L(s) = 1 | + (2.11 + 1.53i)3-s + (−1.17 − 0.381i)5-s + (−3.07 + 2.23i)7-s + (1.19 + 3.66i)9-s + (−2.80 + 1.76i)11-s + (−1.90 − 2.61i)15-s + (3.35 + 1.08i)17-s + (−2.07 + 2.85i)19-s − 9.95·21-s + 6i·23-s + (−2.80 − 2.04i)25-s + (−0.690 + 2.12i)27-s + (−4.25 + 3.09i)29-s + (6.88 − 2.23i)31-s + (−8.66 − 0.587i)33-s + ⋯ |
L(s) = 1 | + (1.22 + 0.888i)3-s + (−0.525 − 0.170i)5-s + (−1.16 + 0.845i)7-s + (0.396 + 1.22i)9-s + (−0.846 + 0.531i)11-s + (−0.491 − 0.675i)15-s + (0.813 + 0.264i)17-s + (−0.475 + 0.654i)19-s − 2.17·21-s + 1.25i·23-s + (−0.561 − 0.408i)25-s + (−0.132 + 0.409i)27-s + (−0.789 + 0.573i)29-s + (1.23 − 0.401i)31-s + (−1.50 − 0.102i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 704 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.674 - 0.738i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 704 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.674 - 0.738i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.574477 + 1.30184i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.574477 + 1.30184i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 11 | \( 1 + (2.80 - 1.76i)T \) |
good | 3 | \( 1 + (-2.11 - 1.53i)T + (0.927 + 2.85i)T^{2} \) |
| 5 | \( 1 + (1.17 + 0.381i)T + (4.04 + 2.93i)T^{2} \) |
| 7 | \( 1 + (3.07 - 2.23i)T + (2.16 - 6.65i)T^{2} \) |
| 13 | \( 1 + (-10.5 + 7.64i)T^{2} \) |
| 17 | \( 1 + (-3.35 - 1.08i)T + (13.7 + 9.99i)T^{2} \) |
| 19 | \( 1 + (2.07 - 2.85i)T + (-5.87 - 18.0i)T^{2} \) |
| 23 | \( 1 - 6iT - 23T^{2} \) |
| 29 | \( 1 + (4.25 - 3.09i)T + (8.96 - 27.5i)T^{2} \) |
| 31 | \( 1 + (-6.88 + 2.23i)T + (25.0 - 18.2i)T^{2} \) |
| 37 | \( 1 + (-2.17 - 3i)T + (-11.4 + 35.1i)T^{2} \) |
| 41 | \( 1 + (-3.35 + 4.61i)T + (-12.6 - 38.9i)T^{2} \) |
| 43 | \( 1 - 12.7iT - 43T^{2} \) |
| 47 | \( 1 + (-5.70 + 7.85i)T + (-14.5 - 44.6i)T^{2} \) |
| 53 | \( 1 + (3.07 - i)T + (42.8 - 31.1i)T^{2} \) |
| 59 | \( 1 + (-8.39 + 6.10i)T + (18.2 - 56.1i)T^{2} \) |
| 61 | \( 1 + (-3.52 + 10.8i)T + (-49.3 - 35.8i)T^{2} \) |
| 67 | \( 1 + 14.5T + 67T^{2} \) |
| 71 | \( 1 + (-11.4 - 3.70i)T + (57.4 + 41.7i)T^{2} \) |
| 73 | \( 1 + (0.590 + 0.812i)T + (-22.5 + 69.4i)T^{2} \) |
| 79 | \( 1 + (-1.45 - 4.47i)T + (-63.9 + 46.4i)T^{2} \) |
| 83 | \( 1 + (0.427 + 0.138i)T + (67.1 + 48.7i)T^{2} \) |
| 89 | \( 1 - 1.85T + 89T^{2} \) |
| 97 | \( 1 + (-2.57 - 7.91i)T + (-78.4 + 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.32045409149158447937619964151, −9.767262066533916556223228807950, −9.201355838601455622256566792377, −8.178059126667805983489726358365, −7.70838320909545344309751359477, −6.25717881535089602159353792631, −5.21269034509867009846261279524, −3.99317153873888929063525718285, −3.27503150296644360062005141052, −2.32173378986605508682491081513,
0.61783188027387094603572973085, 2.51854160385647139069969964040, 3.23004168097470182971668194535, 4.21612983338860037628170059177, 5.90052801333211004223245654161, 6.95581919951927654898409282197, 7.50781584046559185987019879526, 8.250806473399698859689067360079, 9.102709125953566633052105452565, 10.07347092403812978773815201524