Properties

Label 704.2.s.d
Level 704704
Weight 22
Character orbit 704.s
Analytic conductor 5.6215.621
Analytic rank 00
Dimension 88
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [704,2,Mod(95,704)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(704, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 5, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("704.95");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 704=2611 704 = 2^{6} \cdot 11
Weight: k k == 2 2
Character orbit: [χ][\chi] == 704.s (of order 1010, degree 44, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 5.621468302305.62146830230
Analytic rank: 00
Dimension: 88
Relative dimension: 22 over Q(ζ10)\Q(\zeta_{10})
Coefficient field: Q(ζ20)\Q(\zeta_{20})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8x6+x4x2+1 x^{8} - x^{6} + x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 24 2^{4}
Twist minimal: yes
Sato-Tate group: SU(2)[C10]\mathrm{SU}(2)[C_{10}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(2β6+β4β2+2)q3+(β5+β3)q5+(β3+β1)q7+(2β63β2+3)q9+(β6+β43β21)q11++(5β6+3β4+β210)q99+O(q100) q + ( - 2 \beta_{6} + \beta_{4} - \beta_{2} + 2) q^{3} + ( - \beta_{5} + \beta_{3}) q^{5} + (\beta_{3} + \beta_1) q^{7} + ( - 2 \beta_{6} - 3 \beta_{2} + 3) q^{9} + ( - \beta_{6} + \beta_{4} - 3 \beta_{2} - 1) q^{11}+ \cdots + (5 \beta_{6} + 3 \beta_{4} + \beta_{2} - 10) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+8q3+14q918q1130q1918q2510q2738q33+14q49+30q5130q57+18q5936q67+40q7318q75+28q81+10q8312q89+74q99+O(q100) 8 q + 8 q^{3} + 14 q^{9} - 18 q^{11} - 30 q^{19} - 18 q^{25} - 10 q^{27} - 38 q^{33} + 14 q^{49} + 30 q^{51} - 30 q^{57} + 18 q^{59} - 36 q^{67} + 40 q^{73} - 18 q^{75} + 28 q^{81} + 10 q^{83} - 12 q^{89}+ \cdots - 74 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring

β1\beta_{1}== 2ζ20 2\zeta_{20} Copy content Toggle raw display
β2\beta_{2}== ζ202 \zeta_{20}^{2} Copy content Toggle raw display
β3\beta_{3}== 2ζ203 2\zeta_{20}^{3} Copy content Toggle raw display
β4\beta_{4}== ζ204 \zeta_{20}^{4} Copy content Toggle raw display
β5\beta_{5}== 2ζ205 2\zeta_{20}^{5} Copy content Toggle raw display
β6\beta_{6}== ζ206 \zeta_{20}^{6} Copy content Toggle raw display
β7\beta_{7}== 2ζ207 2\zeta_{20}^{7} Copy content Toggle raw display
ζ20\zeta_{20}== (β1)/2 ( \beta_1 ) / 2 Copy content Toggle raw display
ζ202\zeta_{20}^{2}== β2 \beta_{2} Copy content Toggle raw display
ζ203\zeta_{20}^{3}== (β3)/2 ( \beta_{3} ) / 2 Copy content Toggle raw display
ζ204\zeta_{20}^{4}== β4 \beta_{4} Copy content Toggle raw display
ζ205\zeta_{20}^{5}== (β5)/2 ( \beta_{5} ) / 2 Copy content Toggle raw display
ζ206\zeta_{20}^{6}== β6 \beta_{6} Copy content Toggle raw display
ζ207\zeta_{20}^{7}== (β7)/2 ( \beta_{7} ) / 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/704Z)×\left(\mathbb{Z}/704\mathbb{Z}\right)^\times.

nn 133133 321321 639639
χ(n)\chi(n) 1-1 β2\beta_{2} 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
95.1
0.587785 0.809017i
−0.587785 + 0.809017i
0.587785 + 0.809017i
−0.587785 0.809017i
−0.951057 + 0.309017i
0.951057 0.309017i
−0.951057 0.309017i
0.951057 + 0.309017i
0 −0.118034 + 0.363271i 0 −1.90211 2.61803i 0 −0.726543 2.23607i 0 2.30902 + 1.67760i 0
95.2 0 −0.118034 + 0.363271i 0 1.90211 + 2.61803i 0 0.726543 + 2.23607i 0 2.30902 + 1.67760i 0
415.1 0 −0.118034 0.363271i 0 −1.90211 + 2.61803i 0 −0.726543 + 2.23607i 0 2.30902 1.67760i 0
415.2 0 −0.118034 0.363271i 0 1.90211 2.61803i 0 0.726543 2.23607i 0 2.30902 1.67760i 0
479.1 0 2.11803 + 1.53884i 0 −1.17557 0.381966i 0 −3.07768 + 2.23607i 0 1.19098 + 3.66547i 0
479.2 0 2.11803 + 1.53884i 0 1.17557 + 0.381966i 0 3.07768 2.23607i 0 1.19098 + 3.66547i 0
607.1 0 2.11803 1.53884i 0 −1.17557 + 0.381966i 0 −3.07768 2.23607i 0 1.19098 3.66547i 0
607.2 0 2.11803 1.53884i 0 1.17557 0.381966i 0 3.07768 + 2.23607i 0 1.19098 3.66547i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 95.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 inner
11.d odd 10 1 inner
88.k even 10 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 704.2.s.d yes 8
4.b odd 2 1 704.2.s.a 8
8.b even 2 1 704.2.s.a 8
8.d odd 2 1 inner 704.2.s.d yes 8
11.d odd 10 1 inner 704.2.s.d yes 8
44.g even 10 1 704.2.s.a 8
88.k even 10 1 inner 704.2.s.d yes 8
88.p odd 10 1 704.2.s.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
704.2.s.a 8 4.b odd 2 1
704.2.s.a 8 8.b even 2 1
704.2.s.a 8 44.g even 10 1
704.2.s.a 8 88.p odd 10 1
704.2.s.d yes 8 1.a even 1 1 trivial
704.2.s.d yes 8 8.d odd 2 1 inner
704.2.s.d yes 8 11.d odd 10 1 inner
704.2.s.d yes 8 88.k even 10 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(704,[χ])S_{2}^{\mathrm{new}}(704, [\chi]):

T344T33+6T32+T3+1 T_{3}^{4} - 4T_{3}^{3} + 6T_{3}^{2} + T_{3} + 1 Copy content Toggle raw display
T58+4T56+96T54256T52+256 T_{5}^{8} + 4T_{5}^{6} + 96T_{5}^{4} - 256T_{5}^{2} + 256 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8 T^{8} Copy content Toggle raw display
33 (T44T3+6T2++1)2 (T^{4} - 4 T^{3} + 6 T^{2} + \cdots + 1)^{2} Copy content Toggle raw display
55 T8+4T6++256 T^{8} + 4 T^{6} + \cdots + 256 Copy content Toggle raw display
77 T8+160T4++6400 T^{8} + 160 T^{4} + \cdots + 6400 Copy content Toggle raw display
1111 (T4+9T3++121)2 (T^{4} + 9 T^{3} + \cdots + 121)^{2} Copy content Toggle raw display
1313 T8 T^{8} Copy content Toggle raw display
1717 (T4135T+405)2 (T^{4} - 135 T + 405)^{2} Copy content Toggle raw display
1919 (T4+15T3++405)2 (T^{4} + 15 T^{3} + \cdots + 405)^{2} Copy content Toggle raw display
2323 (T2+36)4 (T^{2} + 36)^{4} Copy content Toggle raw display
2929 T8+100T6++4000000 T^{8} + 100 T^{6} + \cdots + 4000000 Copy content Toggle raw display
3131 T880T6++160000 T^{8} - 80 T^{6} + \cdots + 160000 Copy content Toggle raw display
3737 T8144T6++1679616 T^{8} - 144 T^{6} + \cdots + 1679616 Copy content Toggle raw display
4141 (T4+135T+405)2 (T^{4} + 135 T + 405)^{2} Copy content Toggle raw display
4343 (T4+225T2+10125)2 (T^{4} + 225 T^{2} + 10125)^{2} Copy content Toggle raw display
4747 T8+36T6++1679616 T^{8} + 36 T^{6} + \cdots + 1679616 Copy content Toggle raw display
5353 T816T6++256 T^{8} - 16 T^{6} + \cdots + 256 Copy content Toggle raw display
5959 (T49T3++17161)2 (T^{4} - 9 T^{3} + \cdots + 17161)^{2} Copy content Toggle raw display
6161 T8+180T6++41990400 T^{8} + 180 T^{6} + \cdots + 41990400 Copy content Toggle raw display
6767 (T2+9T81)4 (T^{2} + 9 T - 81)^{4} Copy content Toggle raw display
7171 T8144T6++429981696 T^{8} - 144 T^{6} + \cdots + 429981696 Copy content Toggle raw display
7373 (T420T3++125)2 (T^{4} - 20 T^{3} + \cdots + 125)^{2} Copy content Toggle raw display
7979 T8+2560T4++1638400 T^{8} + 2560 T^{4} + \cdots + 1638400 Copy content Toggle raw display
8383 (T45T3+20T2++5)2 (T^{4} - 5 T^{3} + 20 T^{2} + \cdots + 5)^{2} Copy content Toggle raw display
8989 (T2+3T9)4 (T^{2} + 3 T - 9)^{4} Copy content Toggle raw display
9797 (T417T3++3721)2 (T^{4} - 17 T^{3} + \cdots + 3721)^{2} Copy content Toggle raw display
show more
show less