Properties

Label 712.1.s.a
Level 712712
Weight 11
Character orbit 712.s
Analytic conductor 0.3550.355
Analytic rank 00
Dimension 1010
Projective image D11D_{11}
CM discriminant -8
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [712,1,Mod(67,712)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(712, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([11, 11, 14]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("712.67");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 712=2389 712 = 2^{3} \cdot 89
Weight: k k == 1 1
Character orbit: [χ][\chi] == 712.s (of order 2222, degree 1010, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.3553342889950.355334288995
Analytic rank: 00
Dimension: 1010
Coefficient field: Q(ζ22)\Q(\zeta_{22})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x10x9+x8x7+x6x5+x4x3+x2x+1 x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D11D_{11}
Projective field: Galois closure of Q[x]/(x11)\mathbb{Q}[x]/(x^{11} - \cdots)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == qζ225q2+(ζ229+ζ224)q3+ζ2210q4+(ζ229ζ223)q6+ζ224q8+(ζ228++ζ222)q9++(ζ2210+ζ228++1)q99+O(q100) q - \zeta_{22}^{5} q^{2} + ( - \zeta_{22}^{9} + \zeta_{22}^{4}) q^{3} + \zeta_{22}^{10} q^{4} + ( - \zeta_{22}^{9} - \zeta_{22}^{3}) q^{6} + \zeta_{22}^{4} q^{8} + (\zeta_{22}^{8} + \cdots + \zeta_{22}^{2}) q^{9} + \cdots + (\zeta_{22}^{10} + \zeta_{22}^{8} + \cdots + 1) q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 10qq22q3q42q6q83q9+9q112q12q16+9q173q182q192q222q24q25+7q27q324q332q34++5q99+O(q100) 10 q - q^{2} - 2 q^{3} - q^{4} - 2 q^{6} - q^{8} - 3 q^{9} + 9 q^{11} - 2 q^{12} - q^{16} + 9 q^{17} - 3 q^{18} - 2 q^{19} - 2 q^{22} - 2 q^{24} - q^{25} + 7 q^{27} - q^{32} - 4 q^{33} - 2 q^{34}+ \cdots + 5 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/712Z)×\left(\mathbb{Z}/712\mathbb{Z}\right)^\times.

nn 357357 535535 537537
χ(n)\chi(n) 1-1 1-1 ζ222\zeta_{22}^{2}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
67.1
−0.415415 + 0.909632i
−0.841254 0.540641i
0.142315 0.989821i
0.654861 0.755750i
0.959493 0.281733i
0.959493 + 0.281733i
0.654861 + 0.755750i
0.142315 + 0.989821i
−0.841254 + 0.540641i
−0.415415 0.909632i
0.841254 + 0.540641i −0.797176 + 1.74557i 0.415415 + 0.909632i 0 −1.61435 + 1.03748i 0 −0.142315 + 0.989821i −1.75667 2.02730i 0
91.1 −0.959493 + 0.281733i −0.239446 0.153882i 0.841254 0.540641i 0 0.273100 + 0.0801894i 0 −0.654861 + 0.755750i −0.381761 0.835939i 0
275.1 −0.654861 + 0.755750i −0.118239 + 0.822373i −0.142315 0.989821i 0 −0.544078 0.627899i 0 0.841254 + 0.540641i 0.297176 + 0.0872586i 0
283.1 0.415415 0.909632i −1.10181 + 1.27155i −0.654861 0.755750i 0 0.698939 + 1.53046i 0 −0.959493 + 0.281733i −0.260554 1.81219i 0
299.1 −0.142315 + 0.989821i 1.25667 0.368991i −0.959493 0.281733i 0 0.186393 + 1.29639i 0 0.415415 0.909632i 0.601808 0.386758i 0
331.1 −0.142315 0.989821i 1.25667 + 0.368991i −0.959493 + 0.281733i 0 0.186393 1.29639i 0 0.415415 + 0.909632i 0.601808 + 0.386758i 0
395.1 0.415415 + 0.909632i −1.10181 1.27155i −0.654861 + 0.755750i 0 0.698939 1.53046i 0 −0.959493 0.281733i −0.260554 + 1.81219i 0
523.1 −0.654861 0.755750i −0.118239 0.822373i −0.142315 + 0.989821i 0 −0.544078 + 0.627899i 0 0.841254 0.540641i 0.297176 0.0872586i 0
579.1 −0.959493 0.281733i −0.239446 + 0.153882i 0.841254 + 0.540641i 0 0.273100 0.0801894i 0 −0.654861 0.755750i −0.381761 + 0.835939i 0
627.1 0.841254 0.540641i −0.797176 1.74557i 0.415415 0.909632i 0 −1.61435 1.03748i 0 −0.142315 0.989821i −1.75667 + 2.02730i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 67.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 CM by Q(2)\Q(\sqrt{-2})
89.e even 11 1 inner
712.s odd 22 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 712.1.s.a 10
4.b odd 2 1 2848.1.bu.a 10
8.b even 2 1 2848.1.bu.a 10
8.d odd 2 1 CM 712.1.s.a 10
89.e even 11 1 inner 712.1.s.a 10
356.l odd 22 1 2848.1.bu.a 10
712.s odd 22 1 inner 712.1.s.a 10
712.x even 22 1 2848.1.bu.a 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
712.1.s.a 10 1.a even 1 1 trivial
712.1.s.a 10 8.d odd 2 1 CM
712.1.s.a 10 89.e even 11 1 inner
712.1.s.a 10 712.s odd 22 1 inner
2848.1.bu.a 10 4.b odd 2 1
2848.1.bu.a 10 8.b even 2 1
2848.1.bu.a 10 356.l odd 22 1
2848.1.bu.a 10 712.x even 22 1

Hecke kernels

This newform subspace is the entire newspace S1new(712,[χ])S_{1}^{\mathrm{new}}(712, [\chi]).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T10+T9++1 T^{10} + T^{9} + \cdots + 1 Copy content Toggle raw display
33 T10+2T9++1 T^{10} + 2 T^{9} + \cdots + 1 Copy content Toggle raw display
55 T10 T^{10} Copy content Toggle raw display
77 T10 T^{10} Copy content Toggle raw display
1111 T109T9++1 T^{10} - 9 T^{9} + \cdots + 1 Copy content Toggle raw display
1313 T10 T^{10} Copy content Toggle raw display
1717 T109T9++1 T^{10} - 9 T^{9} + \cdots + 1 Copy content Toggle raw display
1919 T10+2T9++1 T^{10} + 2 T^{9} + \cdots + 1 Copy content Toggle raw display
2323 T10 T^{10} Copy content Toggle raw display
2929 T10 T^{10} Copy content Toggle raw display
3131 T10 T^{10} Copy content Toggle raw display
3737 T10 T^{10} Copy content Toggle raw display
4141 T10+2T9++1024 T^{10} + 2 T^{9} + \cdots + 1024 Copy content Toggle raw display
4343 T10+2T9++1 T^{10} + 2 T^{9} + \cdots + 1 Copy content Toggle raw display
4747 T10 T^{10} Copy content Toggle raw display
5353 T10 T^{10} Copy content Toggle raw display
5959 T10+2T9++1 T^{10} + 2 T^{9} + \cdots + 1 Copy content Toggle raw display
6161 T10 T^{10} Copy content Toggle raw display
6767 T10+2T9++1 T^{10} + 2 T^{9} + \cdots + 1 Copy content Toggle raw display
7171 T10 T^{10} Copy content Toggle raw display
7373 T10+2T9++1 T^{10} + 2 T^{9} + \cdots + 1 Copy content Toggle raw display
7979 T10 T^{10} Copy content Toggle raw display
8383 T10+2T9++1 T^{10} + 2 T^{9} + \cdots + 1 Copy content Toggle raw display
8989 T10+T9++1 T^{10} + T^{9} + \cdots + 1 Copy content Toggle raw display
9797 T10+2T9++1 T^{10} + 2 T^{9} + \cdots + 1 Copy content Toggle raw display
show more
show less