L(s) = 1 | − 3-s + 5-s + 11-s − 15-s + 23-s + 27-s + 31-s − 33-s + 37-s − 2·47-s + 49-s − 2·53-s + 55-s − 59-s − 67-s − 69-s + 71-s − 81-s − 89-s − 93-s − 97-s − 2·103-s − 111-s − 113-s + 115-s + ⋯ |
L(s) = 1 | − 3-s + 5-s + 11-s − 15-s + 23-s + 27-s + 31-s − 33-s + 37-s − 2·47-s + 49-s − 2·53-s + 55-s − 59-s − 67-s − 69-s + 71-s − 81-s − 89-s − 93-s − 97-s − 2·103-s − 111-s − 113-s + 115-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 704 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 704 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8342109324\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8342109324\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 11 | \( 1 - T \) |
good | 3 | \( 1 + T + T^{2} \) |
| 5 | \( 1 - T + T^{2} \) |
| 7 | \( ( 1 - T )( 1 + T ) \) |
| 13 | \( ( 1 - T )( 1 + T ) \) |
| 17 | \( ( 1 - T )( 1 + T ) \) |
| 19 | \( ( 1 - T )( 1 + T ) \) |
| 23 | \( 1 - T + T^{2} \) |
| 29 | \( ( 1 - T )( 1 + T ) \) |
| 31 | \( 1 - T + T^{2} \) |
| 37 | \( 1 - T + T^{2} \) |
| 41 | \( ( 1 - T )( 1 + T ) \) |
| 43 | \( ( 1 - T )( 1 + T ) \) |
| 47 | \( ( 1 + T )^{2} \) |
| 53 | \( ( 1 + T )^{2} \) |
| 59 | \( 1 + T + T^{2} \) |
| 61 | \( ( 1 - T )( 1 + T ) \) |
| 67 | \( 1 + T + T^{2} \) |
| 71 | \( 1 - T + T^{2} \) |
| 73 | \( ( 1 - T )( 1 + T ) \) |
| 79 | \( ( 1 - T )( 1 + T ) \) |
| 83 | \( ( 1 - T )( 1 + T ) \) |
| 89 | \( 1 + T + T^{2} \) |
| 97 | \( 1 + T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.76986502874820360446020620007, −9.775517195333216833439651901402, −9.189706642100871132128751495689, −8.087796887651203646924886576649, −6.71158914396420532070739687727, −6.24407165765924451166630290208, −5.38319360534408517236765833403, −4.46317942736026664517383129516, −2.93434243358027300820327152618, −1.39587762472223235785737155063,
1.39587762472223235785737155063, 2.93434243358027300820327152618, 4.46317942736026664517383129516, 5.38319360534408517236765833403, 6.24407165765924451166630290208, 6.71158914396420532070739687727, 8.087796887651203646924886576649, 9.189706642100871132128751495689, 9.775517195333216833439651901402, 10.76986502874820360446020620007