Properties

Label 704.2.s.d
Level $704$
Weight $2$
Character orbit 704.s
Analytic conductor $5.621$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [704,2,Mod(95,704)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(704, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 5, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("704.95");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 704 = 2^{6} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 704.s (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.62146830230\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\Q(\zeta_{20})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 2 \beta_{6} + \beta_{4} - \beta_{2} + 2) q^{3} + ( - \beta_{5} + \beta_{3}) q^{5} + (\beta_{3} + \beta_1) q^{7} + ( - 2 \beta_{6} - 3 \beta_{2} + 3) q^{9} + ( - \beta_{6} + \beta_{4} - 3 \beta_{2} - 1) q^{11}+ \cdots + (5 \beta_{6} + 3 \beta_{4} + \beta_{2} - 10) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{3} + 14 q^{9} - 18 q^{11} - 30 q^{19} - 18 q^{25} - 10 q^{27} - 38 q^{33} + 14 q^{49} + 30 q^{51} - 30 q^{57} + 18 q^{59} - 36 q^{67} + 40 q^{73} - 18 q^{75} + 28 q^{81} + 10 q^{83} - 12 q^{89}+ \cdots - 74 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( 2\zeta_{20} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \zeta_{20}^{2} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 2\zeta_{20}^{3} \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \zeta_{20}^{4} \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( 2\zeta_{20}^{5} \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( \zeta_{20}^{6} \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( 2\zeta_{20}^{7} \) Copy content Toggle raw display
\(\zeta_{20}\)\(=\) \( ( \beta_1 ) / 2 \) Copy content Toggle raw display
\(\zeta_{20}^{2}\)\(=\) \( \beta_{2} \) Copy content Toggle raw display
\(\zeta_{20}^{3}\)\(=\) \( ( \beta_{3} ) / 2 \) Copy content Toggle raw display
\(\zeta_{20}^{4}\)\(=\) \( \beta_{4} \) Copy content Toggle raw display
\(\zeta_{20}^{5}\)\(=\) \( ( \beta_{5} ) / 2 \) Copy content Toggle raw display
\(\zeta_{20}^{6}\)\(=\) \( \beta_{6} \) Copy content Toggle raw display
\(\zeta_{20}^{7}\)\(=\) \( ( \beta_{7} ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/704\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(321\) \(639\)
\(\chi(n)\) \(-1\) \(\beta_{2}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
95.1
0.587785 0.809017i
−0.587785 + 0.809017i
0.587785 + 0.809017i
−0.587785 0.809017i
−0.951057 + 0.309017i
0.951057 0.309017i
−0.951057 0.309017i
0.951057 + 0.309017i
0 −0.118034 + 0.363271i 0 −1.90211 2.61803i 0 −0.726543 2.23607i 0 2.30902 + 1.67760i 0
95.2 0 −0.118034 + 0.363271i 0 1.90211 + 2.61803i 0 0.726543 + 2.23607i 0 2.30902 + 1.67760i 0
415.1 0 −0.118034 0.363271i 0 −1.90211 + 2.61803i 0 −0.726543 + 2.23607i 0 2.30902 1.67760i 0
415.2 0 −0.118034 0.363271i 0 1.90211 2.61803i 0 0.726543 2.23607i 0 2.30902 1.67760i 0
479.1 0 2.11803 + 1.53884i 0 −1.17557 0.381966i 0 −3.07768 + 2.23607i 0 1.19098 + 3.66547i 0
479.2 0 2.11803 + 1.53884i 0 1.17557 + 0.381966i 0 3.07768 2.23607i 0 1.19098 + 3.66547i 0
607.1 0 2.11803 1.53884i 0 −1.17557 + 0.381966i 0 −3.07768 2.23607i 0 1.19098 3.66547i 0
607.2 0 2.11803 1.53884i 0 1.17557 0.381966i 0 3.07768 + 2.23607i 0 1.19098 3.66547i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 95.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 inner
11.d odd 10 1 inner
88.k even 10 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 704.2.s.d yes 8
4.b odd 2 1 704.2.s.a 8
8.b even 2 1 704.2.s.a 8
8.d odd 2 1 inner 704.2.s.d yes 8
11.d odd 10 1 inner 704.2.s.d yes 8
44.g even 10 1 704.2.s.a 8
88.k even 10 1 inner 704.2.s.d yes 8
88.p odd 10 1 704.2.s.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
704.2.s.a 8 4.b odd 2 1
704.2.s.a 8 8.b even 2 1
704.2.s.a 8 44.g even 10 1
704.2.s.a 8 88.p odd 10 1
704.2.s.d yes 8 1.a even 1 1 trivial
704.2.s.d yes 8 8.d odd 2 1 inner
704.2.s.d yes 8 11.d odd 10 1 inner
704.2.s.d yes 8 88.k even 10 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(704, [\chi])\):

\( T_{3}^{4} - 4T_{3}^{3} + 6T_{3}^{2} + T_{3} + 1 \) Copy content Toggle raw display
\( T_{5}^{8} + 4T_{5}^{6} + 96T_{5}^{4} - 256T_{5}^{2} + 256 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( (T^{4} - 4 T^{3} + 6 T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{8} + 4 T^{6} + \cdots + 256 \) Copy content Toggle raw display
$7$ \( T^{8} + 160 T^{4} + \cdots + 6400 \) Copy content Toggle raw display
$11$ \( (T^{4} + 9 T^{3} + \cdots + 121)^{2} \) Copy content Toggle raw display
$13$ \( T^{8} \) Copy content Toggle raw display
$17$ \( (T^{4} - 135 T + 405)^{2} \) Copy content Toggle raw display
$19$ \( (T^{4} + 15 T^{3} + \cdots + 405)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 36)^{4} \) Copy content Toggle raw display
$29$ \( T^{8} + 100 T^{6} + \cdots + 4000000 \) Copy content Toggle raw display
$31$ \( T^{8} - 80 T^{6} + \cdots + 160000 \) Copy content Toggle raw display
$37$ \( T^{8} - 144 T^{6} + \cdots + 1679616 \) Copy content Toggle raw display
$41$ \( (T^{4} + 135 T + 405)^{2} \) Copy content Toggle raw display
$43$ \( (T^{4} + 225 T^{2} + 10125)^{2} \) Copy content Toggle raw display
$47$ \( T^{8} + 36 T^{6} + \cdots + 1679616 \) Copy content Toggle raw display
$53$ \( T^{8} - 16 T^{6} + \cdots + 256 \) Copy content Toggle raw display
$59$ \( (T^{4} - 9 T^{3} + \cdots + 17161)^{2} \) Copy content Toggle raw display
$61$ \( T^{8} + 180 T^{6} + \cdots + 41990400 \) Copy content Toggle raw display
$67$ \( (T^{2} + 9 T - 81)^{4} \) Copy content Toggle raw display
$71$ \( T^{8} - 144 T^{6} + \cdots + 429981696 \) Copy content Toggle raw display
$73$ \( (T^{4} - 20 T^{3} + \cdots + 125)^{2} \) Copy content Toggle raw display
$79$ \( T^{8} + 2560 T^{4} + \cdots + 1638400 \) Copy content Toggle raw display
$83$ \( (T^{4} - 5 T^{3} + 20 T^{2} + \cdots + 5)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 3 T - 9)^{4} \) Copy content Toggle raw display
$97$ \( (T^{4} - 17 T^{3} + \cdots + 3721)^{2} \) Copy content Toggle raw display
show more
show less