Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [712,1,Mod(67,712)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(712, base_ring=CyclotomicField(22))
chi = DirichletCharacter(H, H._module([11, 11, 14]))
N = Newforms(chi, 1, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("712.67");
S:= CuspForms(chi, 1);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 712.s (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Projective image: | |
Projective field: | Galois closure of |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
The -expansion and trace form are shown below.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
67.1 |
|
0.841254 | + | 0.540641i | −0.797176 | + | 1.74557i | 0.415415 | + | 0.909632i | 0 | −1.61435 | + | 1.03748i | 0 | −0.142315 | + | 0.989821i | −1.75667 | − | 2.02730i | 0 | ||||||||||||||||||||||||||||||||||||
91.1 | −0.959493 | + | 0.281733i | −0.239446 | − | 0.153882i | 0.841254 | − | 0.540641i | 0 | 0.273100 | + | 0.0801894i | 0 | −0.654861 | + | 0.755750i | −0.381761 | − | 0.835939i | 0 | |||||||||||||||||||||||||||||||||||||
275.1 | −0.654861 | + | 0.755750i | −0.118239 | + | 0.822373i | −0.142315 | − | 0.989821i | 0 | −0.544078 | − | 0.627899i | 0 | 0.841254 | + | 0.540641i | 0.297176 | + | 0.0872586i | 0 | |||||||||||||||||||||||||||||||||||||
283.1 | 0.415415 | − | 0.909632i | −1.10181 | + | 1.27155i | −0.654861 | − | 0.755750i | 0 | 0.698939 | + | 1.53046i | 0 | −0.959493 | + | 0.281733i | −0.260554 | − | 1.81219i | 0 | |||||||||||||||||||||||||||||||||||||
299.1 | −0.142315 | + | 0.989821i | 1.25667 | − | 0.368991i | −0.959493 | − | 0.281733i | 0 | 0.186393 | + | 1.29639i | 0 | 0.415415 | − | 0.909632i | 0.601808 | − | 0.386758i | 0 | |||||||||||||||||||||||||||||||||||||
331.1 | −0.142315 | − | 0.989821i | 1.25667 | + | 0.368991i | −0.959493 | + | 0.281733i | 0 | 0.186393 | − | 1.29639i | 0 | 0.415415 | + | 0.909632i | 0.601808 | + | 0.386758i | 0 | |||||||||||||||||||||||||||||||||||||
395.1 | 0.415415 | + | 0.909632i | −1.10181 | − | 1.27155i | −0.654861 | + | 0.755750i | 0 | 0.698939 | − | 1.53046i | 0 | −0.959493 | − | 0.281733i | −0.260554 | + | 1.81219i | 0 | |||||||||||||||||||||||||||||||||||||
523.1 | −0.654861 | − | 0.755750i | −0.118239 | − | 0.822373i | −0.142315 | + | 0.989821i | 0 | −0.544078 | + | 0.627899i | 0 | 0.841254 | − | 0.540641i | 0.297176 | − | 0.0872586i | 0 | |||||||||||||||||||||||||||||||||||||
579.1 | −0.959493 | − | 0.281733i | −0.239446 | + | 0.153882i | 0.841254 | + | 0.540641i | 0 | 0.273100 | − | 0.0801894i | 0 | −0.654861 | − | 0.755750i | −0.381761 | + | 0.835939i | 0 | |||||||||||||||||||||||||||||||||||||
627.1 | 0.841254 | − | 0.540641i | −0.797176 | − | 1.74557i | 0.415415 | − | 0.909632i | 0 | −1.61435 | − | 1.03748i | 0 | −0.142315 | − | 0.989821i | −1.75667 | + | 2.02730i | 0 | |||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.d | odd | 2 | 1 | CM by |
89.e | even | 11 | 1 | inner |
712.s | odd | 22 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 712.1.s.a | ✓ | 10 |
4.b | odd | 2 | 1 | 2848.1.bu.a | 10 | ||
8.b | even | 2 | 1 | 2848.1.bu.a | 10 | ||
8.d | odd | 2 | 1 | CM | 712.1.s.a | ✓ | 10 |
89.e | even | 11 | 1 | inner | 712.1.s.a | ✓ | 10 |
356.l | odd | 22 | 1 | 2848.1.bu.a | 10 | ||
712.s | odd | 22 | 1 | inner | 712.1.s.a | ✓ | 10 |
712.x | even | 22 | 1 | 2848.1.bu.a | 10 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
712.1.s.a | ✓ | 10 | 1.a | even | 1 | 1 | trivial |
712.1.s.a | ✓ | 10 | 8.d | odd | 2 | 1 | CM |
712.1.s.a | ✓ | 10 | 89.e | even | 11 | 1 | inner |
712.1.s.a | ✓ | 10 | 712.s | odd | 22 | 1 | inner |
2848.1.bu.a | 10 | 4.b | odd | 2 | 1 | ||
2848.1.bu.a | 10 | 8.b | even | 2 | 1 | ||
2848.1.bu.a | 10 | 356.l | odd | 22 | 1 | ||
2848.1.bu.a | 10 | 712.x | even | 22 | 1 |
Hecke kernels
This newform subspace is the entire newspace .