L(s) = 1 | + (2.11 + 1.53i)3-s + (−1.17 − 0.381i)5-s + (−3.07 + 2.23i)7-s + (1.19 + 3.66i)9-s + (−2.80 + 1.76i)11-s + (−1.90 − 2.61i)15-s + (3.35 + 1.08i)17-s + (−2.07 + 2.85i)19-s − 9.95·21-s + 6i·23-s + (−2.80 − 2.04i)25-s + (−0.690 + 2.12i)27-s + (−4.25 + 3.09i)29-s + (6.88 − 2.23i)31-s + (−8.66 − 0.587i)33-s + ⋯ |
L(s) = 1 | + (1.22 + 0.888i)3-s + (−0.525 − 0.170i)5-s + (−1.16 + 0.845i)7-s + (0.396 + 1.22i)9-s + (−0.846 + 0.531i)11-s + (−0.491 − 0.675i)15-s + (0.813 + 0.264i)17-s + (−0.475 + 0.654i)19-s − 2.17·21-s + 1.25i·23-s + (−0.561 − 0.408i)25-s + (−0.132 + 0.409i)27-s + (−0.789 + 0.573i)29-s + (1.23 − 0.401i)31-s + (−1.50 − 0.102i)33-s + ⋯ |
Λ(s)=(=(704s/2ΓC(s)L(s)(−0.674−0.738i)Λ(2−s)
Λ(s)=(=(704s/2ΓC(s+1/2)L(s)(−0.674−0.738i)Λ(1−s)
Degree: |
2 |
Conductor: |
704
= 26⋅11
|
Sign: |
−0.674−0.738i
|
Analytic conductor: |
5.62146 |
Root analytic conductor: |
2.37096 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ704(479,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 704, ( :1/2), −0.674−0.738i)
|
Particular Values
L(1) |
≈ |
0.574477+1.30184i |
L(21) |
≈ |
0.574477+1.30184i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1+(2.80−1.76i)T |
good | 3 | 1+(−2.11−1.53i)T+(0.927+2.85i)T2 |
| 5 | 1+(1.17+0.381i)T+(4.04+2.93i)T2 |
| 7 | 1+(3.07−2.23i)T+(2.16−6.65i)T2 |
| 13 | 1+(−10.5+7.64i)T2 |
| 17 | 1+(−3.35−1.08i)T+(13.7+9.99i)T2 |
| 19 | 1+(2.07−2.85i)T+(−5.87−18.0i)T2 |
| 23 | 1−6iT−23T2 |
| 29 | 1+(4.25−3.09i)T+(8.96−27.5i)T2 |
| 31 | 1+(−6.88+2.23i)T+(25.0−18.2i)T2 |
| 37 | 1+(−2.17−3i)T+(−11.4+35.1i)T2 |
| 41 | 1+(−3.35+4.61i)T+(−12.6−38.9i)T2 |
| 43 | 1−12.7iT−43T2 |
| 47 | 1+(−5.70+7.85i)T+(−14.5−44.6i)T2 |
| 53 | 1+(3.07−i)T+(42.8−31.1i)T2 |
| 59 | 1+(−8.39+6.10i)T+(18.2−56.1i)T2 |
| 61 | 1+(−3.52+10.8i)T+(−49.3−35.8i)T2 |
| 67 | 1+14.5T+67T2 |
| 71 | 1+(−11.4−3.70i)T+(57.4+41.7i)T2 |
| 73 | 1+(0.590+0.812i)T+(−22.5+69.4i)T2 |
| 79 | 1+(−1.45−4.47i)T+(−63.9+46.4i)T2 |
| 83 | 1+(0.427+0.138i)T+(67.1+48.7i)T2 |
| 89 | 1−1.85T+89T2 |
| 97 | 1+(−2.57−7.91i)T+(−78.4+57.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.32045409149158447937619964151, −9.767262066533916556223228807950, −9.201355838601455622256566792377, −8.178059126667805983489726358365, −7.70838320909545344309751359477, −6.25717881535089602159353792631, −5.21269034509867009846261279524, −3.99317153873888929063525718285, −3.27503150296644360062005141052, −2.32173378986605508682491081513,
0.61783188027387094603572973085, 2.51854160385647139069969964040, 3.23004168097470182971668194535, 4.21612983338860037628170059177, 5.90052801333211004223245654161, 6.95581919951927654898409282197, 7.50781584046559185987019879526, 8.250806473399698859689067360079, 9.102709125953566633052105452565, 10.07347092403812978773815201524