Properties

Label 704.1.h.a
Level $704$
Weight $1$
Character orbit 704.h
Self dual yes
Analytic conductor $0.351$
Analytic rank $0$
Dimension $1$
Projective image $D_{3}$
CM discriminant -11
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [704,1,Mod(65,704)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(704, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("704.65");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 704 = 2^{6} \cdot 11 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 704.h (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.351341768894\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 44)
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.44.1
Artin image: $D_6$
Artin field: Galois closure of 6.0.247808.1
Stark unit: Root of $x^{6} - 54x^{5} + 431x^{4} - 2164x^{3} + 431x^{2} - 54x + 1$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - q^{3} + q^{5} + q^{11} - q^{15} + q^{23} + q^{27} + q^{31} - q^{33} + q^{37} - 2 q^{47} + q^{49} - 2 q^{53} + q^{55} - q^{59} - q^{67} - q^{69} + q^{71} - q^{81} - q^{89} - q^{93}+ \cdots - q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/704\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(321\) \(639\)
\(\chi(n)\) \(0\) \(1\) \(0\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
65.1
0
0 −1.00000 0 1.00000 0 0 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 CM by \(\Q(\sqrt{-11}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 704.1.h.a 1
4.b odd 2 1 704.1.h.b 1
8.b even 2 1 176.1.h.a 1
8.d odd 2 1 44.1.d.a 1
11.b odd 2 1 CM 704.1.h.a 1
16.e even 4 2 2816.1.b.a 2
16.f odd 4 2 2816.1.b.b 2
24.f even 2 1 396.1.f.a 1
24.h odd 2 1 1584.1.j.a 1
40.e odd 2 1 1100.1.f.a 1
40.k even 4 2 1100.1.e.a 2
44.c even 2 1 704.1.h.b 1
56.e even 2 1 2156.1.h.a 1
56.k odd 6 2 2156.1.k.b 2
56.m even 6 2 2156.1.k.a 2
72.l even 6 2 3564.1.m.a 2
72.p odd 6 2 3564.1.m.b 2
88.b odd 2 1 176.1.h.a 1
88.g even 2 1 44.1.d.a 1
88.k even 10 4 484.1.f.a 4
88.l odd 10 4 484.1.f.a 4
88.o even 10 4 1936.1.n.a 4
88.p odd 10 4 1936.1.n.a 4
176.i even 4 2 2816.1.b.b 2
176.l odd 4 2 2816.1.b.a 2
264.m even 2 1 1584.1.j.a 1
264.p odd 2 1 396.1.f.a 1
440.c even 2 1 1100.1.f.a 1
440.w odd 4 2 1100.1.e.a 2
616.g odd 2 1 2156.1.h.a 1
616.y even 6 2 2156.1.k.b 2
616.z odd 6 2 2156.1.k.a 2
792.s odd 6 2 3564.1.m.a 2
792.z even 6 2 3564.1.m.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
44.1.d.a 1 8.d odd 2 1
44.1.d.a 1 88.g even 2 1
176.1.h.a 1 8.b even 2 1
176.1.h.a 1 88.b odd 2 1
396.1.f.a 1 24.f even 2 1
396.1.f.a 1 264.p odd 2 1
484.1.f.a 4 88.k even 10 4
484.1.f.a 4 88.l odd 10 4
704.1.h.a 1 1.a even 1 1 trivial
704.1.h.a 1 11.b odd 2 1 CM
704.1.h.b 1 4.b odd 2 1
704.1.h.b 1 44.c even 2 1
1100.1.e.a 2 40.k even 4 2
1100.1.e.a 2 440.w odd 4 2
1100.1.f.a 1 40.e odd 2 1
1100.1.f.a 1 440.c even 2 1
1584.1.j.a 1 24.h odd 2 1
1584.1.j.a 1 264.m even 2 1
1936.1.n.a 4 88.o even 10 4
1936.1.n.a 4 88.p odd 10 4
2156.1.h.a 1 56.e even 2 1
2156.1.h.a 1 616.g odd 2 1
2156.1.k.a 2 56.m even 6 2
2156.1.k.a 2 616.z odd 6 2
2156.1.k.b 2 56.k odd 6 2
2156.1.k.b 2 616.y even 6 2
2816.1.b.a 2 16.e even 4 2
2816.1.b.a 2 176.l odd 4 2
2816.1.b.b 2 16.f odd 4 2
2816.1.b.b 2 176.i even 4 2
3564.1.m.a 2 72.l even 6 2
3564.1.m.a 2 792.s odd 6 2
3564.1.m.b 2 72.p odd 6 2
3564.1.m.b 2 792.z even 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} + 1 \) acting on \(S_{1}^{\mathrm{new}}(704, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T + 1 \) Copy content Toggle raw display
$5$ \( T - 1 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T - 1 \) Copy content Toggle raw display
$13$ \( T \) Copy content Toggle raw display
$17$ \( T \) Copy content Toggle raw display
$19$ \( T \) Copy content Toggle raw display
$23$ \( T - 1 \) Copy content Toggle raw display
$29$ \( T \) Copy content Toggle raw display
$31$ \( T - 1 \) Copy content Toggle raw display
$37$ \( T - 1 \) Copy content Toggle raw display
$41$ \( T \) Copy content Toggle raw display
$43$ \( T \) Copy content Toggle raw display
$47$ \( T + 2 \) Copy content Toggle raw display
$53$ \( T + 2 \) Copy content Toggle raw display
$59$ \( T + 1 \) Copy content Toggle raw display
$61$ \( T \) Copy content Toggle raw display
$67$ \( T + 1 \) Copy content Toggle raw display
$71$ \( T - 1 \) Copy content Toggle raw display
$73$ \( T \) Copy content Toggle raw display
$79$ \( T \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T + 1 \) Copy content Toggle raw display
$97$ \( T + 1 \) Copy content Toggle raw display
show more
show less