L(s) = 1 | + (−1.36 − 1.46i)2-s + (−0.267 + 3.99i)4-s + 7.98i·5-s + 2.13i·7-s + (6.19 − 5.06i)8-s + (11.6 − 10.9i)10-s + 8·11-s + 11.6i·13-s + (3.12 − 2.92i)14-s + (−15.8 − 2.13i)16-s − 11.8·17-s + 14.9·19-s + (−31.8 − 2.13i)20-s + (−10.9 − 11.6i)22-s + 4.27i·23-s + ⋯ |
L(s) = 1 | + (−0.683 − 0.730i)2-s + (−0.0669 + 0.997i)4-s + 1.59i·5-s + 0.305i·7-s + (0.774 − 0.632i)8-s + (1.16 − 1.09i)10-s + 0.727·11-s + 0.898i·13-s + (0.223 − 0.208i)14-s + (−0.991 − 0.133i)16-s − 0.697·17-s + 0.785·19-s + (−1.59 − 0.106i)20-s + (−0.496 − 0.531i)22-s + 0.185i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 72 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.774 - 0.632i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 72 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.774 - 0.632i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.809769 + 0.288653i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.809769 + 0.288653i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.36 + 1.46i)T \) |
| 3 | \( 1 \) |
good | 5 | \( 1 - 7.98iT - 25T^{2} \) |
| 7 | \( 1 - 2.13iT - 49T^{2} \) |
| 11 | \( 1 - 8T + 121T^{2} \) |
| 13 | \( 1 - 11.6iT - 169T^{2} \) |
| 17 | \( 1 + 11.8T + 289T^{2} \) |
| 19 | \( 1 - 14.9T + 361T^{2} \) |
| 23 | \( 1 - 4.27iT - 529T^{2} \) |
| 29 | \( 1 + 0.573iT - 841T^{2} \) |
| 31 | \( 1 + 57.4iT - 961T^{2} \) |
| 37 | \( 1 - 27.6iT - 1.36e3T^{2} \) |
| 41 | \( 1 - 31.5T + 1.68e3T^{2} \) |
| 43 | \( 1 - 28.7T + 1.84e3T^{2} \) |
| 47 | \( 1 + 59.5iT - 2.20e3T^{2} \) |
| 53 | \( 1 + 31.3iT - 2.80e3T^{2} \) |
| 59 | \( 1 - 52.7T + 3.48e3T^{2} \) |
| 61 | \( 1 + 59.5iT - 3.72e3T^{2} \) |
| 67 | \( 1 + 84.7T + 4.48e3T^{2} \) |
| 71 | \( 1 - 42.4iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 5.42T + 5.32e3T^{2} \) |
| 79 | \( 1 - 44.6iT - 6.24e3T^{2} \) |
| 83 | \( 1 + 67.7T + 6.88e3T^{2} \) |
| 89 | \( 1 - 133.T + 7.92e3T^{2} \) |
| 97 | \( 1 - 97.1T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.43244951597317680512210083523, −13.41475164075039643012502703397, −11.76139397506278485834806280415, −11.27984212606822627611752612148, −10.06810863887070178928168700290, −9.080282463822533586893818136635, −7.49800902505051585275999164462, −6.48455552306572344912327671009, −3.86097316195256239732338945321, −2.36620447646403876290220758775,
1.03992153995220372661567779604, 4.57227852994403919594246230971, 5.77324905175859997564278806102, 7.39061357997135212246354669911, 8.622317305641944247219840581777, 9.318578485766785567438175810599, 10.66160014150586465012153707820, 12.16612926128509256214956913106, 13.29531537388394532190326164353, 14.38363123878087061069384512078