Properties

Label 702.2.j.b.593.4
Level $702$
Weight $2$
Character 702.593
Analytic conductor $5.605$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [702,2,Mod(161,702)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(702, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("702.161");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 702 = 2 \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 702.j (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.60549822189\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 593.4
Character \(\chi\) \(=\) 702.593
Dual form 702.2.j.b.161.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{2} -1.00000i q^{4} +(0.730953 - 0.730953i) q^{5} +(-2.49696 + 2.49696i) q^{7} +(0.707107 + 0.707107i) q^{8} +1.03372i q^{10} +(1.95374 + 1.95374i) q^{11} +(-3.21489 + 1.63232i) q^{13} -3.53123i q^{14} -1.00000 q^{16} +5.44078 q^{17} +(-5.99076 - 5.99076i) q^{19} +(-0.730953 - 0.730953i) q^{20} -2.76300 q^{22} -5.11422 q^{23} +3.93142i q^{25} +(1.11905 - 3.42750i) q^{26} +(2.49696 + 2.49696i) q^{28} +8.51991i q^{29} +(3.53068 + 3.53068i) q^{31} +(0.707107 - 0.707107i) q^{32} +(-3.84721 + 3.84721i) q^{34} +3.65032i q^{35} +(-7.78749 + 7.78749i) q^{37} +8.47222 q^{38} +1.03372 q^{40} +(1.06181 - 1.06181i) q^{41} +3.79673i q^{43} +(1.95374 - 1.95374i) q^{44} +(3.61630 - 3.61630i) q^{46} +(-7.80931 - 7.80931i) q^{47} -5.46960i q^{49} +(-2.77993 - 2.77993i) q^{50} +(1.63232 + 3.21489i) q^{52} +11.7290i q^{53} +2.85618 q^{55} -3.53123 q^{56} +(-6.02449 - 6.02449i) q^{58} +(-1.86185 - 1.86185i) q^{59} +6.42979 q^{61} -4.99314 q^{62} +1.00000i q^{64} +(-1.15679 + 3.54308i) q^{65} +(0.887018 + 0.887018i) q^{67} -5.44078i q^{68} +(-2.58116 - 2.58116i) q^{70} +(-3.17883 + 3.17883i) q^{71} +(-2.31653 + 2.31653i) q^{73} -11.0132i q^{74} +(-5.99076 + 5.99076i) q^{76} -9.75681 q^{77} -5.29836 q^{79} +(-0.730953 + 0.730953i) q^{80} +1.50163i q^{82} +(4.77771 - 4.77771i) q^{83} +(3.97695 - 3.97695i) q^{85} +(-2.68469 - 2.68469i) q^{86} +2.76300i q^{88} +(0.144930 + 0.144930i) q^{89} +(3.95163 - 12.1033i) q^{91} +5.11422i q^{92} +11.0440 q^{94} -8.75793 q^{95} +(-4.66500 - 4.66500i) q^{97} +(3.86759 + 3.86759i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 24 q^{16} - 24 q^{19} + 24 q^{34} + 24 q^{37} + 24 q^{46} + 48 q^{70} - 24 q^{73} - 24 q^{76} - 24 q^{79} - 24 q^{91} + 72 q^{94} + 96 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/702\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(677\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 0.707107i −0.500000 + 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) 0.730953 0.730953i 0.326892 0.326892i −0.524511 0.851403i \(-0.675752\pi\)
0.851403 + 0.524511i \(0.175752\pi\)
\(6\) 0 0
\(7\) −2.49696 + 2.49696i −0.943761 + 0.943761i −0.998501 0.0547394i \(-0.982567\pi\)
0.0547394 + 0.998501i \(0.482567\pi\)
\(8\) 0.707107 + 0.707107i 0.250000 + 0.250000i
\(9\) 0 0
\(10\) 1.03372i 0.326892i
\(11\) 1.95374 + 1.95374i 0.589075 + 0.589075i 0.937381 0.348306i \(-0.113243\pi\)
−0.348306 + 0.937381i \(0.613243\pi\)
\(12\) 0 0
\(13\) −3.21489 + 1.63232i −0.891651 + 0.452723i
\(14\) 3.53123i 0.943761i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 5.44078 1.31958 0.659791 0.751449i \(-0.270645\pi\)
0.659791 + 0.751449i \(0.270645\pi\)
\(18\) 0 0
\(19\) −5.99076 5.99076i −1.37438 1.37438i −0.853840 0.520536i \(-0.825732\pi\)
−0.520536 0.853840i \(-0.674268\pi\)
\(20\) −0.730953 0.730953i −0.163446 0.163446i
\(21\) 0 0
\(22\) −2.76300 −0.589075
\(23\) −5.11422 −1.06639 −0.533194 0.845993i \(-0.679009\pi\)
−0.533194 + 0.845993i \(0.679009\pi\)
\(24\) 0 0
\(25\) 3.93142i 0.786283i
\(26\) 1.11905 3.42750i 0.219464 0.672187i
\(27\) 0 0
\(28\) 2.49696 + 2.49696i 0.471881 + 0.471881i
\(29\) 8.51991i 1.58211i 0.611746 + 0.791054i \(0.290467\pi\)
−0.611746 + 0.791054i \(0.709533\pi\)
\(30\) 0 0
\(31\) 3.53068 + 3.53068i 0.634129 + 0.634129i 0.949101 0.314972i \(-0.101995\pi\)
−0.314972 + 0.949101i \(0.601995\pi\)
\(32\) 0.707107 0.707107i 0.125000 0.125000i
\(33\) 0 0
\(34\) −3.84721 + 3.84721i −0.659791 + 0.659791i
\(35\) 3.65032i 0.617016i
\(36\) 0 0
\(37\) −7.78749 + 7.78749i −1.28026 + 1.28026i −0.339734 + 0.940521i \(0.610337\pi\)
−0.940521 + 0.339734i \(0.889663\pi\)
\(38\) 8.47222 1.37438
\(39\) 0 0
\(40\) 1.03372 0.163446
\(41\) 1.06181 1.06181i 0.165827 0.165827i −0.619315 0.785142i \(-0.712590\pi\)
0.785142 + 0.619315i \(0.212590\pi\)
\(42\) 0 0
\(43\) 3.79673i 0.578996i 0.957179 + 0.289498i \(0.0934883\pi\)
−0.957179 + 0.289498i \(0.906512\pi\)
\(44\) 1.95374 1.95374i 0.294537 0.294537i
\(45\) 0 0
\(46\) 3.61630 3.61630i 0.533194 0.533194i
\(47\) −7.80931 7.80931i −1.13910 1.13910i −0.988611 0.150493i \(-0.951914\pi\)
−0.150493 0.988611i \(-0.548086\pi\)
\(48\) 0 0
\(49\) 5.46960i 0.781371i
\(50\) −2.77993 2.77993i −0.393142 0.393142i
\(51\) 0 0
\(52\) 1.63232 + 3.21489i 0.226362 + 0.445826i
\(53\) 11.7290i 1.61111i 0.592522 + 0.805554i \(0.298132\pi\)
−0.592522 + 0.805554i \(0.701868\pi\)
\(54\) 0 0
\(55\) 2.85618 0.385128
\(56\) −3.53123 −0.471881
\(57\) 0 0
\(58\) −6.02449 6.02449i −0.791054 0.791054i
\(59\) −1.86185 1.86185i −0.242393 0.242393i 0.575447 0.817839i \(-0.304828\pi\)
−0.817839 + 0.575447i \(0.804828\pi\)
\(60\) 0 0
\(61\) 6.42979 0.823250 0.411625 0.911353i \(-0.364961\pi\)
0.411625 + 0.911353i \(0.364961\pi\)
\(62\) −4.99314 −0.634129
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) −1.15679 + 3.54308i −0.143482 + 0.439465i
\(66\) 0 0
\(67\) 0.887018 + 0.887018i 0.108367 + 0.108367i 0.759211 0.650845i \(-0.225585\pi\)
−0.650845 + 0.759211i \(0.725585\pi\)
\(68\) 5.44078i 0.659791i
\(69\) 0 0
\(70\) −2.58116 2.58116i −0.308508 0.308508i
\(71\) −3.17883 + 3.17883i −0.377258 + 0.377258i −0.870112 0.492854i \(-0.835954\pi\)
0.492854 + 0.870112i \(0.335954\pi\)
\(72\) 0 0
\(73\) −2.31653 + 2.31653i −0.271129 + 0.271129i −0.829555 0.558425i \(-0.811406\pi\)
0.558425 + 0.829555i \(0.311406\pi\)
\(74\) 11.0132i 1.28026i
\(75\) 0 0
\(76\) −5.99076 + 5.99076i −0.687188 + 0.687188i
\(77\) −9.75681 −1.11189
\(78\) 0 0
\(79\) −5.29836 −0.596112 −0.298056 0.954548i \(-0.596338\pi\)
−0.298056 + 0.954548i \(0.596338\pi\)
\(80\) −0.730953 + 0.730953i −0.0817230 + 0.0817230i
\(81\) 0 0
\(82\) 1.50163i 0.165827i
\(83\) 4.77771 4.77771i 0.524422 0.524422i −0.394482 0.918904i \(-0.629076\pi\)
0.918904 + 0.394482i \(0.129076\pi\)
\(84\) 0 0
\(85\) 3.97695 3.97695i 0.431361 0.431361i
\(86\) −2.68469 2.68469i −0.289498 0.289498i
\(87\) 0 0
\(88\) 2.76300i 0.294537i
\(89\) 0.144930 + 0.144930i 0.0153625 + 0.0153625i 0.714746 0.699384i \(-0.246542\pi\)
−0.699384 + 0.714746i \(0.746542\pi\)
\(90\) 0 0
\(91\) 3.95163 12.1033i 0.414243 1.26877i
\(92\) 5.11422i 0.533194i
\(93\) 0 0
\(94\) 11.0440 1.13910
\(95\) −8.75793 −0.898545
\(96\) 0 0
\(97\) −4.66500 4.66500i −0.473659 0.473659i 0.429438 0.903097i \(-0.358712\pi\)
−0.903097 + 0.429438i \(0.858712\pi\)
\(98\) 3.86759 + 3.86759i 0.390685 + 0.390685i
\(99\) 0 0
\(100\) 3.93142 0.393142
\(101\) 16.6680 1.65853 0.829266 0.558855i \(-0.188759\pi\)
0.829266 + 0.558855i \(0.188759\pi\)
\(102\) 0 0
\(103\) 1.83045i 0.180360i −0.995925 0.0901799i \(-0.971256\pi\)
0.995925 0.0901799i \(-0.0287442\pi\)
\(104\) −3.42750 1.11905i −0.336094 0.109732i
\(105\) 0 0
\(106\) −8.29369 8.29369i −0.805554 0.805554i
\(107\) 9.43019i 0.911651i 0.890069 + 0.455825i \(0.150656\pi\)
−0.890069 + 0.455825i \(0.849344\pi\)
\(108\) 0 0
\(109\) −6.65317 6.65317i −0.637259 0.637259i 0.312620 0.949878i \(-0.398793\pi\)
−0.949878 + 0.312620i \(0.898793\pi\)
\(110\) −2.01963 + 2.01963i −0.192564 + 0.192564i
\(111\) 0 0
\(112\) 2.49696 2.49696i 0.235940 0.235940i
\(113\) 13.5909i 1.27852i −0.768989 0.639262i \(-0.779240\pi\)
0.768989 0.639262i \(-0.220760\pi\)
\(114\) 0 0
\(115\) −3.73825 + 3.73825i −0.348594 + 0.348594i
\(116\) 8.51991 0.791054
\(117\) 0 0
\(118\) 2.63306 0.242393
\(119\) −13.5854 + 13.5854i −1.24537 + 1.24537i
\(120\) 0 0
\(121\) 3.36580i 0.305982i
\(122\) −4.54655 + 4.54655i −0.411625 + 0.411625i
\(123\) 0 0
\(124\) 3.53068 3.53068i 0.317065 0.317065i
\(125\) 6.52844 + 6.52844i 0.583922 + 0.583922i
\(126\) 0 0
\(127\) 11.0838i 0.983531i 0.870728 + 0.491766i \(0.163648\pi\)
−0.870728 + 0.491766i \(0.836352\pi\)
\(128\) −0.707107 0.707107i −0.0625000 0.0625000i
\(129\) 0 0
\(130\) −1.68736 3.32331i −0.147992 0.291474i
\(131\) 12.1356i 1.06029i −0.847906 0.530146i \(-0.822137\pi\)
0.847906 0.530146i \(-0.177863\pi\)
\(132\) 0 0
\(133\) 29.9174 2.59416
\(134\) −1.25443 −0.108367
\(135\) 0 0
\(136\) 3.84721 + 3.84721i 0.329896 + 0.329896i
\(137\) 9.00744 + 9.00744i 0.769558 + 0.769558i 0.978029 0.208471i \(-0.0668486\pi\)
−0.208471 + 0.978029i \(0.566849\pi\)
\(138\) 0 0
\(139\) 3.26746 0.277142 0.138571 0.990352i \(-0.455749\pi\)
0.138571 + 0.990352i \(0.455749\pi\)
\(140\) 3.65032 0.308508
\(141\) 0 0
\(142\) 4.49554i 0.377258i
\(143\) −9.47019 3.09194i −0.791937 0.258561i
\(144\) 0 0
\(145\) 6.22765 + 6.22765i 0.517178 + 0.517178i
\(146\) 3.27607i 0.271129i
\(147\) 0 0
\(148\) 7.78749 + 7.78749i 0.640128 + 0.640128i
\(149\) 10.6695 10.6695i 0.874082 0.874082i −0.118832 0.992914i \(-0.537915\pi\)
0.992914 + 0.118832i \(0.0379150\pi\)
\(150\) 0 0
\(151\) 10.4284 10.4284i 0.848649 0.848649i −0.141316 0.989965i \(-0.545133\pi\)
0.989965 + 0.141316i \(0.0451332\pi\)
\(152\) 8.47222i 0.687188i
\(153\) 0 0
\(154\) 6.89911 6.89911i 0.555946 0.555946i
\(155\) 5.16152 0.414583
\(156\) 0 0
\(157\) 9.82931 0.784465 0.392232 0.919866i \(-0.371703\pi\)
0.392232 + 0.919866i \(0.371703\pi\)
\(158\) 3.74650 3.74650i 0.298056 0.298056i
\(159\) 0 0
\(160\) 1.03372i 0.0817230i
\(161\) 12.7700 12.7700i 1.00642 1.00642i
\(162\) 0 0
\(163\) −0.658684 + 0.658684i −0.0515921 + 0.0515921i −0.732432 0.680840i \(-0.761615\pi\)
0.680840 + 0.732432i \(0.261615\pi\)
\(164\) −1.06181 1.06181i −0.0829136 0.0829136i
\(165\) 0 0
\(166\) 6.75670i 0.524422i
\(167\) 12.5357 + 12.5357i 0.970041 + 0.970041i 0.999564 0.0295232i \(-0.00939889\pi\)
−0.0295232 + 0.999564i \(0.509399\pi\)
\(168\) 0 0
\(169\) 7.67108 10.4955i 0.590083 0.807342i
\(170\) 5.62426i 0.431361i
\(171\) 0 0
\(172\) 3.79673 0.289498
\(173\) −3.87945 −0.294949 −0.147475 0.989066i \(-0.547115\pi\)
−0.147475 + 0.989066i \(0.547115\pi\)
\(174\) 0 0
\(175\) −9.81658 9.81658i −0.742064 0.742064i
\(176\) −1.95374 1.95374i −0.147269 0.147269i
\(177\) 0 0
\(178\) −0.204962 −0.0153625
\(179\) −5.10968 −0.381916 −0.190958 0.981598i \(-0.561159\pi\)
−0.190958 + 0.981598i \(0.561159\pi\)
\(180\) 0 0
\(181\) 4.01356i 0.298326i −0.988813 0.149163i \(-0.952342\pi\)
0.988813 0.149163i \(-0.0476579\pi\)
\(182\) 5.76409 + 11.3525i 0.427263 + 0.841506i
\(183\) 0 0
\(184\) −3.61630 3.61630i −0.266597 0.266597i
\(185\) 11.3846i 0.837011i
\(186\) 0 0
\(187\) 10.6299 + 10.6299i 0.777332 + 0.777332i
\(188\) −7.80931 + 7.80931i −0.569552 + 0.569552i
\(189\) 0 0
\(190\) 6.19279 6.19279i 0.449272 0.449272i
\(191\) 22.1476i 1.60254i 0.598302 + 0.801271i \(0.295842\pi\)
−0.598302 + 0.801271i \(0.704158\pi\)
\(192\) 0 0
\(193\) −2.20149 + 2.20149i −0.158467 + 0.158467i −0.781887 0.623420i \(-0.785743\pi\)
0.623420 + 0.781887i \(0.285743\pi\)
\(194\) 6.59730 0.473659
\(195\) 0 0
\(196\) −5.46960 −0.390685
\(197\) 2.43748 2.43748i 0.173663 0.173663i −0.614923 0.788587i \(-0.710813\pi\)
0.788587 + 0.614923i \(0.210813\pi\)
\(198\) 0 0
\(199\) 8.47213i 0.600573i −0.953849 0.300287i \(-0.902918\pi\)
0.953849 0.300287i \(-0.0970823\pi\)
\(200\) −2.77993 + 2.77993i −0.196571 + 0.196571i
\(201\) 0 0
\(202\) −11.7861 + 11.7861i −0.829266 + 0.829266i
\(203\) −21.2739 21.2739i −1.49313 1.49313i
\(204\) 0 0
\(205\) 1.55227i 0.108415i
\(206\) 1.29432 + 1.29432i 0.0901799 + 0.0901799i
\(207\) 0 0
\(208\) 3.21489 1.63232i 0.222913 0.113181i
\(209\) 23.4088i 1.61922i
\(210\) 0 0
\(211\) 4.56205 0.314064 0.157032 0.987594i \(-0.449807\pi\)
0.157032 + 0.987594i \(0.449807\pi\)
\(212\) 11.7290 0.805554
\(213\) 0 0
\(214\) −6.66815 6.66815i −0.455825 0.455825i
\(215\) 2.77523 + 2.77523i 0.189269 + 0.189269i
\(216\) 0 0
\(217\) −17.6319 −1.19693
\(218\) 9.40901 0.637259
\(219\) 0 0
\(220\) 2.85618i 0.192564i
\(221\) −17.4915 + 8.88107i −1.17661 + 0.597406i
\(222\) 0 0
\(223\) 2.22483 + 2.22483i 0.148985 + 0.148985i 0.777665 0.628679i \(-0.216404\pi\)
−0.628679 + 0.777665i \(0.716404\pi\)
\(224\) 3.53123i 0.235940i
\(225\) 0 0
\(226\) 9.61022 + 9.61022i 0.639262 + 0.639262i
\(227\) 1.28867 1.28867i 0.0855323 0.0855323i −0.663046 0.748578i \(-0.730737\pi\)
0.748578 + 0.663046i \(0.230737\pi\)
\(228\) 0 0
\(229\) −9.06136 + 9.06136i −0.598792 + 0.598792i −0.939991 0.341199i \(-0.889167\pi\)
0.341199 + 0.939991i \(0.389167\pi\)
\(230\) 5.28669i 0.348594i
\(231\) 0 0
\(232\) −6.02449 + 6.02449i −0.395527 + 0.395527i
\(233\) 5.22631 0.342387 0.171193 0.985237i \(-0.445238\pi\)
0.171193 + 0.985237i \(0.445238\pi\)
\(234\) 0 0
\(235\) −11.4165 −0.744728
\(236\) −1.86185 + 1.86185i −0.121196 + 0.121196i
\(237\) 0 0
\(238\) 19.2126i 1.24537i
\(239\) 7.28487 7.28487i 0.471219 0.471219i −0.431090 0.902309i \(-0.641871\pi\)
0.902309 + 0.431090i \(0.141871\pi\)
\(240\) 0 0
\(241\) −18.8070 + 18.8070i −1.21147 + 1.21147i −0.240923 + 0.970544i \(0.577450\pi\)
−0.970544 + 0.240923i \(0.922550\pi\)
\(242\) 2.37998 + 2.37998i 0.152991 + 0.152991i
\(243\) 0 0
\(244\) 6.42979i 0.411625i
\(245\) −3.99802 3.99802i −0.255424 0.255424i
\(246\) 0 0
\(247\) 29.0385 + 9.48085i 1.84768 + 0.603252i
\(248\) 4.99314i 0.317065i
\(249\) 0 0
\(250\) −9.23261 −0.583922
\(251\) 14.2652 0.900408 0.450204 0.892926i \(-0.351351\pi\)
0.450204 + 0.892926i \(0.351351\pi\)
\(252\) 0 0
\(253\) −9.99186 9.99186i −0.628183 0.628183i
\(254\) −7.83746 7.83746i −0.491766 0.491766i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 7.06194 0.440512 0.220256 0.975442i \(-0.429311\pi\)
0.220256 + 0.975442i \(0.429311\pi\)
\(258\) 0 0
\(259\) 38.8901i 2.41651i
\(260\) 3.54308 + 1.15679i 0.219733 + 0.0717410i
\(261\) 0 0
\(262\) 8.58116 + 8.58116i 0.530146 + 0.530146i
\(263\) 24.5931i 1.51648i −0.651977 0.758239i \(-0.726060\pi\)
0.651977 0.758239i \(-0.273940\pi\)
\(264\) 0 0
\(265\) 8.57338 + 8.57338i 0.526658 + 0.526658i
\(266\) −21.1548 + 21.1548i −1.29708 + 1.29708i
\(267\) 0 0
\(268\) 0.887018 0.887018i 0.0541833 0.0541833i
\(269\) 13.0138i 0.793464i −0.917934 0.396732i \(-0.870144\pi\)
0.917934 0.396732i \(-0.129856\pi\)
\(270\) 0 0
\(271\) 2.41921 2.41921i 0.146956 0.146956i −0.629801 0.776757i \(-0.716863\pi\)
0.776757 + 0.629801i \(0.216863\pi\)
\(272\) −5.44078 −0.329896
\(273\) 0 0
\(274\) −12.7384 −0.769558
\(275\) −7.68096 + 7.68096i −0.463180 + 0.463180i
\(276\) 0 0
\(277\) 25.0593i 1.50567i −0.658211 0.752833i \(-0.728687\pi\)
0.658211 0.752833i \(-0.271313\pi\)
\(278\) −2.31044 + 2.31044i −0.138571 + 0.138571i
\(279\) 0 0
\(280\) −2.58116 + 2.58116i −0.154254 + 0.154254i
\(281\) −9.20333 9.20333i −0.549024 0.549024i 0.377134 0.926159i \(-0.376910\pi\)
−0.926159 + 0.377134i \(0.876910\pi\)
\(282\) 0 0
\(283\) 31.0477i 1.84559i 0.385289 + 0.922796i \(0.374102\pi\)
−0.385289 + 0.922796i \(0.625898\pi\)
\(284\) 3.17883 + 3.17883i 0.188629 + 0.188629i
\(285\) 0 0
\(286\) 8.88277 4.51010i 0.525249 0.266688i
\(287\) 5.30260i 0.313002i
\(288\) 0 0
\(289\) 12.6021 0.741298
\(290\) −8.80723 −0.517178
\(291\) 0 0
\(292\) 2.31653 + 2.31653i 0.135565 + 0.135565i
\(293\) 19.8206 + 19.8206i 1.15793 + 1.15793i 0.984920 + 0.173009i \(0.0553490\pi\)
0.173009 + 0.984920i \(0.444651\pi\)
\(294\) 0 0
\(295\) −2.72185 −0.158473
\(296\) −11.0132 −0.640128
\(297\) 0 0
\(298\) 15.0890i 0.874082i
\(299\) 16.4417 8.34803i 0.950847 0.482779i
\(300\) 0 0
\(301\) −9.48027 9.48027i −0.546434 0.546434i
\(302\) 14.7479i 0.848649i
\(303\) 0 0
\(304\) 5.99076 + 5.99076i 0.343594 + 0.343594i
\(305\) 4.69987 4.69987i 0.269114 0.269114i
\(306\) 0 0
\(307\) −12.6972 + 12.6972i −0.724668 + 0.724668i −0.969552 0.244885i \(-0.921250\pi\)
0.244885 + 0.969552i \(0.421250\pi\)
\(308\) 9.75681i 0.555946i
\(309\) 0 0
\(310\) −3.64975 + 3.64975i −0.207292 + 0.207292i
\(311\) −12.3667 −0.701250 −0.350625 0.936516i \(-0.614031\pi\)
−0.350625 + 0.936516i \(0.614031\pi\)
\(312\) 0 0
\(313\) −10.4672 −0.591639 −0.295820 0.955244i \(-0.595593\pi\)
−0.295820 + 0.955244i \(0.595593\pi\)
\(314\) −6.95037 + 6.95037i −0.392232 + 0.392232i
\(315\) 0 0
\(316\) 5.29836i 0.298056i
\(317\) −10.8423 + 10.8423i −0.608967 + 0.608967i −0.942676 0.333709i \(-0.891700\pi\)
0.333709 + 0.942676i \(0.391700\pi\)
\(318\) 0 0
\(319\) −16.6457 + 16.6457i −0.931980 + 0.931980i
\(320\) 0.730953 + 0.730953i 0.0408615 + 0.0408615i
\(321\) 0 0
\(322\) 18.0595i 1.00642i
\(323\) −32.5944 32.5944i −1.81360 1.81360i
\(324\) 0 0
\(325\) −6.41732 12.6391i −0.355969 0.701090i
\(326\) 0.931520i 0.0515921i
\(327\) 0 0
\(328\) 1.50163 0.0829136
\(329\) 38.9990 2.15009
\(330\) 0 0
\(331\) 19.4823 + 19.4823i 1.07084 + 1.07084i 0.997291 + 0.0735518i \(0.0234334\pi\)
0.0735518 + 0.997291i \(0.476567\pi\)
\(332\) −4.77771 4.77771i −0.262211 0.262211i
\(333\) 0 0
\(334\) −17.7281 −0.970041
\(335\) 1.29674 0.0708483
\(336\) 0 0
\(337\) 22.0991i 1.20381i −0.798566 0.601907i \(-0.794408\pi\)
0.798566 0.601907i \(-0.205592\pi\)
\(338\) 1.99713 + 12.8457i 0.108629 + 0.698713i
\(339\) 0 0
\(340\) −3.97695 3.97695i −0.215680 0.215680i
\(341\) 13.7961i 0.747099i
\(342\) 0 0
\(343\) −3.82136 3.82136i −0.206334 0.206334i
\(344\) −2.68469 + 2.68469i −0.144749 + 0.144749i
\(345\) 0 0
\(346\) 2.74319 2.74319i 0.147475 0.147475i
\(347\) 2.56427i 0.137657i −0.997629 0.0688285i \(-0.978074\pi\)
0.997629 0.0688285i \(-0.0219261\pi\)
\(348\) 0 0
\(349\) −25.9102 + 25.9102i −1.38694 + 1.38694i −0.555276 + 0.831666i \(0.687387\pi\)
−0.831666 + 0.555276i \(0.812613\pi\)
\(350\) 13.8827 0.742064
\(351\) 0 0
\(352\) 2.76300 0.147269
\(353\) 4.90973 4.90973i 0.261319 0.261319i −0.564271 0.825590i \(-0.690843\pi\)
0.825590 + 0.564271i \(0.190843\pi\)
\(354\) 0 0
\(355\) 4.64715i 0.246645i
\(356\) 0.144930 0.144930i 0.00768126 0.00768126i
\(357\) 0 0
\(358\) 3.61309 3.61309i 0.190958 0.190958i
\(359\) −17.3664 17.3664i −0.916563 0.916563i 0.0802151 0.996778i \(-0.474439\pi\)
−0.996778 + 0.0802151i \(0.974439\pi\)
\(360\) 0 0
\(361\) 52.7785i 2.77782i
\(362\) 2.83802 + 2.83802i 0.149163 + 0.149163i
\(363\) 0 0
\(364\) −12.1033 3.95163i −0.634384 0.207122i
\(365\) 3.38655i 0.177260i
\(366\) 0 0
\(367\) 3.21535 0.167840 0.0839199 0.996473i \(-0.473256\pi\)
0.0839199 + 0.996473i \(0.473256\pi\)
\(368\) 5.11422 0.266597
\(369\) 0 0
\(370\) −8.05011 8.05011i −0.418505 0.418505i
\(371\) −29.2869 29.2869i −1.52050 1.52050i
\(372\) 0 0
\(373\) 23.0464 1.19330 0.596648 0.802503i \(-0.296499\pi\)
0.596648 + 0.802503i \(0.296499\pi\)
\(374\) −15.0329 −0.777332
\(375\) 0 0
\(376\) 11.0440i 0.569552i
\(377\) −13.9072 27.3906i −0.716257 1.41069i
\(378\) 0 0
\(379\) −12.6790 12.6790i −0.651276 0.651276i 0.302024 0.953300i \(-0.402338\pi\)
−0.953300 + 0.302024i \(0.902338\pi\)
\(380\) 8.75793i 0.449272i
\(381\) 0 0
\(382\) −15.6607 15.6607i −0.801271 0.801271i
\(383\) 2.64413 2.64413i 0.135109 0.135109i −0.636318 0.771427i \(-0.719543\pi\)
0.771427 + 0.636318i \(0.219543\pi\)
\(384\) 0 0
\(385\) −7.13177 + 7.13177i −0.363469 + 0.363469i
\(386\) 3.11337i 0.158467i
\(387\) 0 0
\(388\) −4.66500 + 4.66500i −0.236829 + 0.236829i
\(389\) 22.7276 1.15234 0.576169 0.817331i \(-0.304547\pi\)
0.576169 + 0.817331i \(0.304547\pi\)
\(390\) 0 0
\(391\) −27.8253 −1.40719
\(392\) 3.86759 3.86759i 0.195343 0.195343i
\(393\) 0 0
\(394\) 3.44712i 0.173663i
\(395\) −3.87285 + 3.87285i −0.194864 + 0.194864i
\(396\) 0 0
\(397\) −5.15592 + 5.15592i −0.258768 + 0.258768i −0.824553 0.565785i \(-0.808573\pi\)
0.565785 + 0.824553i \(0.308573\pi\)
\(398\) 5.99070 + 5.99070i 0.300287 + 0.300287i
\(399\) 0 0
\(400\) 3.93142i 0.196571i
\(401\) −13.8525 13.8525i −0.691763 0.691763i 0.270857 0.962620i \(-0.412693\pi\)
−0.962620 + 0.270857i \(0.912693\pi\)
\(402\) 0 0
\(403\) −17.1140 5.58757i −0.852507 0.278337i
\(404\) 16.6680i 0.829266i
\(405\) 0 0
\(406\) 30.0858 1.49313
\(407\) −30.4295 −1.50833
\(408\) 0 0
\(409\) −11.1285 11.1285i −0.550269 0.550269i 0.376249 0.926519i \(-0.377214\pi\)
−0.926519 + 0.376249i \(0.877214\pi\)
\(410\) 1.09762 + 1.09762i 0.0542076 + 0.0542076i
\(411\) 0 0
\(412\) −1.83045 −0.0901799
\(413\) 9.29794 0.457522
\(414\) 0 0
\(415\) 6.98456i 0.342859i
\(416\) −1.11905 + 3.42750i −0.0548660 + 0.168047i
\(417\) 0 0
\(418\) 16.5525 + 16.5525i 0.809610 + 0.809610i
\(419\) 28.7408i 1.40408i 0.712137 + 0.702041i \(0.247728\pi\)
−0.712137 + 0.702041i \(0.752272\pi\)
\(420\) 0 0
\(421\) 15.4602 + 15.4602i 0.753484 + 0.753484i 0.975128 0.221643i \(-0.0711421\pi\)
−0.221643 + 0.975128i \(0.571142\pi\)
\(422\) −3.22585 + 3.22585i −0.157032 + 0.157032i
\(423\) 0 0
\(424\) −8.29369 + 8.29369i −0.402777 + 0.402777i
\(425\) 21.3900i 1.03757i
\(426\) 0 0
\(427\) −16.0549 + 16.0549i −0.776951 + 0.776951i
\(428\) 9.43019 0.455825
\(429\) 0 0
\(430\) −3.92477 −0.189269
\(431\) −3.04773 + 3.04773i −0.146804 + 0.146804i −0.776689 0.629885i \(-0.783102\pi\)
0.629885 + 0.776689i \(0.283102\pi\)
\(432\) 0 0
\(433\) 10.5849i 0.508676i 0.967115 + 0.254338i \(0.0818575\pi\)
−0.967115 + 0.254338i \(0.918142\pi\)
\(434\) 12.4677 12.4677i 0.598466 0.598466i
\(435\) 0 0
\(436\) −6.65317 + 6.65317i −0.318629 + 0.318629i
\(437\) 30.6381 + 30.6381i 1.46562 + 1.46562i
\(438\) 0 0
\(439\) 0.756908i 0.0361252i 0.999837 + 0.0180626i \(0.00574982\pi\)
−0.999837 + 0.0180626i \(0.994250\pi\)
\(440\) 2.01963 + 2.01963i 0.0962819 + 0.0962819i
\(441\) 0 0
\(442\) 6.08851 18.6482i 0.289601 0.887006i
\(443\) 36.7332i 1.74525i 0.488393 + 0.872624i \(0.337583\pi\)
−0.488393 + 0.872624i \(0.662417\pi\)
\(444\) 0 0
\(445\) 0.211874 0.0100438
\(446\) −3.14638 −0.148985
\(447\) 0 0
\(448\) −2.49696 2.49696i −0.117970 0.117970i
\(449\) 16.5702 + 16.5702i 0.781996 + 0.781996i 0.980167 0.198172i \(-0.0635003\pi\)
−0.198172 + 0.980167i \(0.563500\pi\)
\(450\) 0 0
\(451\) 4.14901 0.195369
\(452\) −13.5909 −0.639262
\(453\) 0 0
\(454\) 1.82246i 0.0855323i
\(455\) −5.95847 11.7354i −0.279337 0.550163i
\(456\) 0 0
\(457\) −0.692812 0.692812i −0.0324084 0.0324084i 0.690717 0.723125i \(-0.257295\pi\)
−0.723125 + 0.690717i \(0.757295\pi\)
\(458\) 12.8147i 0.598792i
\(459\) 0 0
\(460\) 3.73825 + 3.73825i 0.174297 + 0.174297i
\(461\) 8.54391 8.54391i 0.397930 0.397930i −0.479573 0.877502i \(-0.659208\pi\)
0.877502 + 0.479573i \(0.159208\pi\)
\(462\) 0 0
\(463\) −10.8803 + 10.8803i −0.505650 + 0.505650i −0.913188 0.407538i \(-0.866387\pi\)
0.407538 + 0.913188i \(0.366387\pi\)
\(464\) 8.51991i 0.395527i
\(465\) 0 0
\(466\) −3.69556 + 3.69556i −0.171193 + 0.171193i
\(467\) −18.8587 −0.872678 −0.436339 0.899782i \(-0.643725\pi\)
−0.436339 + 0.899782i \(0.643725\pi\)
\(468\) 0 0
\(469\) −4.42970 −0.204544
\(470\) 8.07266 8.07266i 0.372364 0.372364i
\(471\) 0 0
\(472\) 2.63306i 0.121196i
\(473\) −7.41782 + 7.41782i −0.341072 + 0.341072i
\(474\) 0 0
\(475\) 23.5522 23.5522i 1.08065 1.08065i
\(476\) 13.5854 + 13.5854i 0.622685 + 0.622685i
\(477\) 0 0
\(478\) 10.3024i 0.471219i
\(479\) −10.5691 10.5691i −0.482915 0.482915i 0.423146 0.906061i \(-0.360926\pi\)
−0.906061 + 0.423146i \(0.860926\pi\)
\(480\) 0 0
\(481\) 12.3243 37.7476i 0.561940 1.72114i
\(482\) 26.5972i 1.21147i
\(483\) 0 0
\(484\) −3.36580 −0.152991
\(485\) −6.81979 −0.309671
\(486\) 0 0
\(487\) −20.2191 20.2191i −0.916214 0.916214i 0.0805378 0.996752i \(-0.474336\pi\)
−0.996752 + 0.0805378i \(0.974336\pi\)
\(488\) 4.54655 + 4.54655i 0.205812 + 0.205812i
\(489\) 0 0
\(490\) 5.65405 0.255424
\(491\) 28.8492 1.30195 0.650973 0.759101i \(-0.274361\pi\)
0.650973 + 0.759101i \(0.274361\pi\)
\(492\) 0 0
\(493\) 46.3549i 2.08772i
\(494\) −27.2373 + 13.8293i −1.22546 + 0.622212i
\(495\) 0 0
\(496\) −3.53068 3.53068i −0.158532 0.158532i
\(497\) 15.8748i 0.712082i
\(498\) 0 0
\(499\) 10.5258 + 10.5258i 0.471199 + 0.471199i 0.902303 0.431103i \(-0.141876\pi\)
−0.431103 + 0.902303i \(0.641876\pi\)
\(500\) 6.52844 6.52844i 0.291961 0.291961i
\(501\) 0 0
\(502\) −10.0870 + 10.0870i −0.450204 + 0.450204i
\(503\) 8.87705i 0.395808i −0.980221 0.197904i \(-0.936587\pi\)
0.980221 0.197904i \(-0.0634134\pi\)
\(504\) 0 0
\(505\) 12.1835 12.1835i 0.542161 0.542161i
\(506\) 14.1306 0.628183
\(507\) 0 0
\(508\) 11.0838 0.491766
\(509\) 17.5845 17.5845i 0.779418 0.779418i −0.200314 0.979732i \(-0.564196\pi\)
0.979732 + 0.200314i \(0.0641962\pi\)
\(510\) 0 0
\(511\) 11.5686i 0.511763i
\(512\) −0.707107 + 0.707107i −0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) −4.99355 + 4.99355i −0.220256 + 0.220256i
\(515\) −1.33797 1.33797i −0.0589582 0.0589582i
\(516\) 0 0
\(517\) 30.5147i 1.34204i
\(518\) 27.4994 + 27.4994i 1.20826 + 1.20826i
\(519\) 0 0
\(520\) −3.32331 + 1.68736i −0.145737 + 0.0739958i
\(521\) 7.10124i 0.311111i 0.987827 + 0.155556i \(0.0497168\pi\)
−0.987827 + 0.155556i \(0.950283\pi\)
\(522\) 0 0
\(523\) 28.9433 1.26560 0.632801 0.774314i \(-0.281905\pi\)
0.632801 + 0.774314i \(0.281905\pi\)
\(524\) −12.1356 −0.530146
\(525\) 0 0
\(526\) 17.3900 + 17.3900i 0.758239 + 0.758239i
\(527\) 19.2096 + 19.2096i 0.836785 + 0.836785i
\(528\) 0 0
\(529\) 3.15525 0.137185
\(530\) −12.1246 −0.526658
\(531\) 0 0
\(532\) 29.9174i 1.29708i
\(533\) −1.68040 + 5.14683i −0.0727862 + 0.222934i
\(534\) 0 0
\(535\) 6.89302 + 6.89302i 0.298011 + 0.298011i
\(536\) 1.25443i 0.0541833i
\(537\) 0 0
\(538\) 9.20213 + 9.20213i 0.396732 + 0.396732i
\(539\) 10.6862 10.6862i 0.460286 0.460286i
\(540\) 0 0
\(541\) 9.21585 9.21585i 0.396221 0.396221i −0.480677 0.876898i \(-0.659609\pi\)
0.876898 + 0.480677i \(0.159609\pi\)
\(542\) 3.42128i 0.146956i
\(543\) 0 0
\(544\) 3.84721 3.84721i 0.164948 0.164948i
\(545\) −9.72631 −0.416629
\(546\) 0 0
\(547\) −8.53557 −0.364955 −0.182477 0.983210i \(-0.558412\pi\)
−0.182477 + 0.983210i \(0.558412\pi\)
\(548\) 9.00744 9.00744i 0.384779 0.384779i
\(549\) 0 0
\(550\) 10.8625i 0.463180i
\(551\) 51.0408 51.0408i 2.17441 2.17441i
\(552\) 0 0
\(553\) 13.2298 13.2298i 0.562587 0.562587i
\(554\) 17.7196 + 17.7196i 0.752833 + 0.752833i
\(555\) 0 0
\(556\) 3.26746i 0.138571i
\(557\) 10.9056 + 10.9056i 0.462083 + 0.462083i 0.899338 0.437255i \(-0.144049\pi\)
−0.437255 + 0.899338i \(0.644049\pi\)
\(558\) 0 0
\(559\) −6.19746 12.2061i −0.262125 0.516262i
\(560\) 3.65032i 0.154254i
\(561\) 0 0
\(562\) 13.0155 0.549024
\(563\) −6.06531 −0.255622 −0.127811 0.991799i \(-0.540795\pi\)
−0.127811 + 0.991799i \(0.540795\pi\)
\(564\) 0 0
\(565\) −9.93430 9.93430i −0.417939 0.417939i
\(566\) −21.9540 21.9540i −0.922796 0.922796i
\(567\) 0 0
\(568\) −4.49554 −0.188629
\(569\) 14.3081 0.599827 0.299913 0.953966i \(-0.403042\pi\)
0.299913 + 0.953966i \(0.403042\pi\)
\(570\) 0 0
\(571\) 5.93459i 0.248355i 0.992260 + 0.124177i \(0.0396292\pi\)
−0.992260 + 0.124177i \(0.960371\pi\)
\(572\) −3.09194 + 9.47019i −0.129281 + 0.395968i
\(573\) 0 0
\(574\) −3.74950 3.74950i −0.156501 0.156501i
\(575\) 20.1061i 0.838484i
\(576\) 0 0
\(577\) 20.4971 + 20.4971i 0.853304 + 0.853304i 0.990539 0.137235i \(-0.0438215\pi\)
−0.137235 + 0.990539i \(0.543821\pi\)
\(578\) −8.91100 + 8.91100i −0.370649 + 0.370649i
\(579\) 0 0
\(580\) 6.22765 6.22765i 0.258589 0.258589i
\(581\) 23.8595i 0.989858i
\(582\) 0 0
\(583\) −22.9155 + 22.9155i −0.949063 + 0.949063i
\(584\) −3.27607 −0.135565
\(585\) 0 0
\(586\) −28.0305 −1.15793
\(587\) −27.9522 + 27.9522i −1.15371 + 1.15371i −0.167907 + 0.985803i \(0.553701\pi\)
−0.985803 + 0.167907i \(0.946299\pi\)
\(588\) 0 0
\(589\) 42.3030i 1.74306i
\(590\) 1.92464 1.92464i 0.0792363 0.0792363i
\(591\) 0 0
\(592\) 7.78749 7.78749i 0.320064 0.320064i
\(593\) −21.8876 21.8876i −0.898816 0.898816i 0.0965155 0.995331i \(-0.469230\pi\)
−0.995331 + 0.0965155i \(0.969230\pi\)
\(594\) 0 0
\(595\) 19.8606i 0.814203i
\(596\) −10.6695 10.6695i −0.437041 0.437041i
\(597\) 0 0
\(598\) −5.72307 + 17.5290i −0.234034 + 0.716813i
\(599\) 30.4677i 1.24488i 0.782668 + 0.622439i \(0.213858\pi\)
−0.782668 + 0.622439i \(0.786142\pi\)
\(600\) 0 0
\(601\) 10.5012 0.428354 0.214177 0.976795i \(-0.431293\pi\)
0.214177 + 0.976795i \(0.431293\pi\)
\(602\) 13.4071 0.546434
\(603\) 0 0
\(604\) −10.4284 10.4284i −0.424325 0.424325i
\(605\) −2.46024 2.46024i −0.100023 0.100023i
\(606\) 0 0
\(607\) 16.5851 0.673168 0.336584 0.941653i \(-0.390728\pi\)
0.336584 + 0.941653i \(0.390728\pi\)
\(608\) −8.47222 −0.343594
\(609\) 0 0
\(610\) 6.64662i 0.269114i
\(611\) 37.8534 + 12.3588i 1.53138 + 0.499985i
\(612\) 0 0
\(613\) 13.3912 + 13.3912i 0.540866 + 0.540866i 0.923783 0.382917i \(-0.125080\pi\)
−0.382917 + 0.923783i \(0.625080\pi\)
\(614\) 17.9566i 0.724668i
\(615\) 0 0
\(616\) −6.89911 6.89911i −0.277973 0.277973i
\(617\) −5.96507 + 5.96507i −0.240145 + 0.240145i −0.816910 0.576765i \(-0.804315\pi\)
0.576765 + 0.816910i \(0.304315\pi\)
\(618\) 0 0
\(619\) 8.99098 8.99098i 0.361378 0.361378i −0.502942 0.864320i \(-0.667749\pi\)
0.864320 + 0.502942i \(0.167749\pi\)
\(620\) 5.16152i 0.207292i
\(621\) 0 0
\(622\) 8.74456 8.74456i 0.350625 0.350625i
\(623\) −0.723767 −0.0289971
\(624\) 0 0
\(625\) −10.1131 −0.404525
\(626\) 7.40140 7.40140i 0.295820 0.295820i
\(627\) 0 0
\(628\) 9.82931i 0.392232i
\(629\) −42.3700 + 42.3700i −1.68940 + 1.68940i
\(630\) 0 0
\(631\) 13.1946 13.1946i 0.525267 0.525267i −0.393890 0.919157i \(-0.628871\pi\)
0.919157 + 0.393890i \(0.128871\pi\)
\(632\) −3.74650 3.74650i −0.149028 0.149028i
\(633\) 0 0
\(634\) 15.3334i 0.608967i
\(635\) 8.10176 + 8.10176i 0.321509 + 0.321509i
\(636\) 0 0
\(637\) 8.92811 + 17.5842i 0.353745 + 0.696710i
\(638\) 23.5406i 0.931980i
\(639\) 0 0
\(640\) −1.03372 −0.0408615
\(641\) −2.95203 −0.116598 −0.0582992 0.998299i \(-0.518568\pi\)
−0.0582992 + 0.998299i \(0.518568\pi\)
\(642\) 0 0
\(643\) −23.5471 23.5471i −0.928607 0.928607i 0.0690092 0.997616i \(-0.478016\pi\)
−0.997616 + 0.0690092i \(0.978016\pi\)
\(644\) −12.7700 12.7700i −0.503208 0.503208i
\(645\) 0 0
\(646\) 46.0955 1.81360
\(647\) 21.5988 0.849138 0.424569 0.905396i \(-0.360426\pi\)
0.424569 + 0.905396i \(0.360426\pi\)
\(648\) 0 0
\(649\) 7.27516i 0.285575i
\(650\) 13.4749 + 4.39945i 0.528529 + 0.172561i
\(651\) 0 0
\(652\) 0.658684 + 0.658684i 0.0257961 + 0.0257961i
\(653\) 5.01350i 0.196194i 0.995177 + 0.0980968i \(0.0312755\pi\)
−0.995177 + 0.0980968i \(0.968725\pi\)
\(654\) 0 0
\(655\) −8.87055 8.87055i −0.346601 0.346601i
\(656\) −1.06181 + 1.06181i −0.0414568 + 0.0414568i
\(657\) 0 0
\(658\) −27.5765 + 27.5765i −1.07504 + 1.07504i
\(659\) 21.4750i 0.836546i 0.908321 + 0.418273i \(0.137364\pi\)
−0.908321 + 0.418273i \(0.862636\pi\)
\(660\) 0 0
\(661\) −7.22887 + 7.22887i −0.281171 + 0.281171i −0.833576 0.552405i \(-0.813710\pi\)
0.552405 + 0.833576i \(0.313710\pi\)
\(662\) −27.5521 −1.07084
\(663\) 0 0
\(664\) 6.75670 0.262211
\(665\) 21.8682 21.8682i 0.848012 0.848012i
\(666\) 0 0
\(667\) 43.5727i 1.68714i
\(668\) 12.5357 12.5357i 0.485020 0.485020i
\(669\) 0 0
\(670\) −0.916932 + 0.916932i −0.0354242 + 0.0354242i
\(671\) 12.5621 + 12.5621i 0.484956 + 0.484956i
\(672\) 0 0
\(673\) 18.2056i 0.701774i −0.936418 0.350887i \(-0.885880\pi\)
0.936418 0.350887i \(-0.114120\pi\)
\(674\) 15.6264 + 15.6264i 0.601907 + 0.601907i
\(675\) 0 0
\(676\) −10.4955 7.67108i −0.403671 0.295042i
\(677\) 14.3760i 0.552515i 0.961084 + 0.276257i \(0.0890942\pi\)
−0.961084 + 0.276257i \(0.910906\pi\)
\(678\) 0 0
\(679\) 23.2966 0.894042
\(680\) 5.62426 0.215680
\(681\) 0 0
\(682\) −9.75529 9.75529i −0.373549 0.373549i
\(683\) 11.7572 + 11.7572i 0.449877 + 0.449877i 0.895313 0.445437i \(-0.146952\pi\)
−0.445437 + 0.895313i \(0.646952\pi\)
\(684\) 0 0
\(685\) 13.1680 0.503125
\(686\) 5.40421 0.206334
\(687\) 0 0
\(688\) 3.79673i 0.144749i
\(689\) −19.1455 37.7076i −0.729386 1.43655i
\(690\) 0 0
\(691\) 14.9559 + 14.9559i 0.568948 + 0.568948i 0.931834 0.362886i \(-0.118209\pi\)
−0.362886 + 0.931834i \(0.618209\pi\)
\(692\) 3.87945i 0.147475i
\(693\) 0 0
\(694\) 1.81321 + 1.81321i 0.0688285 + 0.0688285i
\(695\) 2.38836 2.38836i 0.0905956 0.0905956i
\(696\) 0 0
\(697\) 5.77708 5.77708i 0.218823 0.218823i
\(698\) 36.6426i 1.38694i
\(699\) 0 0
\(700\) −9.81658 + 9.81658i −0.371032 + 0.371032i
\(701\) −45.3798 −1.71397 −0.856985 0.515342i \(-0.827665\pi\)
−0.856985 + 0.515342i \(0.827665\pi\)
\(702\) 0 0
\(703\) 93.3061 3.51910
\(704\) −1.95374 + 1.95374i −0.0736343 + 0.0736343i
\(705\) 0 0
\(706\) 6.94341i 0.261319i
\(707\) −41.6194 + 41.6194i −1.56526 + 1.56526i
\(708\) 0 0
\(709\) −24.8489 + 24.8489i −0.933218 + 0.933218i −0.997906 0.0646873i \(-0.979395\pi\)
0.0646873 + 0.997906i \(0.479395\pi\)
\(710\) −3.28603 3.28603i −0.123323 0.123323i
\(711\) 0 0
\(712\) 0.204962i 0.00768126i
\(713\) −18.0567 18.0567i −0.676228 0.676228i
\(714\) 0 0
\(715\) −9.18232 + 4.66219i −0.343399 + 0.174356i
\(716\) 5.10968i 0.190958i
\(717\) 0 0
\(718\) 24.5598 0.916563
\(719\) −34.3801 −1.28216 −0.641081 0.767473i \(-0.721514\pi\)
−0.641081 + 0.767473i \(0.721514\pi\)
\(720\) 0 0
\(721\) 4.57056 + 4.57056i 0.170217 + 0.170217i
\(722\) −37.3200 37.3200i −1.38891 1.38891i
\(723\) 0 0
\(724\) −4.01356 −0.149163
\(725\) −33.4953 −1.24398
\(726\) 0 0
\(727\) 7.44017i 0.275941i −0.990436 0.137970i \(-0.955942\pi\)
0.990436 0.137970i \(-0.0440579\pi\)
\(728\) 11.3525 5.76409i 0.420753 0.213631i
\(729\) 0 0
\(730\) −2.39465 2.39465i −0.0886300 0.0886300i
\(731\) 20.6572i 0.764032i
\(732\) 0 0
\(733\) 36.0059 + 36.0059i 1.32991 + 1.32991i 0.905446 + 0.424460i \(0.139536\pi\)
0.424460 + 0.905446i \(0.360464\pi\)
\(734\) −2.27359 + 2.27359i −0.0839199 + 0.0839199i
\(735\) 0 0
\(736\) −3.61630 + 3.61630i −0.133299 + 0.133299i
\(737\) 3.46601i 0.127672i
\(738\) 0 0
\(739\) 17.8745 17.8745i 0.657525 0.657525i −0.297269 0.954794i \(-0.596076\pi\)
0.954794 + 0.297269i \(0.0960757\pi\)
\(740\) 11.3846 0.418505
\(741\) 0 0
\(742\) 41.4180 1.52050
\(743\) 6.18249 6.18249i 0.226814 0.226814i −0.584547 0.811360i \(-0.698728\pi\)
0.811360 + 0.584547i \(0.198728\pi\)
\(744\) 0 0
\(745\) 15.5979i 0.571461i
\(746\) −16.2962 + 16.2962i −0.596648 + 0.596648i
\(747\) 0 0
\(748\) 10.6299 10.6299i 0.388666 0.388666i
\(749\) −23.5468 23.5468i −0.860381 0.860381i
\(750\) 0 0
\(751\) 18.2839i 0.667189i 0.942717 + 0.333594i \(0.108262\pi\)
−0.942717 + 0.333594i \(0.891738\pi\)
\(752\) 7.80931 + 7.80931i 0.284776 + 0.284776i
\(753\) 0 0
\(754\) 29.2020 + 9.53421i 1.06347 + 0.347216i
\(755\) 15.2453i 0.554833i
\(756\) 0 0
\(757\) −7.47864 −0.271816 −0.135908 0.990721i \(-0.543395\pi\)
−0.135908 + 0.990721i \(0.543395\pi\)
\(758\) 17.9308 0.651276
\(759\) 0 0
\(760\) −6.19279 6.19279i −0.224636 0.224636i
\(761\) 2.80360 + 2.80360i 0.101630 + 0.101630i 0.756094 0.654463i \(-0.227105\pi\)
−0.654463 + 0.756094i \(0.727105\pi\)
\(762\) 0 0
\(763\) 33.2254 1.20284
\(764\) 22.1476 0.801271
\(765\) 0 0
\(766\) 3.73937i 0.135109i
\(767\) 9.02480 + 2.94653i 0.325867 + 0.106393i
\(768\) 0 0
\(769\) −0.486296 0.486296i −0.0175363 0.0175363i 0.698284 0.715821i \(-0.253947\pi\)
−0.715821 + 0.698284i \(0.753947\pi\)
\(770\) 10.0858i 0.363469i
\(771\) 0 0
\(772\) 2.20149 + 2.20149i 0.0792333 + 0.0792333i
\(773\) −15.2154 + 15.2154i −0.547261 + 0.547261i −0.925648 0.378387i \(-0.876479\pi\)
0.378387 + 0.925648i \(0.376479\pi\)
\(774\) 0 0
\(775\) −13.8806 + 13.8806i −0.498605 + 0.498605i
\(776\) 6.59730i 0.236829i
\(777\) 0 0
\(778\) −16.0709 + 16.0709i −0.576169 + 0.576169i
\(779\) −12.7221 −0.455818
\(780\) 0 0
\(781\) −12.4212 −0.444466
\(782\) 19.6755 19.6755i 0.703594 0.703594i
\(783\) 0 0
\(784\) 5.46960i 0.195343i
\(785\) 7.18476 7.18476i 0.256435 0.256435i
\(786\) 0 0
\(787\) 0.495643 0.495643i 0.0176678 0.0176678i −0.698218 0.715885i \(-0.746023\pi\)
0.715885 + 0.698218i \(0.246023\pi\)
\(788\) −2.43748 2.43748i −0.0868317 0.0868317i
\(789\) 0 0
\(790\) 5.47703i 0.194864i
\(791\) 33.9359 + 33.9359i 1.20662 + 1.20662i
\(792\) 0 0
\(793\) −20.6711 + 10.4955i −0.734052 + 0.372704i
\(794\) 7.29157i 0.258768i
\(795\) 0 0
\(796\) −8.47213 −0.300287
\(797\) 17.9090 0.634369 0.317185 0.948364i \(-0.397263\pi\)
0.317185 + 0.948364i \(0.397263\pi\)
\(798\) 0 0
\(799\) −42.4887 42.4887i −1.50314 1.50314i
\(800\) 2.77993 + 2.77993i 0.0982854 + 0.0982854i
\(801\) 0 0
\(802\) 19.5904 0.691763
\(803\) −9.05179 −0.319431
\(804\) 0 0
\(805\) 18.6685i 0.657979i
\(806\) 16.0524 8.15038i 0.565422 0.287085i
\(807\) 0 0
\(808\) 11.7861 + 11.7861i 0.414633 + 0.414633i
\(809\) 27.2029i 0.956402i −0.878250 0.478201i \(-0.841289\pi\)
0.878250 0.478201i \(-0.158711\pi\)
\(810\) 0 0
\(811\) −31.6498 31.6498i −1.11138 1.11138i −0.992965 0.118412i \(-0.962220\pi\)
−0.118412 0.992965i \(-0.537780\pi\)
\(812\) −21.2739 + 21.2739i −0.746566 + 0.746566i
\(813\) 0 0
\(814\) 21.5169 21.5169i 0.754166 0.754166i
\(815\) 0.962934i 0.0337301i
\(816\) 0 0
\(817\) 22.7453 22.7453i 0.795757 0.795757i
\(818\) 15.7381 0.550269
\(819\) 0 0
\(820\) −1.55227 −0.0542076
\(821\) −32.8949 + 32.8949i −1.14804 + 1.14804i −0.161104 + 0.986937i \(0.551505\pi\)
−0.986937 + 0.161104i \(0.948495\pi\)
\(822\) 0 0
\(823\) 6.29469i 0.219419i 0.993964 + 0.109710i \(0.0349921\pi\)
−0.993964 + 0.109710i \(0.965008\pi\)
\(824\) 1.29432 1.29432i 0.0450899 0.0450899i
\(825\) 0 0
\(826\) −6.57464 + 6.57464i −0.228761 + 0.228761i
\(827\) 23.3955 + 23.3955i 0.813543 + 0.813543i 0.985163 0.171620i \(-0.0549002\pi\)
−0.171620 + 0.985163i \(0.554900\pi\)
\(828\) 0 0
\(829\) 3.14079i 0.109084i −0.998511 0.0545421i \(-0.982630\pi\)
0.998511 0.0545421i \(-0.0173699\pi\)
\(830\) 4.93883 + 4.93883i 0.171429 + 0.171429i
\(831\) 0 0
\(832\) −1.63232 3.21489i −0.0565904 0.111456i
\(833\) 29.7589i 1.03108i
\(834\) 0 0
\(835\) 18.3260 0.634197
\(836\) −23.4088 −0.809610
\(837\) 0 0
\(838\) −20.3228 20.3228i −0.702041 0.702041i
\(839\) 28.0370 + 28.0370i 0.967944 + 0.967944i 0.999502 0.0315577i \(-0.0100468\pi\)
−0.0315577 + 0.999502i \(0.510047\pi\)
\(840\) 0 0
\(841\) −43.5889 −1.50307
\(842\) −21.8640 −0.753484
\(843\) 0 0
\(844\) 4.56205i 0.157032i
\(845\) −2.06448 13.2789i −0.0710202 0.456807i
\(846\) 0 0
\(847\) 8.40427 + 8.40427i 0.288774 + 0.288774i
\(848\) 11.7290i 0.402777i
\(849\) 0 0
\(850\) −15.1250 15.1250i −0.518783 0.518783i
\(851\) 39.8270 39.8270i 1.36525 1.36525i
\(852\) 0 0
\(853\) −5.31816 + 5.31816i −0.182090 + 0.182090i −0.792266 0.610176i \(-0.791099\pi\)
0.610176 + 0.792266i \(0.291099\pi\)
\(854\) 22.7051i 0.776951i
\(855\) 0 0
\(856\) −6.66815 + 6.66815i −0.227913 + 0.227913i
\(857\) 13.1601 0.449540 0.224770 0.974412i \(-0.427837\pi\)
0.224770 + 0.974412i \(0.427837\pi\)
\(858\) 0 0
\(859\) −39.9763 −1.36397 −0.681987 0.731365i \(-0.738884\pi\)
−0.681987 + 0.731365i \(0.738884\pi\)
\(860\) 2.77523 2.77523i 0.0946345 0.0946345i
\(861\) 0 0
\(862\) 4.31015i 0.146804i
\(863\) −19.5420 + 19.5420i −0.665217 + 0.665217i −0.956605 0.291388i \(-0.905883\pi\)
0.291388 + 0.956605i \(0.405883\pi\)
\(864\) 0 0
\(865\) −2.83570 + 2.83570i −0.0964166 + 0.0964166i
\(866\) −7.48462 7.48462i −0.254338 0.254338i
\(867\) 0 0
\(868\) 17.6319i 0.598466i
\(869\) −10.3516 10.3516i −0.351154 0.351154i
\(870\) 0 0
\(871\) −4.29957 1.40377i −0.145685 0.0475651i
\(872\) 9.40901i 0.318629i
\(873\) 0 0
\(874\) −43.3288 −1.46562
\(875\) −32.6025 −1.10217
\(876\) 0 0
\(877\) 10.6502 + 10.6502i 0.359633 + 0.359633i 0.863678 0.504045i \(-0.168155\pi\)
−0.504045 + 0.863678i \(0.668155\pi\)
\(878\) −0.535215 0.535215i −0.0180626 0.0180626i
\(879\) 0 0
\(880\) −2.85618 −0.0962819
\(881\) −5.09673 −0.171713 −0.0858567 0.996307i \(-0.527363\pi\)
−0.0858567 + 0.996307i \(0.527363\pi\)
\(882\) 0 0
\(883\) 43.6345i 1.46842i 0.678924 + 0.734209i \(0.262447\pi\)
−0.678924 + 0.734209i \(0.737553\pi\)
\(884\) 8.88107 + 17.4915i 0.298703 + 0.588304i
\(885\) 0 0
\(886\) −25.9743 25.9743i −0.872624 0.872624i
\(887\) 53.9013i 1.80983i −0.425593 0.904915i \(-0.639934\pi\)
0.425593 0.904915i \(-0.360066\pi\)
\(888\) 0 0
\(889\) −27.6759 27.6759i −0.928219 0.928219i
\(890\) −0.149817 + 0.149817i −0.00502189 + 0.00502189i
\(891\) 0 0
\(892\) 2.22483 2.22483i 0.0744927 0.0744927i
\(893\) 93.5674i 3.13111i
\(894\) 0 0
\(895\) −3.73494 + 3.73494i −0.124845 + 0.124845i
\(896\) 3.53123 0.117970
\(897\) 0 0
\(898\) −23.4338 −0.781996
\(899\) −30.0811 + 30.0811i −1.00326 + 1.00326i
\(900\) 0 0
\(901\) 63.8151i 2.12599i
\(902\) −2.93379 + 2.93379i −0.0976846 + 0.0976846i
\(903\) 0 0
\(904\) 9.61022 9.61022i 0.319631 0.319631i
\(905\) −2.93372 2.93372i −0.0975203 0.0975203i
\(906\) 0 0
\(907\) 7.07627i 0.234964i 0.993075 + 0.117482i \(0.0374822\pi\)
−0.993075 + 0.117482i \(0.962518\pi\)
\(908\) −1.28867 1.28867i −0.0427661 0.0427661i
\(909\) 0 0
\(910\) 12.5114 + 4.08489i 0.414750 + 0.135413i
\(911\) 20.6283i 0.683447i 0.939801 + 0.341723i \(0.111011\pi\)
−0.939801 + 0.341723i \(0.888989\pi\)
\(912\) 0 0
\(913\) 18.6688 0.617847
\(914\) 0.979785 0.0324084
\(915\) 0 0
\(916\) 9.06136 + 9.06136i 0.299396 + 0.299396i
\(917\) 30.3021 + 30.3021i 1.00066 + 1.00066i
\(918\) 0 0
\(919\) −27.6811 −0.913115 −0.456558 0.889694i \(-0.650918\pi\)
−0.456558 + 0.889694i \(0.650918\pi\)
\(920\) −5.28669 −0.174297
\(921\) 0 0
\(922\) 12.0829i 0.397930i
\(923\) 5.03074 15.4085i 0.165589 0.507176i
\(924\) 0 0
\(925\) −30.6159 30.6159i −1.00664 1.00664i
\(926\) 15.3871i 0.505650i
\(927\) 0 0
\(928\) 6.02449 + 6.02449i 0.197763 + 0.197763i
\(929\) 19.1542 19.1542i 0.628430 0.628430i −0.319243 0.947673i \(-0.603429\pi\)
0.947673 + 0.319243i \(0.103429\pi\)
\(930\) 0 0
\(931\) −32.7671 + 32.7671i −1.07390 + 1.07390i
\(932\) 5.22631i 0.171193i
\(933\) 0 0
\(934\) 13.3351 13.3351i 0.436339 0.436339i
\(935\) 15.5399 0.508208
\(936\) 0 0
\(937\) −14.2237 −0.464668 −0.232334 0.972636i \(-0.574636\pi\)
−0.232334 + 0.972636i \(0.574636\pi\)
\(938\) 3.13227 3.13227i 0.102272 0.102272i
\(939\) 0 0
\(940\) 11.4165i 0.372364i
\(941\) −25.7864 + 25.7864i −0.840613 + 0.840613i −0.988939 0.148325i \(-0.952612\pi\)
0.148325 + 0.988939i \(0.452612\pi\)
\(942\) 0 0
\(943\) −5.43034 + 5.43034i −0.176836 + 0.176836i
\(944\) 1.86185 + 1.86185i 0.0605982 + 0.0605982i
\(945\) 0 0
\(946\) 10.4904i 0.341072i
\(947\) −5.61473 5.61473i −0.182454 0.182454i 0.609970 0.792424i \(-0.291181\pi\)
−0.792424 + 0.609970i \(0.791181\pi\)
\(948\) 0 0
\(949\) 3.66609 11.2287i 0.119006 0.364499i
\(950\) 33.3078i 1.08065i
\(951\) 0 0
\(952\) −19.2126 −0.622685
\(953\) 35.0177 1.13434 0.567168 0.823602i \(-0.308039\pi\)
0.567168 + 0.823602i \(0.308039\pi\)
\(954\) 0 0
\(955\) 16.1888 + 16.1888i 0.523858 + 0.523858i
\(956\) −7.28487 7.28487i −0.235609 0.235609i
\(957\) 0 0
\(958\) 14.9470 0.482915
\(959\) −44.9824 −1.45256
\(960\) 0 0
\(961\) 6.06858i 0.195761i
\(962\) 17.9770 + 35.4062i 0.579602 + 1.14154i
\(963\) 0 0
\(964\) 18.8070 + 18.8070i 0.605734 + 0.605734i
\(965\) 3.21837i 0.103603i
\(966\) 0 0
\(967\) 28.4024 + 28.4024i 0.913361 + 0.913361i 0.996535 0.0831742i \(-0.0265058\pi\)
−0.0831742 + 0.996535i \(0.526506\pi\)
\(968\) 2.37998 2.37998i 0.0764955 0.0764955i
\(969\) 0 0
\(970\) 4.82232 4.82232i 0.154835 0.154835i
\(971\) 18.0510i 0.579283i −0.957135 0.289642i \(-0.906464\pi\)
0.957135 0.289642i \(-0.0935361\pi\)
\(972\) 0 0
\(973\) −8.15871 + 8.15871i −0.261556 + 0.261556i
\(974\) 28.5941 0.916214
\(975\) 0 0
\(976\) −6.42979 −0.205812
\(977\) 8.94926 8.94926i 0.286312 0.286312i −0.549308 0.835620i \(-0.685109\pi\)
0.835620 + 0.549308i \(0.185109\pi\)
\(978\) 0 0
\(979\) 0.566310i 0.0180994i
\(980\) −3.99802 + 3.99802i −0.127712 + 0.127712i
\(981\) 0 0
\(982\) −20.3995 + 20.3995i −0.650973 + 0.650973i
\(983\) 27.8757 + 27.8757i 0.889098 + 0.889098i 0.994436 0.105338i \(-0.0335925\pi\)
−0.105338 + 0.994436i \(0.533593\pi\)
\(984\) 0 0
\(985\) 3.56337i 0.113538i
\(986\) −32.7779 32.7779i −1.04386 1.04386i
\(987\) 0 0
\(988\) 9.48085 29.0385i 0.301626 0.923838i
\(989\) 19.4173i 0.617434i
\(990\) 0 0
\(991\) 10.8811 0.345649 0.172825 0.984953i \(-0.444711\pi\)
0.172825 + 0.984953i \(0.444711\pi\)
\(992\) 4.99314 0.158532
\(993\) 0 0
\(994\) 11.2252 + 11.2252i 0.356041 + 0.356041i
\(995\) −6.19272 6.19272i −0.196323 0.196323i
\(996\) 0 0
\(997\) −10.4383 −0.330585 −0.165292 0.986245i \(-0.552857\pi\)
−0.165292 + 0.986245i \(0.552857\pi\)
\(998\) −14.8857 −0.471199
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 702.2.j.b.593.4 yes 24
3.2 odd 2 inner 702.2.j.b.593.9 yes 24
13.5 odd 4 inner 702.2.j.b.161.9 yes 24
39.5 even 4 inner 702.2.j.b.161.4 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
702.2.j.b.161.4 24 39.5 even 4 inner
702.2.j.b.161.9 yes 24 13.5 odd 4 inner
702.2.j.b.593.4 yes 24 1.1 even 1 trivial
702.2.j.b.593.9 yes 24 3.2 odd 2 inner