L(s) = 1 | + (−0.142 + 0.989i)2-s + (1.25 − 0.368i)3-s + (−0.959 − 0.281i)4-s + (0.186 + 1.29i)6-s + (0.415 − 0.909i)8-s + (0.601 − 0.386i)9-s + (0.345 + 0.755i)11-s − 1.30·12-s + (0.841 + 0.540i)16-s + (0.0405 + 0.281i)17-s + (0.297 + 0.650i)18-s + (0.698 − 0.449i)19-s + (−0.797 + 0.234i)22-s + (0.186 − 1.29i)24-s + (−0.654 − 0.755i)25-s + ⋯ |
L(s) = 1 | + (−0.142 + 0.989i)2-s + (1.25 − 0.368i)3-s + (−0.959 − 0.281i)4-s + (0.186 + 1.29i)6-s + (0.415 − 0.909i)8-s + (0.601 − 0.386i)9-s + (0.345 + 0.755i)11-s − 1.30·12-s + (0.841 + 0.540i)16-s + (0.0405 + 0.281i)17-s + (0.297 + 0.650i)18-s + (0.698 − 0.449i)19-s + (−0.797 + 0.234i)22-s + (0.186 − 1.29i)24-s + (−0.654 − 0.755i)25-s + ⋯ |
Λ(s)=(=(712s/2ΓC(s)L(s)(0.622−0.782i)Λ(1−s)
Λ(s)=(=(712s/2ΓC(s)L(s)(0.622−0.782i)Λ(1−s)
Degree: |
2 |
Conductor: |
712
= 23⋅89
|
Sign: |
0.622−0.782i
|
Analytic conductor: |
0.355334 |
Root analytic conductor: |
0.596099 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ712(299,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 712, ( :0), 0.622−0.782i)
|
Particular Values
L(21) |
≈ |
1.190010646 |
L(21) |
≈ |
1.190010646 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.142−0.989i)T |
| 89 | 1+(0.654−0.755i)T |
good | 3 | 1+(−1.25+0.368i)T+(0.841−0.540i)T2 |
| 5 | 1+(0.654+0.755i)T2 |
| 7 | 1+(0.654+0.755i)T2 |
| 11 | 1+(−0.345−0.755i)T+(−0.654+0.755i)T2 |
| 13 | 1+(−0.841+0.540i)T2 |
| 17 | 1+(−0.0405−0.281i)T+(−0.959+0.281i)T2 |
| 19 | 1+(−0.698+0.449i)T+(0.415−0.909i)T2 |
| 23 | 1+(−0.415+0.909i)T2 |
| 29 | 1+(0.654+0.755i)T2 |
| 31 | 1+(−0.415−0.909i)T2 |
| 37 | 1−T2 |
| 41 | 1+(1.91+0.563i)T+(0.841+0.540i)T2 |
| 43 | 1+(0.118+0.258i)T+(−0.654+0.755i)T2 |
| 47 | 1+(−0.841−0.540i)T2 |
| 53 | 1+(−0.841+0.540i)T2 |
| 59 | 1+(−0.273−0.0801i)T+(0.841+0.540i)T2 |
| 61 | 1+(0.142+0.989i)T2 |
| 67 | 1+(1.61−0.474i)T+(0.841−0.540i)T2 |
| 71 | 1+(0.654−0.755i)T2 |
| 73 | 1+(1.10+0.708i)T+(0.415+0.909i)T2 |
| 79 | 1+(−0.415−0.909i)T2 |
| 83 | 1+(−0.273−1.89i)T+(−0.959+0.281i)T2 |
| 97 | 1+(−0.698+1.53i)T+(−0.654−0.755i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.28897978433208613963442476255, −9.598083749700947419735927157955, −8.799998435442587017513476209521, −8.162834018412822838870528886126, −7.34967866036938906629110355826, −6.69307085510735417624787415857, −5.47372403399733601554554735782, −4.35204473562697950408046640380, −3.29016378712050823822261355823, −1.80711825186729283861718714979,
1.67365923784166771188416425982, 3.05212854071229786676559595183, 3.52056049804484945678933927214, 4.64861233789756483920775232919, 5.86530410198500265734434016369, 7.46824394133979216320472151609, 8.276232896255895890597842077080, 8.947200210867108794053825681606, 9.629697591498970878286645030122, 10.29829982623371478640165043711