i)8-s + 1.03i·10-s + (1.95 + 1.95i)11-s + (−3.21 + 1.63i)13-s − 3.53i·14-s − 1.00·16-s + 5.44·17-s + (−5.99 − 5.99i)19-s + (−0.730 − 0.730i)20-s − 2.76·22-s − 5.11·23-s + ⋯ |
L(s) = 1 | + (−0.499 + 0.499i)2-s − 0.500i·4-s + (0.326 − 0.326i)5-s + (−0.943 + 0.943i)7-s + (0.250 + 0.250i)8-s + 0.326i·10-s + (0.589 + 0.589i)11-s + (−0.891 + 0.452i)13-s − 0.943i·14-s − 0.250·16-s + 1.31·17-s + (−1.37 − 1.37i)19-s + (−0.163 − 0.163i)20-s − 0.589·22-s − 1.06·23-s + ⋯ |
Λ(s)=(=(702s/2ΓC(s)L(s)(−0.819−0.572i)Λ(2−s)
Λ(s)=(=(702s/2ΓC(s+1/2)L(s)(−0.819−0.572i)Λ(1−s)
Degree: |
2 |
Conductor: |
702
= 2⋅33⋅13
|
Sign: |
−0.819−0.572i
|
Analytic conductor: |
5.60549 |
Root analytic conductor: |
2.36759 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ702(593,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 702, ( :1/2), −0.819−0.572i)
|
Particular Values
L(1) |
≈ |
0.201530+0.640605i |
L(21) |
≈ |
0.201530+0.640605i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.707−0.707i)T |
| 3 | 1 |
| 13 | 1+(3.21−1.63i)T |
good | 5 | 1+(−0.730+0.730i)T−5iT2 |
| 7 | 1+(2.49−2.49i)T−7iT2 |
| 11 | 1+(−1.95−1.95i)T+11iT2 |
| 17 | 1−5.44T+17T2 |
| 19 | 1+(5.99+5.99i)T+19iT2 |
| 23 | 1+5.11T+23T2 |
| 29 | 1−8.51iT−29T2 |
| 31 | 1+(−3.53−3.53i)T+31iT2 |
| 37 | 1+(7.78−7.78i)T−37iT2 |
| 41 | 1+(−1.06+1.06i)T−41iT2 |
| 43 | 1−3.79iT−43T2 |
| 47 | 1+(7.80+7.80i)T+47iT2 |
| 53 | 1−11.7iT−53T2 |
| 59 | 1+(1.86+1.86i)T+59iT2 |
| 61 | 1−6.42T+61T2 |
| 67 | 1+(−0.887−0.887i)T+67iT2 |
| 71 | 1+(3.17−3.17i)T−71iT2 |
| 73 | 1+(2.31−2.31i)T−73iT2 |
| 79 | 1+5.29T+79T2 |
| 83 | 1+(−4.77+4.77i)T−83iT2 |
| 89 | 1+(−0.144−0.144i)T+89iT2 |
| 97 | 1+(4.66+4.66i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.41567300298297046939205318506, −9.722286699747034430433611657456, −9.099183224406339934862309538993, −8.427440127121715629825102643984, −7.09753538487408095097912358144, −6.55806460208659242353415488798, −5.52483657531177137560321471219, −4.65697170805242917012034971939, −3.05929711693807899491072444414, −1.74328055215103137468226215348,
0.39940818260940694118374727059, 2.12750052903670536579336871964, 3.43130773221357005137772229426, 4.13637090068740132769861066329, 5.87247869420813903894750911229, 6.53825639819973943256680686388, 7.68394003319765276328635622690, 8.301645827922021875983412019173, 9.691713911421878759454607216076, 10.05439110920678122207159774985