Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [704,1,Mod(65,704)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(704, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 1]))
N = Newforms(chi, 1, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("704.65");
S:= CuspForms(chi, 1);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 704.h (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 44) |
Projective image: | |
Projective field: | Galois closure of 3.1.44.1 |
Artin image: | |
Artin field: | Galois closure of 6.0.247808.1 |
Stark unit: | Root of |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
11.b | odd | 2 | 1 | CM by |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 704.1.h.a | 1 | |
4.b | odd | 2 | 1 | 704.1.h.b | 1 | ||
8.b | even | 2 | 1 | 176.1.h.a | 1 | ||
8.d | odd | 2 | 1 | 44.1.d.a | ✓ | 1 | |
11.b | odd | 2 | 1 | CM | 704.1.h.a | 1 | |
16.e | even | 4 | 2 | 2816.1.b.a | 2 | ||
16.f | odd | 4 | 2 | 2816.1.b.b | 2 | ||
24.f | even | 2 | 1 | 396.1.f.a | 1 | ||
24.h | odd | 2 | 1 | 1584.1.j.a | 1 | ||
40.e | odd | 2 | 1 | 1100.1.f.a | 1 | ||
40.k | even | 4 | 2 | 1100.1.e.a | 2 | ||
44.c | even | 2 | 1 | 704.1.h.b | 1 | ||
56.e | even | 2 | 1 | 2156.1.h.a | 1 | ||
56.k | odd | 6 | 2 | 2156.1.k.b | 2 | ||
56.m | even | 6 | 2 | 2156.1.k.a | 2 | ||
72.l | even | 6 | 2 | 3564.1.m.a | 2 | ||
72.p | odd | 6 | 2 | 3564.1.m.b | 2 | ||
88.b | odd | 2 | 1 | 176.1.h.a | 1 | ||
88.g | even | 2 | 1 | 44.1.d.a | ✓ | 1 | |
88.k | even | 10 | 4 | 484.1.f.a | 4 | ||
88.l | odd | 10 | 4 | 484.1.f.a | 4 | ||
88.o | even | 10 | 4 | 1936.1.n.a | 4 | ||
88.p | odd | 10 | 4 | 1936.1.n.a | 4 | ||
176.i | even | 4 | 2 | 2816.1.b.b | 2 | ||
176.l | odd | 4 | 2 | 2816.1.b.a | 2 | ||
264.m | even | 2 | 1 | 1584.1.j.a | 1 | ||
264.p | odd | 2 | 1 | 396.1.f.a | 1 | ||
440.c | even | 2 | 1 | 1100.1.f.a | 1 | ||
440.w | odd | 4 | 2 | 1100.1.e.a | 2 | ||
616.g | odd | 2 | 1 | 2156.1.h.a | 1 | ||
616.y | even | 6 | 2 | 2156.1.k.b | 2 | ||
616.z | odd | 6 | 2 | 2156.1.k.a | 2 | ||
792.s | odd | 6 | 2 | 3564.1.m.a | 2 | ||
792.z | even | 6 | 2 | 3564.1.m.b | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
44.1.d.a | ✓ | 1 | 8.d | odd | 2 | 1 | |
44.1.d.a | ✓ | 1 | 88.g | even | 2 | 1 | |
176.1.h.a | 1 | 8.b | even | 2 | 1 | ||
176.1.h.a | 1 | 88.b | odd | 2 | 1 | ||
396.1.f.a | 1 | 24.f | even | 2 | 1 | ||
396.1.f.a | 1 | 264.p | odd | 2 | 1 | ||
484.1.f.a | 4 | 88.k | even | 10 | 4 | ||
484.1.f.a | 4 | 88.l | odd | 10 | 4 | ||
704.1.h.a | 1 | 1.a | even | 1 | 1 | trivial | |
704.1.h.a | 1 | 11.b | odd | 2 | 1 | CM | |
704.1.h.b | 1 | 4.b | odd | 2 | 1 | ||
704.1.h.b | 1 | 44.c | even | 2 | 1 | ||
1100.1.e.a | 2 | 40.k | even | 4 | 2 | ||
1100.1.e.a | 2 | 440.w | odd | 4 | 2 | ||
1100.1.f.a | 1 | 40.e | odd | 2 | 1 | ||
1100.1.f.a | 1 | 440.c | even | 2 | 1 | ||
1584.1.j.a | 1 | 24.h | odd | 2 | 1 | ||
1584.1.j.a | 1 | 264.m | even | 2 | 1 | ||
1936.1.n.a | 4 | 88.o | even | 10 | 4 | ||
1936.1.n.a | 4 | 88.p | odd | 10 | 4 | ||
2156.1.h.a | 1 | 56.e | even | 2 | 1 | ||
2156.1.h.a | 1 | 616.g | odd | 2 | 1 | ||
2156.1.k.a | 2 | 56.m | even | 6 | 2 | ||
2156.1.k.a | 2 | 616.z | odd | 6 | 2 | ||
2156.1.k.b | 2 | 56.k | odd | 6 | 2 | ||
2156.1.k.b | 2 | 616.y | even | 6 | 2 | ||
2816.1.b.a | 2 | 16.e | even | 4 | 2 | ||
2816.1.b.a | 2 | 176.l | odd | 4 | 2 | ||
2816.1.b.b | 2 | 16.f | odd | 4 | 2 | ||
2816.1.b.b | 2 | 176.i | even | 4 | 2 | ||
3564.1.m.a | 2 | 72.l | even | 6 | 2 | ||
3564.1.m.a | 2 | 792.s | odd | 6 | 2 | ||
3564.1.m.b | 2 | 72.p | odd | 6 | 2 | ||
3564.1.m.b | 2 | 792.z | even | 6 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .