L(s) = 1 | − 3-s + 5-s + 11-s − 15-s + 23-s + 27-s + 31-s − 33-s + 37-s − 2·47-s + 49-s − 2·53-s + 55-s − 59-s − 67-s − 69-s + 71-s − 81-s − 89-s − 93-s − 97-s − 2·103-s − 111-s − 113-s + 115-s + ⋯ |
L(s) = 1 | − 3-s + 5-s + 11-s − 15-s + 23-s + 27-s + 31-s − 33-s + 37-s − 2·47-s + 49-s − 2·53-s + 55-s − 59-s − 67-s − 69-s + 71-s − 81-s − 89-s − 93-s − 97-s − 2·103-s − 111-s − 113-s + 115-s + ⋯ |
Λ(s)=(=(704s/2ΓC(s)L(s)Λ(1−s)
Λ(s)=(=(704s/2ΓC(s)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
704
= 26⋅11
|
Sign: |
1
|
Analytic conductor: |
0.351341 |
Root analytic conductor: |
0.592740 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ704(65,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 704, ( :0), 1)
|
Particular Values
L(21) |
≈ |
0.8342109324 |
L(21) |
≈ |
0.8342109324 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1−T |
good | 3 | 1+T+T2 |
| 5 | 1−T+T2 |
| 7 | (1−T)(1+T) |
| 13 | (1−T)(1+T) |
| 17 | (1−T)(1+T) |
| 19 | (1−T)(1+T) |
| 23 | 1−T+T2 |
| 29 | (1−T)(1+T) |
| 31 | 1−T+T2 |
| 37 | 1−T+T2 |
| 41 | (1−T)(1+T) |
| 43 | (1−T)(1+T) |
| 47 | (1+T)2 |
| 53 | (1+T)2 |
| 59 | 1+T+T2 |
| 61 | (1−T)(1+T) |
| 67 | 1+T+T2 |
| 71 | 1−T+T2 |
| 73 | (1−T)(1+T) |
| 79 | (1−T)(1+T) |
| 83 | (1−T)(1+T) |
| 89 | 1+T+T2 |
| 97 | 1+T+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.76986502874820360446020620007, −9.775517195333216833439651901402, −9.189706642100871132128751495689, −8.087796887651203646924886576649, −6.71158914396420532070739687727, −6.24407165765924451166630290208, −5.38319360534408517236765833403, −4.46317942736026664517383129516, −2.93434243358027300820327152618, −1.39587762472223235785737155063,
1.39587762472223235785737155063, 2.93434243358027300820327152618, 4.46317942736026664517383129516, 5.38319360534408517236765833403, 6.24407165765924451166630290208, 6.71158914396420532070739687727, 8.087796887651203646924886576649, 9.189706642100871132128751495689, 9.775517195333216833439651901402, 10.76986502874820360446020620007