gp: [N,k,chi] = [704,2,Mod(95,704)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(704, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([5, 5, 7]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("704.95");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [8,0,8,0,0]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 7 1,\beta_1,\ldots,\beta_{7} 1 , β 1 , … , β 7 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring
β 1 \beta_{1} β 1 = = =
2 ζ 20 2\zeta_{20} 2 ζ 2 0
2*v
β 2 \beta_{2} β 2 = = =
ζ 20 2 \zeta_{20}^{2} ζ 2 0 2
v^2
β 3 \beta_{3} β 3 = = =
2 ζ 20 3 2\zeta_{20}^{3} 2 ζ 2 0 3
2*v^3
β 4 \beta_{4} β 4 = = =
ζ 20 4 \zeta_{20}^{4} ζ 2 0 4
v^4
β 5 \beta_{5} β 5 = = =
2 ζ 20 5 2\zeta_{20}^{5} 2 ζ 2 0 5
2*v^5
β 6 \beta_{6} β 6 = = =
ζ 20 6 \zeta_{20}^{6} ζ 2 0 6
v^6
β 7 \beta_{7} β 7 = = =
2 ζ 20 7 2\zeta_{20}^{7} 2 ζ 2 0 7
2*v^7
ζ 20 \zeta_{20} ζ 2 0 = = =
( β 1 ) / 2 ( \beta_1 ) / 2 ( β 1 ) / 2
(b1) / 2
ζ 20 2 \zeta_{20}^{2} ζ 2 0 2 = = =
β 2 \beta_{2} β 2
b2
ζ 20 3 \zeta_{20}^{3} ζ 2 0 3 = = =
( β 3 ) / 2 ( \beta_{3} ) / 2 ( β 3 ) / 2
(b3) / 2
ζ 20 4 \zeta_{20}^{4} ζ 2 0 4 = = =
β 4 \beta_{4} β 4
b4
ζ 20 5 \zeta_{20}^{5} ζ 2 0 5 = = =
( β 5 ) / 2 ( \beta_{5} ) / 2 ( β 5 ) / 2
(b5) / 2
ζ 20 6 \zeta_{20}^{6} ζ 2 0 6 = = =
β 6 \beta_{6} β 6
b6
ζ 20 7 \zeta_{20}^{7} ζ 2 0 7 = = =
( β 7 ) / 2 ( \beta_{7} ) / 2 ( β 7 ) / 2
(b7) / 2
Character values
We give the values of χ \chi χ on generators for ( Z / 704 Z ) × \left(\mathbb{Z}/704\mathbb{Z}\right)^\times ( Z / 7 0 4 Z ) × .
n n n
133 133 1 3 3
321 321 3 2 1
639 639 6 3 9
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
β 2 \beta_{2} β 2
− 1 -1 − 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( 704 , [ χ ] ) S_{2}^{\mathrm{new}}(704, [\chi]) S 2 n e w ( 7 0 4 , [ χ ] ) :
T 3 4 − 4 T 3 3 + 6 T 3 2 + T 3 + 1 T_{3}^{4} - 4T_{3}^{3} + 6T_{3}^{2} + T_{3} + 1 T 3 4 − 4 T 3 3 + 6 T 3 2 + T 3 + 1
T3^4 - 4*T3^3 + 6*T3^2 + T3 + 1
T 5 8 + 4 T 5 6 + 96 T 5 4 − 256 T 5 2 + 256 T_{5}^{8} + 4T_{5}^{6} + 96T_{5}^{4} - 256T_{5}^{2} + 256 T 5 8 + 4 T 5 6 + 9 6 T 5 4 − 2 5 6 T 5 2 + 2 5 6
T5^8 + 4*T5^6 + 96*T5^4 - 256*T5^2 + 256
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 8 T^{8} T 8
T^8
3 3 3
( T 4 − 4 T 3 + 6 T 2 + ⋯ + 1 ) 2 (T^{4} - 4 T^{3} + 6 T^{2} + \cdots + 1)^{2} ( T 4 − 4 T 3 + 6 T 2 + ⋯ + 1 ) 2
(T^4 - 4*T^3 + 6*T^2 + T + 1)^2
5 5 5
T 8 + 4 T 6 + ⋯ + 256 T^{8} + 4 T^{6} + \cdots + 256 T 8 + 4 T 6 + ⋯ + 2 5 6
T^8 + 4*T^6 + 96*T^4 - 256*T^2 + 256
7 7 7
T 8 + 160 T 4 + ⋯ + 6400 T^{8} + 160 T^{4} + \cdots + 6400 T 8 + 1 6 0 T 4 + ⋯ + 6 4 0 0
T^8 + 160*T^4 + 1600*T^2 + 6400
11 11 1 1
( T 4 + 9 T 3 + ⋯ + 121 ) 2 (T^{4} + 9 T^{3} + \cdots + 121)^{2} ( T 4 + 9 T 3 + ⋯ + 1 2 1 ) 2
(T^4 + 9*T^3 + 41*T^2 + 99*T + 121)^2
13 13 1 3
T 8 T^{8} T 8
T^8
17 17 1 7
( T 4 − 135 T + 405 ) 2 (T^{4} - 135 T + 405)^{2} ( T 4 − 1 3 5 T + 4 0 5 ) 2
(T^4 - 135*T + 405)^2
19 19 1 9
( T 4 + 15 T 3 + ⋯ + 405 ) 2 (T^{4} + 15 T^{3} + \cdots + 405)^{2} ( T 4 + 1 5 T 3 + ⋯ + 4 0 5 ) 2
(T^4 + 15*T^3 + 90*T^2 + 270*T + 405)^2
23 23 2 3
( T 2 + 36 ) 4 (T^{2} + 36)^{4} ( T 2 + 3 6 ) 4
(T^2 + 36)^4
29 29 2 9
T 8 + 100 T 6 + ⋯ + 4000000 T^{8} + 100 T^{6} + \cdots + 4000000 T 8 + 1 0 0 T 6 + ⋯ + 4 0 0 0 0 0 0
T^8 + 100*T^6 + 4000*T^4 + 4000000
31 31 3 1
T 8 − 80 T 6 + ⋯ + 160000 T^{8} - 80 T^{6} + \cdots + 160000 T 8 − 8 0 T 6 + ⋯ + 1 6 0 0 0 0
T^8 - 80*T^6 + 2400*T^4 + 8000*T^2 + 160000
37 37 3 7
T 8 − 144 T 6 + ⋯ + 1679616 T^{8} - 144 T^{6} + \cdots + 1679616 T 8 − 1 4 4 T 6 + ⋯ + 1 6 7 9 6 1 6
T^8 - 144*T^6 + 7776*T^4 + 46656*T^2 + 1679616
41 41 4 1
( T 4 + 135 T + 405 ) 2 (T^{4} + 135 T + 405)^{2} ( T 4 + 1 3 5 T + 4 0 5 ) 2
(T^4 + 135*T + 405)^2
43 43 4 3
( T 4 + 225 T 2 + 10125 ) 2 (T^{4} + 225 T^{2} + 10125)^{2} ( T 4 + 2 2 5 T 2 + 1 0 1 2 5 ) 2
(T^4 + 225*T^2 + 10125)^2
47 47 4 7
T 8 + 36 T 6 + ⋯ + 1679616 T^{8} + 36 T^{6} + \cdots + 1679616 T 8 + 3 6 T 6 + ⋯ + 1 6 7 9 6 1 6
T^8 + 36*T^6 + 7776*T^4 - 186624*T^2 + 1679616
53 53 5 3
T 8 − 16 T 6 + ⋯ + 256 T^{8} - 16 T^{6} + \cdots + 256 T 8 − 1 6 T 6 + ⋯ + 2 5 6
T^8 - 16*T^6 + 96*T^4 + 64*T^2 + 256
59 59 5 9
( T 4 − 9 T 3 + ⋯ + 17161 ) 2 (T^{4} - 9 T^{3} + \cdots + 17161)^{2} ( T 4 − 9 T 3 + ⋯ + 1 7 1 6 1 ) 2
(T^4 - 9*T^3 + 136*T^2 - 1834*T + 17161)^2
61 61 6 1
T 8 + 180 T 6 + ⋯ + 41990400 T^{8} + 180 T^{6} + \cdots + 41990400 T 8 + 1 8 0 T 6 + ⋯ + 4 1 9 9 0 4 0 0
T^8 + 180*T^6 + 12960*T^4 + 41990400
67 67 6 7
( T 2 + 9 T − 81 ) 4 (T^{2} + 9 T - 81)^{4} ( T 2 + 9 T − 8 1 ) 4
(T^2 + 9*T - 81)^4
71 71 7 1
T 8 − 144 T 6 + ⋯ + 429981696 T^{8} - 144 T^{6} + \cdots + 429981696 T 8 − 1 4 4 T 6 + ⋯ + 4 2 9 9 8 1 6 9 6
T^8 - 144*T^6 + 20736*T^4 - 2985984*T^2 + 429981696
73 73 7 3
( T 4 − 20 T 3 + ⋯ + 125 ) 2 (T^{4} - 20 T^{3} + \cdots + 125)^{2} ( T 4 − 2 0 T 3 + ⋯ + 1 2 5 ) 2
(T^4 - 20*T^3 + 100*T^2 + 125*T + 125)^2
79 79 7 9
T 8 + 2560 T 4 + ⋯ + 1638400 T^{8} + 2560 T^{4} + \cdots + 1638400 T 8 + 2 5 6 0 T 4 + ⋯ + 1 6 3 8 4 0 0
T^8 + 2560*T^4 + 102400*T^2 + 1638400
83 83 8 3
( T 4 − 5 T 3 + 20 T 2 + ⋯ + 5 ) 2 (T^{4} - 5 T^{3} + 20 T^{2} + \cdots + 5)^{2} ( T 4 − 5 T 3 + 2 0 T 2 + ⋯ + 5 ) 2
(T^4 - 5*T^3 + 20*T^2 + 20*T + 5)^2
89 89 8 9
( T 2 + 3 T − 9 ) 4 (T^{2} + 3 T - 9)^{4} ( T 2 + 3 T − 9 ) 4
(T^2 + 3*T - 9)^4
97 97 9 7
( T 4 − 17 T 3 + ⋯ + 3721 ) 2 (T^{4} - 17 T^{3} + \cdots + 3721)^{2} ( T 4 − 1 7 T 3 + ⋯ + 3 7 2 1 ) 2
(T^4 - 17*T^3 + 184*T^2 - 1098*T + 3721)^2
show more
show less