Properties

Label 704.1.h.a
Level 704704
Weight 11
Character orbit 704.h
Self dual yes
Analytic conductor 0.3510.351
Analytic rank 00
Dimension 11
Projective image D3D_{3}
CM discriminant -11
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [704,1,Mod(65,704)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(704, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("704.65");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 704=2611 704 = 2^{6} \cdot 11
Weight: k k == 1 1
Character orbit: [χ][\chi] == 704.h (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 0.3513417688940.351341768894
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 44)
Projective image: D3D_{3}
Projective field: Galois closure of 3.1.44.1
Artin image: D6D_6
Artin field: Galois closure of 6.0.247808.1
Stark unit: Root of x654x5+431x42164x3+431x254x+1x^{6} - 54x^{5} + 431x^{4} - 2164x^{3} + 431x^{2} - 54x + 1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == qq3+q5+q11q15+q23+q27+q31q33+q372q47+q492q53+q55q59q67q69+q71q81q89q93+q97+O(q100) q - q^{3} + q^{5} + q^{11} - q^{15} + q^{23} + q^{27} + q^{31} - q^{33} + q^{37} - 2 q^{47} + q^{49} - 2 q^{53} + q^{55} - q^{59} - q^{67} - q^{69} + q^{71} - q^{81} - q^{89} - q^{93}+ \cdots - q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/704Z)×\left(\mathbb{Z}/704\mathbb{Z}\right)^\times.

nn 133133 321321 639639
χ(n)\chi(n) 11 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
65.1
0
0 −1.00000 0 1.00000 0 0 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 CM by Q(11)\Q(\sqrt{-11})

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 704.1.h.a 1
4.b odd 2 1 704.1.h.b 1
8.b even 2 1 176.1.h.a 1
8.d odd 2 1 44.1.d.a 1
11.b odd 2 1 CM 704.1.h.a 1
16.e even 4 2 2816.1.b.a 2
16.f odd 4 2 2816.1.b.b 2
24.f even 2 1 396.1.f.a 1
24.h odd 2 1 1584.1.j.a 1
40.e odd 2 1 1100.1.f.a 1
40.k even 4 2 1100.1.e.a 2
44.c even 2 1 704.1.h.b 1
56.e even 2 1 2156.1.h.a 1
56.k odd 6 2 2156.1.k.b 2
56.m even 6 2 2156.1.k.a 2
72.l even 6 2 3564.1.m.a 2
72.p odd 6 2 3564.1.m.b 2
88.b odd 2 1 176.1.h.a 1
88.g even 2 1 44.1.d.a 1
88.k even 10 4 484.1.f.a 4
88.l odd 10 4 484.1.f.a 4
88.o even 10 4 1936.1.n.a 4
88.p odd 10 4 1936.1.n.a 4
176.i even 4 2 2816.1.b.b 2
176.l odd 4 2 2816.1.b.a 2
264.m even 2 1 1584.1.j.a 1
264.p odd 2 1 396.1.f.a 1
440.c even 2 1 1100.1.f.a 1
440.w odd 4 2 1100.1.e.a 2
616.g odd 2 1 2156.1.h.a 1
616.y even 6 2 2156.1.k.b 2
616.z odd 6 2 2156.1.k.a 2
792.s odd 6 2 3564.1.m.a 2
792.z even 6 2 3564.1.m.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
44.1.d.a 1 8.d odd 2 1
44.1.d.a 1 88.g even 2 1
176.1.h.a 1 8.b even 2 1
176.1.h.a 1 88.b odd 2 1
396.1.f.a 1 24.f even 2 1
396.1.f.a 1 264.p odd 2 1
484.1.f.a 4 88.k even 10 4
484.1.f.a 4 88.l odd 10 4
704.1.h.a 1 1.a even 1 1 trivial
704.1.h.a 1 11.b odd 2 1 CM
704.1.h.b 1 4.b odd 2 1
704.1.h.b 1 44.c even 2 1
1100.1.e.a 2 40.k even 4 2
1100.1.e.a 2 440.w odd 4 2
1100.1.f.a 1 40.e odd 2 1
1100.1.f.a 1 440.c even 2 1
1584.1.j.a 1 24.h odd 2 1
1584.1.j.a 1 264.m even 2 1
1936.1.n.a 4 88.o even 10 4
1936.1.n.a 4 88.p odd 10 4
2156.1.h.a 1 56.e even 2 1
2156.1.h.a 1 616.g odd 2 1
2156.1.k.a 2 56.m even 6 2
2156.1.k.a 2 616.z odd 6 2
2156.1.k.b 2 56.k odd 6 2
2156.1.k.b 2 616.y even 6 2
2816.1.b.a 2 16.e even 4 2
2816.1.b.a 2 176.l odd 4 2
2816.1.b.b 2 16.f odd 4 2
2816.1.b.b 2 176.i even 4 2
3564.1.m.a 2 72.l even 6 2
3564.1.m.a 2 792.s odd 6 2
3564.1.m.b 2 72.p odd 6 2
3564.1.m.b 2 792.z even 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T3+1 T_{3} + 1 acting on S1new(704,[χ])S_{1}^{\mathrm{new}}(704, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T+1 T + 1 Copy content Toggle raw display
55 T1 T - 1 Copy content Toggle raw display
77 T T Copy content Toggle raw display
1111 T1 T - 1 Copy content Toggle raw display
1313 T T Copy content Toggle raw display
1717 T T Copy content Toggle raw display
1919 T T Copy content Toggle raw display
2323 T1 T - 1 Copy content Toggle raw display
2929 T T Copy content Toggle raw display
3131 T1 T - 1 Copy content Toggle raw display
3737 T1 T - 1 Copy content Toggle raw display
4141 T T Copy content Toggle raw display
4343 T T Copy content Toggle raw display
4747 T+2 T + 2 Copy content Toggle raw display
5353 T+2 T + 2 Copy content Toggle raw display
5959 T+1 T + 1 Copy content Toggle raw display
6161 T T Copy content Toggle raw display
6767 T+1 T + 1 Copy content Toggle raw display
7171 T1 T - 1 Copy content Toggle raw display
7373 T T Copy content Toggle raw display
7979 T T Copy content Toggle raw display
8383 T T Copy content Toggle raw display
8989 T+1 T + 1 Copy content Toggle raw display
9797 T+1 T + 1 Copy content Toggle raw display
show more
show less