Properties

Label 712.1.s.a
Level $712$
Weight $1$
Character orbit 712.s
Analytic conductor $0.355$
Analytic rank $0$
Dimension $10$
Projective image $D_{11}$
CM discriminant -8
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [712,1,Mod(67,712)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(712, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([11, 11, 14]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("712.67");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 712 = 2^{3} \cdot 89 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 712.s (of order \(22\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.355334288995\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\Q(\zeta_{22})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{11}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{11} - \cdots)\)

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{22}^{5} q^{2} + ( - \zeta_{22}^{9} + \zeta_{22}^{4}) q^{3} + \zeta_{22}^{10} q^{4} + ( - \zeta_{22}^{9} - \zeta_{22}^{3}) q^{6} + \zeta_{22}^{4} q^{8} + (\zeta_{22}^{8} + \cdots + \zeta_{22}^{2}) q^{9} + \cdots + (\zeta_{22}^{10} + \zeta_{22}^{8} + \cdots + 1) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - q^{2} - 2 q^{3} - q^{4} - 2 q^{6} - q^{8} - 3 q^{9} + 9 q^{11} - 2 q^{12} - q^{16} + 9 q^{17} - 3 q^{18} - 2 q^{19} - 2 q^{22} - 2 q^{24} - q^{25} + 7 q^{27} - q^{32} - 4 q^{33} - 2 q^{34}+ \cdots + 5 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/712\mathbb{Z}\right)^\times\).

\(n\) \(357\) \(535\) \(537\)
\(\chi(n)\) \(-1\) \(-1\) \(\zeta_{22}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
67.1
−0.415415 + 0.909632i
−0.841254 0.540641i
0.142315 0.989821i
0.654861 0.755750i
0.959493 0.281733i
0.959493 + 0.281733i
0.654861 + 0.755750i
0.142315 + 0.989821i
−0.841254 + 0.540641i
−0.415415 0.909632i
0.841254 + 0.540641i −0.797176 + 1.74557i 0.415415 + 0.909632i 0 −1.61435 + 1.03748i 0 −0.142315 + 0.989821i −1.75667 2.02730i 0
91.1 −0.959493 + 0.281733i −0.239446 0.153882i 0.841254 0.540641i 0 0.273100 + 0.0801894i 0 −0.654861 + 0.755750i −0.381761 0.835939i 0
275.1 −0.654861 + 0.755750i −0.118239 + 0.822373i −0.142315 0.989821i 0 −0.544078 0.627899i 0 0.841254 + 0.540641i 0.297176 + 0.0872586i 0
283.1 0.415415 0.909632i −1.10181 + 1.27155i −0.654861 0.755750i 0 0.698939 + 1.53046i 0 −0.959493 + 0.281733i −0.260554 1.81219i 0
299.1 −0.142315 + 0.989821i 1.25667 0.368991i −0.959493 0.281733i 0 0.186393 + 1.29639i 0 0.415415 0.909632i 0.601808 0.386758i 0
331.1 −0.142315 0.989821i 1.25667 + 0.368991i −0.959493 + 0.281733i 0 0.186393 1.29639i 0 0.415415 + 0.909632i 0.601808 + 0.386758i 0
395.1 0.415415 + 0.909632i −1.10181 1.27155i −0.654861 + 0.755750i 0 0.698939 1.53046i 0 −0.959493 0.281733i −0.260554 + 1.81219i 0
523.1 −0.654861 0.755750i −0.118239 0.822373i −0.142315 + 0.989821i 0 −0.544078 + 0.627899i 0 0.841254 0.540641i 0.297176 0.0872586i 0
579.1 −0.959493 0.281733i −0.239446 + 0.153882i 0.841254 + 0.540641i 0 0.273100 0.0801894i 0 −0.654861 0.755750i −0.381761 + 0.835939i 0
627.1 0.841254 0.540641i −0.797176 1.74557i 0.415415 0.909632i 0 −1.61435 1.03748i 0 −0.142315 0.989821i −1.75667 + 2.02730i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 67.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 CM by \(\Q(\sqrt{-2}) \)
89.e even 11 1 inner
712.s odd 22 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 712.1.s.a 10
4.b odd 2 1 2848.1.bu.a 10
8.b even 2 1 2848.1.bu.a 10
8.d odd 2 1 CM 712.1.s.a 10
89.e even 11 1 inner 712.1.s.a 10
356.l odd 22 1 2848.1.bu.a 10
712.s odd 22 1 inner 712.1.s.a 10
712.x even 22 1 2848.1.bu.a 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
712.1.s.a 10 1.a even 1 1 trivial
712.1.s.a 10 8.d odd 2 1 CM
712.1.s.a 10 89.e even 11 1 inner
712.1.s.a 10 712.s odd 22 1 inner
2848.1.bu.a 10 4.b odd 2 1
2848.1.bu.a 10 8.b even 2 1
2848.1.bu.a 10 356.l odd 22 1
2848.1.bu.a 10 712.x even 22 1

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(712, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{10} + T^{9} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{10} + 2 T^{9} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{10} \) Copy content Toggle raw display
$7$ \( T^{10} \) Copy content Toggle raw display
$11$ \( T^{10} - 9 T^{9} + \cdots + 1 \) Copy content Toggle raw display
$13$ \( T^{10} \) Copy content Toggle raw display
$17$ \( T^{10} - 9 T^{9} + \cdots + 1 \) Copy content Toggle raw display
$19$ \( T^{10} + 2 T^{9} + \cdots + 1 \) Copy content Toggle raw display
$23$ \( T^{10} \) Copy content Toggle raw display
$29$ \( T^{10} \) Copy content Toggle raw display
$31$ \( T^{10} \) Copy content Toggle raw display
$37$ \( T^{10} \) Copy content Toggle raw display
$41$ \( T^{10} + 2 T^{9} + \cdots + 1024 \) Copy content Toggle raw display
$43$ \( T^{10} + 2 T^{9} + \cdots + 1 \) Copy content Toggle raw display
$47$ \( T^{10} \) Copy content Toggle raw display
$53$ \( T^{10} \) Copy content Toggle raw display
$59$ \( T^{10} + 2 T^{9} + \cdots + 1 \) Copy content Toggle raw display
$61$ \( T^{10} \) Copy content Toggle raw display
$67$ \( T^{10} + 2 T^{9} + \cdots + 1 \) Copy content Toggle raw display
$71$ \( T^{10} \) Copy content Toggle raw display
$73$ \( T^{10} + 2 T^{9} + \cdots + 1 \) Copy content Toggle raw display
$79$ \( T^{10} \) Copy content Toggle raw display
$83$ \( T^{10} + 2 T^{9} + \cdots + 1 \) Copy content Toggle raw display
$89$ \( T^{10} + T^{9} + \cdots + 1 \) Copy content Toggle raw display
$97$ \( T^{10} + 2 T^{9} + \cdots + 1 \) Copy content Toggle raw display
show more
show less