Properties

Label 1100.1.e.a
Level 11001100
Weight 11
Character orbit 1100.e
Analytic conductor 0.5490.549
Analytic rank 00
Dimension 22
Projective image D3D_{3}
CM discriminant -11
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1100,1,Mod(549,1100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1100, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1100.549");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 1100=225211 1100 = 2^{2} \cdot 5^{2} \cdot 11
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1100.e (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.5489715138960.548971513896
Analytic rank: 00
Dimension: 22
Coefficient field: Q(i)\Q(i)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 44)
Projective image: D3D_{3}
Projective field: Galois closure of 3.1.44.1
Artin image: C4×S3C_4\times S_3
Artin field: Galois closure of 12.0.7320500000000.2

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == qiq3+q11iq23iq27q31iq33+iq372iq47q49+2iq53+q59+iq67q69q71q81+q89+iq93+iq97+O(q100) q - i q^{3} + q^{11} - i q^{23} - i q^{27} - q^{31} - i q^{33} + i q^{37} - 2 i q^{47} - q^{49} + 2 i q^{53} + q^{59} + i q^{67} - q^{69} - q^{71} - q^{81} + q^{89} + i q^{93} + i q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+2q112q312q49+2q592q692q712q81+2q89+O(q100) 2 q + 2 q^{11} - 2 q^{31} - 2 q^{49} + 2 q^{59} - 2 q^{69} - 2 q^{71} - 2 q^{81} + 2 q^{89}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1100Z)×\left(\mathbb{Z}/1100\mathbb{Z}\right)^\times.

nn 101101 177177 551551
χ(n)\chi(n) 1-1 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
549.1
1.00000i
1.00000i
0 1.00000i 0 0 0 0 0 0 0
549.2 0 1.00000i 0 0 0 0 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 CM by Q(11)\Q(\sqrt{-11})
5.b even 2 1 inner
55.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1100.1.e.a 2
5.b even 2 1 inner 1100.1.e.a 2
5.c odd 4 1 44.1.d.a 1
5.c odd 4 1 1100.1.f.a 1
11.b odd 2 1 CM 1100.1.e.a 2
15.e even 4 1 396.1.f.a 1
20.e even 4 1 176.1.h.a 1
35.f even 4 1 2156.1.h.a 1
35.k even 12 2 2156.1.k.a 2
35.l odd 12 2 2156.1.k.b 2
40.i odd 4 1 704.1.h.b 1
40.k even 4 1 704.1.h.a 1
45.k odd 12 2 3564.1.m.b 2
45.l even 12 2 3564.1.m.a 2
55.d odd 2 1 inner 1100.1.e.a 2
55.e even 4 1 44.1.d.a 1
55.e even 4 1 1100.1.f.a 1
55.k odd 20 4 484.1.f.a 4
55.l even 20 4 484.1.f.a 4
60.l odd 4 1 1584.1.j.a 1
80.i odd 4 1 2816.1.b.b 2
80.j even 4 1 2816.1.b.a 2
80.s even 4 1 2816.1.b.a 2
80.t odd 4 1 2816.1.b.b 2
165.l odd 4 1 396.1.f.a 1
220.i odd 4 1 176.1.h.a 1
220.v even 20 4 1936.1.n.a 4
220.w odd 20 4 1936.1.n.a 4
385.l odd 4 1 2156.1.h.a 1
385.bc even 12 2 2156.1.k.b 2
385.bf odd 12 2 2156.1.k.a 2
440.t even 4 1 704.1.h.b 1
440.w odd 4 1 704.1.h.a 1
495.bd odd 12 2 3564.1.m.a 2
495.bf even 12 2 3564.1.m.b 2
660.q even 4 1 1584.1.j.a 1
880.q odd 4 1 2816.1.b.a 2
880.t even 4 1 2816.1.b.b 2
880.bl even 4 1 2816.1.b.b 2
880.bm odd 4 1 2816.1.b.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
44.1.d.a 1 5.c odd 4 1
44.1.d.a 1 55.e even 4 1
176.1.h.a 1 20.e even 4 1
176.1.h.a 1 220.i odd 4 1
396.1.f.a 1 15.e even 4 1
396.1.f.a 1 165.l odd 4 1
484.1.f.a 4 55.k odd 20 4
484.1.f.a 4 55.l even 20 4
704.1.h.a 1 40.k even 4 1
704.1.h.a 1 440.w odd 4 1
704.1.h.b 1 40.i odd 4 1
704.1.h.b 1 440.t even 4 1
1100.1.e.a 2 1.a even 1 1 trivial
1100.1.e.a 2 5.b even 2 1 inner
1100.1.e.a 2 11.b odd 2 1 CM
1100.1.e.a 2 55.d odd 2 1 inner
1100.1.f.a 1 5.c odd 4 1
1100.1.f.a 1 55.e even 4 1
1584.1.j.a 1 60.l odd 4 1
1584.1.j.a 1 660.q even 4 1
1936.1.n.a 4 220.v even 20 4
1936.1.n.a 4 220.w odd 20 4
2156.1.h.a 1 35.f even 4 1
2156.1.h.a 1 385.l odd 4 1
2156.1.k.a 2 35.k even 12 2
2156.1.k.a 2 385.bf odd 12 2
2156.1.k.b 2 35.l odd 12 2
2156.1.k.b 2 385.bc even 12 2
2816.1.b.a 2 80.j even 4 1
2816.1.b.a 2 80.s even 4 1
2816.1.b.a 2 880.q odd 4 1
2816.1.b.a 2 880.bm odd 4 1
2816.1.b.b 2 80.i odd 4 1
2816.1.b.b 2 80.t odd 4 1
2816.1.b.b 2 880.t even 4 1
2816.1.b.b 2 880.bl even 4 1
3564.1.m.a 2 45.l even 12 2
3564.1.m.a 2 495.bd odd 12 2
3564.1.m.b 2 45.k odd 12 2
3564.1.m.b 2 495.bf even 12 2

Hecke kernels

This newform subspace is the entire newspace S1new(1100,[χ])S_{1}^{\mathrm{new}}(1100, [\chi]).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+1 T^{2} + 1 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 (T1)2 (T - 1)^{2} Copy content Toggle raw display
1313 T2 T^{2} Copy content Toggle raw display
1717 T2 T^{2} Copy content Toggle raw display
1919 T2 T^{2} Copy content Toggle raw display
2323 T2+1 T^{2} + 1 Copy content Toggle raw display
2929 T2 T^{2} Copy content Toggle raw display
3131 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
3737 T2+1 T^{2} + 1 Copy content Toggle raw display
4141 T2 T^{2} Copy content Toggle raw display
4343 T2 T^{2} Copy content Toggle raw display
4747 T2+4 T^{2} + 4 Copy content Toggle raw display
5353 T2+4 T^{2} + 4 Copy content Toggle raw display
5959 (T1)2 (T - 1)^{2} Copy content Toggle raw display
6161 T2 T^{2} Copy content Toggle raw display
6767 T2+1 T^{2} + 1 Copy content Toggle raw display
7171 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
7373 T2 T^{2} Copy content Toggle raw display
7979 T2 T^{2} Copy content Toggle raw display
8383 T2 T^{2} Copy content Toggle raw display
8989 (T1)2 (T - 1)^{2} Copy content Toggle raw display
9797 T2+1 T^{2} + 1 Copy content Toggle raw display
show more
show less