Properties

Label 72.3.b.b.19.1
Level $72$
Weight $3$
Character 72.19
Analytic conductor $1.962$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [72,3,Mod(19,72)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(72, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("72.19");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 72 = 2^{3} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 72.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.96185790339\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.0.4752.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} - 6x + 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 24)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 19.1
Root \(-0.866025 - 1.99551i\) of defining polynomial
Character \(\chi\) \(=\) 72.19
Dual form 72.3.b.b.19.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.36603 - 1.46081i) q^{2} +(-0.267949 + 3.99102i) q^{4} +7.98203i q^{5} +2.13878i q^{7} +(6.19615 - 5.06040i) q^{8} +O(q^{10})\) \(q+(-1.36603 - 1.46081i) q^{2} +(-0.267949 + 3.99102i) q^{4} +7.98203i q^{5} +2.13878i q^{7} +(6.19615 - 5.06040i) q^{8} +(11.6603 - 10.9037i) q^{10} +8.00000 q^{11} +11.6865i q^{13} +(3.12436 - 2.92163i) q^{14} +(-15.8564 - 2.13878i) q^{16} -11.8564 q^{17} +14.9282 q^{19} +(-31.8564 - 2.13878i) q^{20} +(-10.9282 - 11.6865i) q^{22} +4.27756i q^{23} -38.7128 q^{25} +(17.0718 - 15.9641i) q^{26} +(-8.53590 - 0.573084i) q^{28} -0.573084i q^{29} -57.4399i q^{31} +(18.5359 + 26.0849i) q^{32} +(16.1962 + 17.3200i) q^{34} -17.0718 q^{35} +27.6506i q^{37} +(-20.3923 - 21.8073i) q^{38} +(40.3923 + 49.4579i) q^{40} +31.5692 q^{41} +28.7846 q^{43} +(-2.14359 + 31.9281i) q^{44} +(6.24871 - 5.84325i) q^{46} -59.5787i q^{47} +44.4256 q^{49} +(52.8827 + 56.5522i) q^{50} +(-46.6410 - 3.13139i) q^{52} -31.3550i q^{53} +63.8562i q^{55} +(10.8231 + 13.2522i) q^{56} +(-0.837169 + 0.782847i) q^{58} +52.7846 q^{59} -59.5787i q^{61} +(-83.9090 + 78.4644i) q^{62} +(12.7846 - 62.7101i) q^{64} -93.2820 q^{65} -84.7846 q^{67} +(3.17691 - 47.3191i) q^{68} +(23.3205 + 24.9387i) q^{70} +42.4685i q^{71} -5.42563 q^{73} +(40.3923 - 37.7714i) q^{74} +(-4.00000 + 59.5787i) q^{76} +17.1102i q^{77} +44.6072i q^{79} +(17.0718 - 126.566i) q^{80} +(-43.1244 - 46.1167i) q^{82} -67.7128 q^{83} -94.6382i q^{85} +(-39.3205 - 42.0489i) q^{86} +(49.5692 - 40.4832i) q^{88} +133.138 q^{89} -24.9948 q^{91} +(-17.0718 - 1.14617i) q^{92} +(-87.0333 + 81.3860i) q^{94} +119.157i q^{95} +97.1384 q^{97} +(-60.6865 - 64.8975i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} - 8 q^{4} + 4 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 2 q^{2} - 8 q^{4} + 4 q^{8} + 12 q^{10} + 32 q^{11} - 36 q^{14} - 8 q^{16} + 8 q^{17} + 32 q^{19} - 72 q^{20} - 16 q^{22} - 44 q^{25} + 96 q^{26} - 48 q^{28} + 88 q^{32} + 44 q^{34} - 96 q^{35} - 40 q^{38} + 120 q^{40} - 40 q^{41} + 32 q^{43} - 64 q^{44} - 72 q^{46} - 44 q^{49} + 118 q^{50} - 48 q^{52} + 168 q^{56} + 156 q^{58} + 128 q^{59} - 204 q^{62} - 32 q^{64} - 96 q^{65} - 256 q^{67} - 112 q^{68} + 24 q^{70} + 200 q^{73} + 120 q^{74} - 16 q^{76} + 96 q^{80} - 124 q^{82} - 160 q^{83} - 88 q^{86} + 32 q^{88} + 200 q^{89} + 288 q^{91} - 96 q^{92} - 168 q^{94} + 56 q^{97} - 170 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/72\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(55\) \(65\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.36603 1.46081i −0.683013 0.730406i
\(3\) 0 0
\(4\) −0.267949 + 3.99102i −0.0669873 + 0.997754i
\(5\) 7.98203i 1.59641i 0.602388 + 0.798203i \(0.294216\pi\)
−0.602388 + 0.798203i \(0.705784\pi\)
\(6\) 0 0
\(7\) 2.13878i 0.305540i 0.988262 + 0.152770i \(0.0488193\pi\)
−0.988262 + 0.152770i \(0.951181\pi\)
\(8\) 6.19615 5.06040i 0.774519 0.632551i
\(9\) 0 0
\(10\) 11.6603 10.9037i 1.16603 1.09037i
\(11\) 8.00000 0.727273 0.363636 0.931541i \(-0.381535\pi\)
0.363636 + 0.931541i \(0.381535\pi\)
\(12\) 0 0
\(13\) 11.6865i 0.898962i 0.893290 + 0.449481i \(0.148391\pi\)
−0.893290 + 0.449481i \(0.851609\pi\)
\(14\) 3.12436 2.92163i 0.223168 0.208688i
\(15\) 0 0
\(16\) −15.8564 2.13878i −0.991025 0.133674i
\(17\) −11.8564 −0.697436 −0.348718 0.937228i \(-0.613383\pi\)
−0.348718 + 0.937228i \(0.613383\pi\)
\(18\) 0 0
\(19\) 14.9282 0.785695 0.392847 0.919604i \(-0.371490\pi\)
0.392847 + 0.919604i \(0.371490\pi\)
\(20\) −31.8564 2.13878i −1.59282 0.106939i
\(21\) 0 0
\(22\) −10.9282 11.6865i −0.496737 0.531205i
\(23\) 4.27756i 0.185981i 0.995667 + 0.0929904i \(0.0296426\pi\)
−0.995667 + 0.0929904i \(0.970357\pi\)
\(24\) 0 0
\(25\) −38.7128 −1.54851
\(26\) 17.0718 15.9641i 0.656608 0.614002i
\(27\) 0 0
\(28\) −8.53590 0.573084i −0.304854 0.0204673i
\(29\) 0.573084i 0.0197615i −0.999951 0.00988076i \(-0.996855\pi\)
0.999951 0.00988076i \(-0.00314519\pi\)
\(30\) 0 0
\(31\) 57.4399i 1.85290i −0.376417 0.926450i \(-0.622844\pi\)
0.376417 0.926450i \(-0.377156\pi\)
\(32\) 18.5359 + 26.0849i 0.579247 + 0.815152i
\(33\) 0 0
\(34\) 16.1962 + 17.3200i 0.476357 + 0.509412i
\(35\) −17.0718 −0.487766
\(36\) 0 0
\(37\) 27.6506i 0.747313i 0.927567 + 0.373656i \(0.121896\pi\)
−0.927567 + 0.373656i \(0.878104\pi\)
\(38\) −20.3923 21.8073i −0.536640 0.573877i
\(39\) 0 0
\(40\) 40.3923 + 49.4579i 1.00981 + 1.23645i
\(41\) 31.5692 0.769981 0.384990 0.922921i \(-0.374205\pi\)
0.384990 + 0.922921i \(0.374205\pi\)
\(42\) 0 0
\(43\) 28.7846 0.669410 0.334705 0.942323i \(-0.391363\pi\)
0.334705 + 0.942323i \(0.391363\pi\)
\(44\) −2.14359 + 31.9281i −0.0487180 + 0.725639i
\(45\) 0 0
\(46\) 6.24871 5.84325i 0.135842 0.127027i
\(47\) 59.5787i 1.26763i −0.773484 0.633816i \(-0.781488\pi\)
0.773484 0.633816i \(-0.218512\pi\)
\(48\) 0 0
\(49\) 44.4256 0.906645
\(50\) 52.8827 + 56.5522i 1.05765 + 1.13104i
\(51\) 0 0
\(52\) −46.6410 3.13139i −0.896943 0.0602190i
\(53\) 31.3550i 0.591604i −0.955249 0.295802i \(-0.904413\pi\)
0.955249 0.295802i \(-0.0955869\pi\)
\(54\) 0 0
\(55\) 63.8562i 1.16102i
\(56\) 10.8231 + 13.2522i 0.193269 + 0.236646i
\(57\) 0 0
\(58\) −0.837169 + 0.782847i −0.0144339 + 0.0134974i
\(59\) 52.7846 0.894654 0.447327 0.894370i \(-0.352376\pi\)
0.447327 + 0.894370i \(0.352376\pi\)
\(60\) 0 0
\(61\) 59.5787i 0.976700i −0.872648 0.488350i \(-0.837599\pi\)
0.872648 0.488350i \(-0.162401\pi\)
\(62\) −83.9090 + 78.4644i −1.35337 + 1.26555i
\(63\) 0 0
\(64\) 12.7846 62.7101i 0.199760 0.979845i
\(65\) −93.2820 −1.43511
\(66\) 0 0
\(67\) −84.7846 −1.26544 −0.632721 0.774380i \(-0.718062\pi\)
−0.632721 + 0.774380i \(0.718062\pi\)
\(68\) 3.17691 47.3191i 0.0467193 0.695869i
\(69\) 0 0
\(70\) 23.3205 + 24.9387i 0.333150 + 0.356267i
\(71\) 42.4685i 0.598147i 0.954230 + 0.299074i \(0.0966776\pi\)
−0.954230 + 0.299074i \(0.903322\pi\)
\(72\) 0 0
\(73\) −5.42563 −0.0743236 −0.0371618 0.999309i \(-0.511832\pi\)
−0.0371618 + 0.999309i \(0.511832\pi\)
\(74\) 40.3923 37.7714i 0.545842 0.510424i
\(75\) 0 0
\(76\) −4.00000 + 59.5787i −0.0526316 + 0.783930i
\(77\) 17.1102i 0.222211i
\(78\) 0 0
\(79\) 44.6072i 0.564649i 0.959319 + 0.282324i \(0.0911054\pi\)
−0.959319 + 0.282324i \(0.908895\pi\)
\(80\) 17.0718 126.566i 0.213397 1.58208i
\(81\) 0 0
\(82\) −43.1244 46.1167i −0.525907 0.562399i
\(83\) −67.7128 −0.815817 −0.407909 0.913023i \(-0.633742\pi\)
−0.407909 + 0.913023i \(0.633742\pi\)
\(84\) 0 0
\(85\) 94.6382i 1.11339i
\(86\) −39.3205 42.0489i −0.457215 0.488941i
\(87\) 0 0
\(88\) 49.5692 40.4832i 0.563287 0.460037i
\(89\) 133.138 1.49594 0.747969 0.663734i \(-0.231029\pi\)
0.747969 + 0.663734i \(0.231029\pi\)
\(90\) 0 0
\(91\) −24.9948 −0.274669
\(92\) −17.0718 1.14617i −0.185563 0.0124583i
\(93\) 0 0
\(94\) −87.0333 + 81.3860i −0.925886 + 0.865809i
\(95\) 119.157i 1.25429i
\(96\) 0 0
\(97\) 97.1384 1.00143 0.500714 0.865613i \(-0.333071\pi\)
0.500714 + 0.865613i \(0.333071\pi\)
\(98\) −60.6865 64.8975i −0.619250 0.662220i
\(99\) 0 0
\(100\) 10.3731 154.503i 0.103731 1.54503i
\(101\) 62.1370i 0.615218i 0.951513 + 0.307609i \(0.0995288\pi\)
−0.951513 + 0.307609i \(0.900471\pi\)
\(102\) 0 0
\(103\) 27.8041i 0.269943i −0.990849 0.134971i \(-0.956906\pi\)
0.990849 0.134971i \(-0.0430943\pi\)
\(104\) 59.1384 + 72.4114i 0.568639 + 0.696263i
\(105\) 0 0
\(106\) −45.8038 + 42.8318i −0.432112 + 0.404073i
\(107\) −37.7795 −0.353079 −0.176540 0.984294i \(-0.556490\pi\)
−0.176540 + 0.984294i \(0.556490\pi\)
\(108\) 0 0
\(109\) 141.691i 1.29992i 0.759968 + 0.649960i \(0.225214\pi\)
−0.759968 + 0.649960i \(0.774786\pi\)
\(110\) 93.2820 87.2293i 0.848018 0.792993i
\(111\) 0 0
\(112\) 4.57437 33.9133i 0.0408426 0.302798i
\(113\) 58.2872 0.515816 0.257908 0.966170i \(-0.416967\pi\)
0.257908 + 0.966170i \(0.416967\pi\)
\(114\) 0 0
\(115\) −34.1436 −0.296901
\(116\) 2.28719 + 0.153557i 0.0197171 + 0.00132377i
\(117\) 0 0
\(118\) −72.1051 77.1084i −0.611060 0.653461i
\(119\) 25.3582i 0.213094i
\(120\) 0 0
\(121\) −57.0000 −0.471074
\(122\) −87.0333 + 81.3860i −0.713388 + 0.667098i
\(123\) 0 0
\(124\) 229.244 + 15.3910i 1.84874 + 0.124121i
\(125\) 109.456i 0.875649i
\(126\) 0 0
\(127\) 185.152i 1.45789i 0.684571 + 0.728946i \(0.259990\pi\)
−0.684571 + 0.728946i \(0.740010\pi\)
\(128\) −109.072 + 66.9876i −0.852123 + 0.523341i
\(129\) 0 0
\(130\) 127.426 + 136.268i 0.980197 + 1.04821i
\(131\) −125.359 −0.956939 −0.478469 0.878104i \(-0.658808\pi\)
−0.478469 + 0.878104i \(0.658808\pi\)
\(132\) 0 0
\(133\) 31.9281i 0.240061i
\(134\) 115.818 + 123.854i 0.864313 + 0.924287i
\(135\) 0 0
\(136\) −73.4641 + 59.9982i −0.540177 + 0.441163i
\(137\) −99.5692 −0.726783 −0.363391 0.931637i \(-0.618381\pi\)
−0.363391 + 0.931637i \(0.618381\pi\)
\(138\) 0 0
\(139\) 177.492 1.27692 0.638461 0.769654i \(-0.279571\pi\)
0.638461 + 0.769654i \(0.279571\pi\)
\(140\) 4.57437 68.1338i 0.0326741 0.486670i
\(141\) 0 0
\(142\) 62.0385 58.0130i 0.436891 0.408542i
\(143\) 93.4920i 0.653790i
\(144\) 0 0
\(145\) 4.57437 0.0315474
\(146\) 7.41154 + 7.92582i 0.0507640 + 0.0542865i
\(147\) 0 0
\(148\) −110.354 7.40895i −0.745634 0.0500605i
\(149\) 87.8023i 0.589277i −0.955609 0.294639i \(-0.904801\pi\)
0.955609 0.294639i \(-0.0951993\pi\)
\(150\) 0 0
\(151\) 219.066i 1.45077i −0.688345 0.725383i \(-0.741663\pi\)
0.688345 0.725383i \(-0.258337\pi\)
\(152\) 92.4974 75.5427i 0.608536 0.496992i
\(153\) 0 0
\(154\) 24.9948 23.3730i 0.162304 0.151773i
\(155\) 458.487 2.95798
\(156\) 0 0
\(157\) 253.440i 1.61427i −0.590370 0.807133i \(-0.701018\pi\)
0.590370 0.807133i \(-0.298982\pi\)
\(158\) 65.1628 60.9346i 0.412423 0.385662i
\(159\) 0 0
\(160\) −208.210 + 147.954i −1.30131 + 0.924713i
\(161\) −9.14875 −0.0568245
\(162\) 0 0
\(163\) −102.354 −0.627938 −0.313969 0.949433i \(-0.601659\pi\)
−0.313969 + 0.949433i \(0.601659\pi\)
\(164\) −8.45895 + 125.993i −0.0515789 + 0.768251i
\(165\) 0 0
\(166\) 92.4974 + 98.9158i 0.557213 + 0.595878i
\(167\) 281.090i 1.68318i −0.540120 0.841588i \(-0.681621\pi\)
0.540120 0.841588i \(-0.318379\pi\)
\(168\) 0 0
\(169\) 32.4256 0.191868
\(170\) −138.249 + 129.278i −0.813228 + 0.760460i
\(171\) 0 0
\(172\) −7.71281 + 114.880i −0.0448419 + 0.667906i
\(173\) 242.858i 1.40381i 0.712273 + 0.701903i \(0.247666\pi\)
−0.712273 + 0.701903i \(0.752334\pi\)
\(174\) 0 0
\(175\) 82.7981i 0.473132i
\(176\) −126.851 17.1102i −0.720746 0.0972172i
\(177\) 0 0
\(178\) −181.870 194.490i −1.02174 1.09264i
\(179\) −318.354 −1.77851 −0.889257 0.457409i \(-0.848778\pi\)
−0.889257 + 0.457409i \(0.848778\pi\)
\(180\) 0 0
\(181\) 79.5132i 0.439299i 0.975579 + 0.219650i \(0.0704914\pi\)
−0.975579 + 0.219650i \(0.929509\pi\)
\(182\) 34.1436 + 36.5128i 0.187602 + 0.200620i
\(183\) 0 0
\(184\) 21.6462 + 26.5044i 0.117642 + 0.144046i
\(185\) −220.708 −1.19301
\(186\) 0 0
\(187\) −94.8513 −0.507226
\(188\) 237.779 + 15.9641i 1.26478 + 0.0849152i
\(189\) 0 0
\(190\) 174.067 162.772i 0.916140 0.856695i
\(191\) 352.887i 1.84758i −0.382902 0.923789i \(-0.625075\pi\)
0.382902 0.923789i \(-0.374925\pi\)
\(192\) 0 0
\(193\) −284.277 −1.47294 −0.736469 0.676472i \(-0.763508\pi\)
−0.736469 + 0.676472i \(0.763508\pi\)
\(194\) −132.694 141.901i −0.683988 0.731449i
\(195\) 0 0
\(196\) −11.9038 + 177.303i −0.0607337 + 0.904609i
\(197\) 75.8087i 0.384816i −0.981315 0.192408i \(-0.938370\pi\)
0.981315 0.192408i \(-0.0616297\pi\)
\(198\) 0 0
\(199\) 104.186i 0.523547i −0.965129 0.261774i \(-0.915693\pi\)
0.965129 0.261774i \(-0.0843074\pi\)
\(200\) −239.870 + 195.902i −1.19935 + 0.979512i
\(201\) 0 0
\(202\) 90.7705 84.8807i 0.449359 0.420202i
\(203\) 1.22570 0.00603793
\(204\) 0 0
\(205\) 251.986i 1.22920i
\(206\) −40.6166 + 37.9811i −0.197168 + 0.184374i
\(207\) 0 0
\(208\) 24.9948 185.306i 0.120168 0.890894i
\(209\) 119.426 0.571414
\(210\) 0 0
\(211\) 136.918 0.648900 0.324450 0.945903i \(-0.394821\pi\)
0.324450 + 0.945903i \(0.394821\pi\)
\(212\) 125.138 + 8.40156i 0.590276 + 0.0396300i
\(213\) 0 0
\(214\) 51.6077 + 55.1887i 0.241157 + 0.257891i
\(215\) 229.760i 1.06865i
\(216\) 0 0
\(217\) 122.851 0.566135
\(218\) 206.985 193.554i 0.949470 0.887862i
\(219\) 0 0
\(220\) −254.851 17.1102i −1.15841 0.0777738i
\(221\) 138.560i 0.626968i
\(222\) 0 0
\(223\) 53.1624i 0.238396i −0.992870 0.119198i \(-0.961968\pi\)
0.992870 0.119198i \(-0.0380324\pi\)
\(224\) −55.7898 + 39.6442i −0.249061 + 0.176983i
\(225\) 0 0
\(226\) −79.6218 85.1467i −0.352309 0.376755i
\(227\) 119.846 0.527956 0.263978 0.964529i \(-0.414965\pi\)
0.263978 + 0.964529i \(0.414965\pi\)
\(228\) 0 0
\(229\) 214.103i 0.934946i 0.884007 + 0.467473i \(0.154836\pi\)
−0.884007 + 0.467473i \(0.845164\pi\)
\(230\) 46.6410 + 49.8774i 0.202787 + 0.216858i
\(231\) 0 0
\(232\) −2.90004 3.55092i −0.0125002 0.0153057i
\(233\) 127.436 0.546935 0.273468 0.961881i \(-0.411829\pi\)
0.273468 + 0.961881i \(0.411829\pi\)
\(234\) 0 0
\(235\) 475.559 2.02365
\(236\) −14.1436 + 210.664i −0.0599305 + 0.892645i
\(237\) 0 0
\(238\) −37.0436 + 34.6400i −0.155646 + 0.145546i
\(239\) 319.281i 1.33590i 0.744204 + 0.667952i \(0.232829\pi\)
−0.744204 + 0.667952i \(0.767171\pi\)
\(240\) 0 0
\(241\) −247.415 −1.02662 −0.513310 0.858203i \(-0.671581\pi\)
−0.513310 + 0.858203i \(0.671581\pi\)
\(242\) 77.8634 + 83.2663i 0.321750 + 0.344076i
\(243\) 0 0
\(244\) 237.779 + 15.9641i 0.974506 + 0.0654265i
\(245\) 354.607i 1.44737i
\(246\) 0 0
\(247\) 174.459i 0.706310i
\(248\) −290.669 355.906i −1.17205 1.43511i
\(249\) 0 0
\(250\) −159.895 + 149.520i −0.639580 + 0.598079i
\(251\) 214.851 0.855981 0.427991 0.903783i \(-0.359222\pi\)
0.427991 + 0.903783i \(0.359222\pi\)
\(252\) 0 0
\(253\) 34.2205i 0.135259i
\(254\) 270.473 252.923i 1.06485 0.995759i
\(255\) 0 0
\(256\) 246.851 + 67.8267i 0.964263 + 0.264948i
\(257\) 84.2769 0.327926 0.163963 0.986467i \(-0.447572\pi\)
0.163963 + 0.986467i \(0.447572\pi\)
\(258\) 0 0
\(259\) −59.1384 −0.228334
\(260\) 24.9948 372.290i 0.0961340 1.43188i
\(261\) 0 0
\(262\) 171.244 + 183.126i 0.653601 + 0.698954i
\(263\) 277.120i 1.05369i 0.849962 + 0.526844i \(0.176625\pi\)
−0.849962 + 0.526844i \(0.823375\pi\)
\(264\) 0 0
\(265\) 250.277 0.944441
\(266\) 46.6410 43.6146i 0.175342 0.163965i
\(267\) 0 0
\(268\) 22.7180 338.377i 0.0847685 1.26260i
\(269\) 123.701i 0.459855i −0.973208 0.229927i \(-0.926151\pi\)
0.973208 0.229927i \(-0.0738489\pi\)
\(270\) 0 0
\(271\) 197.985i 0.730572i −0.930895 0.365286i \(-0.880971\pi\)
0.930895 0.365286i \(-0.119029\pi\)
\(272\) 188.000 + 25.3582i 0.691176 + 0.0932288i
\(273\) 0 0
\(274\) 136.014 + 145.452i 0.496402 + 0.530847i
\(275\) −309.703 −1.12619
\(276\) 0 0
\(277\) 247.709i 0.894256i −0.894470 0.447128i \(-0.852447\pi\)
0.894470 0.447128i \(-0.147553\pi\)
\(278\) −242.459 259.283i −0.872154 0.932673i
\(279\) 0 0
\(280\) −105.779 + 86.3902i −0.377784 + 0.308536i
\(281\) −443.128 −1.57697 −0.788484 0.615055i \(-0.789134\pi\)
−0.788484 + 0.615055i \(0.789134\pi\)
\(282\) 0 0
\(283\) −294.620 −1.04106 −0.520531 0.853843i \(-0.674266\pi\)
−0.520531 + 0.853843i \(0.674266\pi\)
\(284\) −169.492 11.3794i −0.596804 0.0400683i
\(285\) 0 0
\(286\) 136.574 127.712i 0.477533 0.446547i
\(287\) 67.5196i 0.235260i
\(288\) 0 0
\(289\) −148.426 −0.513583
\(290\) −6.24871 6.68231i −0.0215473 0.0230424i
\(291\) 0 0
\(292\) 1.45379 21.6538i 0.00497874 0.0741567i
\(293\) 66.7217i 0.227719i 0.993497 + 0.113859i \(0.0363214\pi\)
−0.993497 + 0.113859i \(0.963679\pi\)
\(294\) 0 0
\(295\) 421.328i 1.42823i
\(296\) 139.923 + 171.327i 0.472713 + 0.578808i
\(297\) 0 0
\(298\) −128.263 + 119.940i −0.430412 + 0.402484i
\(299\) −49.9897 −0.167190
\(300\) 0 0
\(301\) 61.5639i 0.204531i
\(302\) −320.014 + 299.249i −1.05965 + 0.990892i
\(303\) 0 0
\(304\) −236.708 31.9281i −0.778644 0.105027i
\(305\) 475.559 1.55921
\(306\) 0 0
\(307\) −524.210 −1.70753 −0.853763 0.520662i \(-0.825685\pi\)
−0.853763 + 0.520662i \(0.825685\pi\)
\(308\) −68.2872 4.58467i −0.221712 0.0148853i
\(309\) 0 0
\(310\) −626.305 669.764i −2.02034 2.16053i
\(311\) 362.057i 1.16417i −0.813128 0.582085i \(-0.802237\pi\)
0.813128 0.582085i \(-0.197763\pi\)
\(312\) 0 0
\(313\) 252.277 0.805996 0.402998 0.915201i \(-0.367968\pi\)
0.402998 + 0.915201i \(0.367968\pi\)
\(314\) −370.228 + 346.205i −1.17907 + 1.10256i
\(315\) 0 0
\(316\) −178.028 11.9525i −0.563380 0.0378243i
\(317\) 80.3934i 0.253607i 0.991928 + 0.126803i \(0.0404717\pi\)
−0.991928 + 0.126803i \(0.959528\pi\)
\(318\) 0 0
\(319\) 4.58467i 0.0143720i
\(320\) 500.554 + 102.047i 1.56423 + 0.318897i
\(321\) 0 0
\(322\) 12.4974 + 13.3646i 0.0388119 + 0.0415050i
\(323\) −176.995 −0.547972
\(324\) 0 0
\(325\) 452.417i 1.39205i
\(326\) 139.818 + 149.520i 0.428889 + 0.458650i
\(327\) 0 0
\(328\) 195.608 159.753i 0.596365 0.487052i
\(329\) 127.426 0.387312
\(330\) 0 0
\(331\) 172.056 0.519808 0.259904 0.965635i \(-0.416309\pi\)
0.259904 + 0.965635i \(0.416309\pi\)
\(332\) 18.1436 270.243i 0.0546494 0.813985i
\(333\) 0 0
\(334\) −410.620 + 383.977i −1.22940 + 1.14963i
\(335\) 676.753i 2.02016i
\(336\) 0 0
\(337\) 564.277 1.67441 0.837206 0.546888i \(-0.184187\pi\)
0.837206 + 0.546888i \(0.184187\pi\)
\(338\) −44.2942 47.3678i −0.131048 0.140141i
\(339\) 0 0
\(340\) 377.703 + 25.3582i 1.11089 + 0.0745830i
\(341\) 459.519i 1.34756i
\(342\) 0 0
\(343\) 199.817i 0.582556i
\(344\) 178.354 145.662i 0.518470 0.423435i
\(345\) 0 0
\(346\) 354.771 331.751i 1.02535 0.958817i
\(347\) 286.123 0.824562 0.412281 0.911057i \(-0.364732\pi\)
0.412281 + 0.911057i \(0.364732\pi\)
\(348\) 0 0
\(349\) 421.021i 1.20636i −0.797603 0.603182i \(-0.793899\pi\)
0.797603 0.603182i \(-0.206101\pi\)
\(350\) −120.953 + 113.104i −0.345579 + 0.323155i
\(351\) 0 0
\(352\) 148.287 + 208.679i 0.421270 + 0.592838i
\(353\) −429.138 −1.21569 −0.607845 0.794056i \(-0.707966\pi\)
−0.607845 + 0.794056i \(0.707966\pi\)
\(354\) 0 0
\(355\) −338.985 −0.954886
\(356\) −35.6743 + 531.358i −0.100209 + 1.49258i
\(357\) 0 0
\(358\) 434.879 + 465.055i 1.21475 + 1.29904i
\(359\) 263.673i 0.734465i 0.930129 + 0.367233i \(0.119695\pi\)
−0.930129 + 0.367233i \(0.880305\pi\)
\(360\) 0 0
\(361\) −138.149 −0.382684
\(362\) 116.154 108.617i 0.320867 0.300047i
\(363\) 0 0
\(364\) 6.69735 99.7548i 0.0183993 0.274052i
\(365\) 43.3075i 0.118651i
\(366\) 0 0
\(367\) 129.544i 0.352981i 0.984302 + 0.176491i \(0.0564745\pi\)
−0.984302 + 0.176491i \(0.943525\pi\)
\(368\) 9.14875 67.8267i 0.0248607 0.184312i
\(369\) 0 0
\(370\) 301.492 + 322.413i 0.814844 + 0.871385i
\(371\) 67.0615 0.180759
\(372\) 0 0
\(373\) 302.478i 0.810933i 0.914110 + 0.405467i \(0.132891\pi\)
−0.914110 + 0.405467i \(0.867109\pi\)
\(374\) 129.569 + 138.560i 0.346442 + 0.370481i
\(375\) 0 0
\(376\) −301.492 369.159i −0.801841 0.981805i
\(377\) 6.69735 0.0177649
\(378\) 0 0
\(379\) −116.210 −0.306623 −0.153312 0.988178i \(-0.548994\pi\)
−0.153312 + 0.988178i \(0.548994\pi\)
\(380\) −475.559 31.9281i −1.25147 0.0840214i
\(381\) 0 0
\(382\) −515.503 + 482.053i −1.34948 + 1.26192i
\(383\) 566.151i 1.47820i 0.673595 + 0.739101i \(0.264749\pi\)
−0.673595 + 0.739101i \(0.735251\pi\)
\(384\) 0 0
\(385\) −136.574 −0.354739
\(386\) 388.329 + 415.275i 1.00603 + 1.07584i
\(387\) 0 0
\(388\) −26.0282 + 387.681i −0.0670829 + 0.999178i
\(389\) 350.104i 0.900011i −0.893026 0.450006i \(-0.851422\pi\)
0.893026 0.450006i \(-0.148578\pi\)
\(390\) 0 0
\(391\) 50.7165i 0.129710i
\(392\) 275.268 224.812i 0.702214 0.573499i
\(393\) 0 0
\(394\) −110.742 + 103.557i −0.281072 + 0.262834i
\(395\) −356.056 −0.901408
\(396\) 0 0
\(397\) 544.149i 1.37065i −0.728236 0.685326i \(-0.759660\pi\)
0.728236 0.685326i \(-0.240340\pi\)
\(398\) −152.196 + 142.321i −0.382402 + 0.357589i
\(399\) 0 0
\(400\) 613.846 + 82.7981i 1.53462 + 0.206995i
\(401\) 296.431 0.739229 0.369614 0.929185i \(-0.379490\pi\)
0.369614 + 0.929185i \(0.379490\pi\)
\(402\) 0 0
\(403\) 671.272 1.66569
\(404\) −247.990 16.6496i −0.613836 0.0412118i
\(405\) 0 0
\(406\) −1.67434 1.79052i −0.00412398 0.00441014i
\(407\) 221.205i 0.543500i
\(408\) 0 0
\(409\) −247.415 −0.604927 −0.302464 0.953161i \(-0.597809\pi\)
−0.302464 + 0.953161i \(0.597809\pi\)
\(410\) 368.105 344.220i 0.897817 0.839561i
\(411\) 0 0
\(412\) 110.967 + 7.45009i 0.269337 + 0.0180827i
\(413\) 112.895i 0.273353i
\(414\) 0 0
\(415\) 540.486i 1.30238i
\(416\) −304.841 + 216.620i −0.732791 + 0.520721i
\(417\) 0 0
\(418\) −163.138 174.459i −0.390283 0.417365i
\(419\) 92.1333 0.219889 0.109944 0.993938i \(-0.464933\pi\)
0.109944 + 0.993938i \(0.464933\pi\)
\(420\) 0 0
\(421\) 445.540i 1.05829i 0.848531 + 0.529145i \(0.177487\pi\)
−0.848531 + 0.529145i \(0.822513\pi\)
\(422\) −187.033 200.011i −0.443207 0.473961i
\(423\) 0 0
\(424\) −158.669 194.281i −0.374220 0.458209i
\(425\) 458.995 1.07999
\(426\) 0 0
\(427\) 127.426 0.298421
\(428\) 10.1230 150.778i 0.0236518 0.352286i
\(429\) 0 0
\(430\) 335.636 313.857i 0.780549 0.729901i
\(431\) 186.677i 0.433125i −0.976269 0.216563i \(-0.930515\pi\)
0.976269 0.216563i \(-0.0694845\pi\)
\(432\) 0 0
\(433\) 291.128 0.672351 0.336176 0.941799i \(-0.390866\pi\)
0.336176 + 0.941799i \(0.390866\pi\)
\(434\) −167.818 179.463i −0.386677 0.413509i
\(435\) 0 0
\(436\) −565.492 37.9661i −1.29700 0.0870782i
\(437\) 63.8562i 0.146124i
\(438\) 0 0
\(439\) 87.6899i 0.199749i −0.995000 0.0998746i \(-0.968156\pi\)
0.995000 0.0998746i \(-0.0318442\pi\)
\(440\) 323.138 + 395.663i 0.734406 + 0.899234i
\(441\) 0 0
\(442\) −202.410 + 189.276i −0.457942 + 0.428227i
\(443\) −20.7077 −0.0467441 −0.0233721 0.999727i \(-0.507440\pi\)
−0.0233721 + 0.999727i \(0.507440\pi\)
\(444\) 0 0
\(445\) 1062.72i 2.38812i
\(446\) −77.6603 + 72.6211i −0.174126 + 0.162828i
\(447\) 0 0
\(448\) 134.123 + 27.3435i 0.299382 + 0.0610345i
\(449\) −584.410 −1.30158 −0.650791 0.759257i \(-0.725563\pi\)
−0.650791 + 0.759257i \(0.725563\pi\)
\(450\) 0 0
\(451\) 252.554 0.559986
\(452\) −15.6180 + 232.625i −0.0345531 + 0.514657i
\(453\) 0 0
\(454\) −163.713 175.073i −0.360601 0.385623i
\(455\) 199.510i 0.438483i
\(456\) 0 0
\(457\) −269.692 −0.590136 −0.295068 0.955476i \(-0.595342\pi\)
−0.295068 + 0.955476i \(0.595342\pi\)
\(458\) 312.764 292.470i 0.682891 0.638580i
\(459\) 0 0
\(460\) 9.14875 136.268i 0.0198886 0.296234i
\(461\) 44.4948i 0.0965181i −0.998835 0.0482590i \(-0.984633\pi\)
0.998835 0.0482590i \(-0.0153673\pi\)
\(462\) 0 0
\(463\) 611.065i 1.31980i 0.751355 + 0.659898i \(0.229400\pi\)
−0.751355 + 0.659898i \(0.770600\pi\)
\(464\) −1.22570 + 9.08705i −0.00264159 + 0.0195842i
\(465\) 0 0
\(466\) −174.081 186.160i −0.373564 0.399485i
\(467\) −146.410 −0.313512 −0.156756 0.987637i \(-0.550104\pi\)
−0.156756 + 0.987637i \(0.550104\pi\)
\(468\) 0 0
\(469\) 181.336i 0.386643i
\(470\) −649.626 694.703i −1.38218 1.47809i
\(471\) 0 0
\(472\) 327.061 267.111i 0.692927 0.565914i
\(473\) 230.277 0.486843
\(474\) 0 0
\(475\) −577.913 −1.21666
\(476\) 101.205 + 6.79472i 0.212616 + 0.0142746i
\(477\) 0 0
\(478\) 466.410 436.146i 0.975753 0.912440i
\(479\) 191.876i 0.400576i −0.979737 0.200288i \(-0.935812\pi\)
0.979737 0.200288i \(-0.0641878\pi\)
\(480\) 0 0
\(481\) −323.138 −0.671805
\(482\) 337.976 + 361.428i 0.701194 + 0.749850i
\(483\) 0 0
\(484\) 15.2731 227.488i 0.0315560 0.470016i
\(485\) 775.362i 1.59868i
\(486\) 0 0
\(487\) 610.758i 1.25412i −0.778969 0.627062i \(-0.784257\pi\)
0.778969 0.627062i \(-0.215743\pi\)
\(488\) −301.492 369.159i −0.617812 0.756473i
\(489\) 0 0
\(490\) 518.014 484.402i 1.05717 0.988575i
\(491\) 142.354 0.289926 0.144963 0.989437i \(-0.453694\pi\)
0.144963 + 0.989437i \(0.453694\pi\)
\(492\) 0 0
\(493\) 6.79472i 0.0137824i
\(494\) 254.851 238.315i 0.515893 0.482419i
\(495\) 0 0
\(496\) −122.851 + 910.791i −0.247684 + 1.83627i
\(497\) −90.8306 −0.182758
\(498\) 0 0
\(499\) 91.3693 0.183105 0.0915524 0.995800i \(-0.470817\pi\)
0.0915524 + 0.995800i \(0.470817\pi\)
\(500\) 436.841 + 29.3287i 0.873682 + 0.0586573i
\(501\) 0 0
\(502\) −293.492 313.857i −0.584646 0.625214i
\(503\) 230.067i 0.457389i −0.973498 0.228695i \(-0.926554\pi\)
0.973498 0.228695i \(-0.0734457\pi\)
\(504\) 0 0
\(505\) −495.979 −0.982137
\(506\) 49.9897 46.7460i 0.0987939 0.0923834i
\(507\) 0 0
\(508\) −738.946 49.6114i −1.45462 0.0976603i
\(509\) 527.387i 1.03612i 0.855343 + 0.518062i \(0.173346\pi\)
−0.855343 + 0.518062i \(0.826654\pi\)
\(510\) 0 0
\(511\) 11.6042i 0.0227088i
\(512\) −238.123 453.256i −0.465084 0.885267i
\(513\) 0 0
\(514\) −115.124 123.113i −0.223977 0.239519i
\(515\) 221.933 0.430939
\(516\) 0 0
\(517\) 476.630i 0.921914i
\(518\) 80.7846 + 86.3902i 0.155955 + 0.166776i
\(519\) 0 0
\(520\) −577.990 + 472.045i −1.11152 + 0.907779i
\(521\) −191.856 −0.368246 −0.184123 0.982903i \(-0.558945\pi\)
−0.184123 + 0.982903i \(0.558945\pi\)
\(522\) 0 0
\(523\) 105.492 0.201706 0.100853 0.994901i \(-0.467843\pi\)
0.100853 + 0.994901i \(0.467843\pi\)
\(524\) 33.5898 500.310i 0.0641027 0.954789i
\(525\) 0 0
\(526\) 404.820 378.553i 0.769620 0.719682i
\(527\) 681.031i 1.29228i
\(528\) 0 0
\(529\) 510.703 0.965411
\(530\) −341.885 365.608i −0.645065 0.689826i
\(531\) 0 0
\(532\) −127.426 8.55511i −0.239522 0.0160810i
\(533\) 368.934i 0.692184i
\(534\) 0 0
\(535\) 301.557i 0.563658i
\(536\) −525.338 + 429.044i −0.980109 + 0.800456i
\(537\) 0 0
\(538\) −180.704 + 168.979i −0.335881 + 0.314087i
\(539\) 355.405 0.659378
\(540\) 0 0
\(541\) 459.744i 0.849804i 0.905239 + 0.424902i \(0.139691\pi\)
−0.905239 + 0.424902i \(0.860309\pi\)
\(542\) −289.219 + 270.453i −0.533615 + 0.498990i
\(543\) 0 0
\(544\) −219.769 309.273i −0.403987 0.568516i
\(545\) −1130.98 −2.07520
\(546\) 0 0
\(547\) 67.3693 0.123161 0.0615807 0.998102i \(-0.480386\pi\)
0.0615807 + 0.998102i \(0.480386\pi\)
\(548\) 26.6795 397.382i 0.0486852 0.725150i
\(549\) 0 0
\(550\) 423.061 + 452.417i 0.769203 + 0.822577i
\(551\) 8.55511i 0.0155265i
\(552\) 0 0
\(553\) −95.4050 −0.172523
\(554\) −361.856 + 338.377i −0.653170 + 0.610788i
\(555\) 0 0
\(556\) −47.5589 + 708.374i −0.0855376 + 1.27405i
\(557\) 476.671i 0.855782i −0.903830 0.427891i \(-0.859257\pi\)
0.903830 0.427891i \(-0.140743\pi\)
\(558\) 0 0
\(559\) 336.391i 0.601774i
\(560\) 270.697 + 36.5128i 0.483388 + 0.0652014i
\(561\) 0 0
\(562\) 605.324 + 647.327i 1.07709 + 1.15183i
\(563\) 910.123 1.61656 0.808280 0.588799i \(-0.200399\pi\)
0.808280 + 0.588799i \(0.200399\pi\)
\(564\) 0 0
\(565\) 465.250i 0.823452i
\(566\) 402.459 + 430.385i 0.711058 + 0.760398i
\(567\) 0 0
\(568\) 214.908 + 263.141i 0.378358 + 0.463276i
\(569\) 124.123 0.218142 0.109071 0.994034i \(-0.465212\pi\)
0.109071 + 0.994034i \(0.465212\pi\)
\(570\) 0 0
\(571\) 945.031 1.65504 0.827522 0.561433i \(-0.189750\pi\)
0.827522 + 0.561433i \(0.189750\pi\)
\(572\) −373.128 25.0511i −0.652322 0.0437957i
\(573\) 0 0
\(574\) 98.6335 92.2335i 0.171835 0.160685i
\(575\) 165.596i 0.287994i
\(576\) 0 0
\(577\) 215.682 0.373799 0.186899 0.982379i \(-0.440156\pi\)
0.186899 + 0.982379i \(0.440156\pi\)
\(578\) 202.753 + 216.822i 0.350784 + 0.375125i
\(579\) 0 0
\(580\) −1.22570 + 18.2564i −0.00211328 + 0.0314765i
\(581\) 144.823i 0.249265i
\(582\) 0 0
\(583\) 250.840i 0.430258i
\(584\) −33.6180 + 27.4559i −0.0575651 + 0.0470135i
\(585\) 0 0
\(586\) 97.4679 91.1435i 0.166327 0.155535i
\(587\) −900.785 −1.53456 −0.767278 0.641314i \(-0.778389\pi\)
−0.767278 + 0.641314i \(0.778389\pi\)
\(588\) 0 0
\(589\) 857.475i 1.45581i
\(590\) 615.482 575.545i 1.04319 0.975500i
\(591\) 0 0
\(592\) 59.1384 438.439i 0.0998960 0.740606i
\(593\) 508.585 0.857647 0.428824 0.903388i \(-0.358928\pi\)
0.428824 + 0.903388i \(0.358928\pi\)
\(594\) 0 0
\(595\) 202.410 0.340185
\(596\) 350.420 + 23.5266i 0.587954 + 0.0394741i
\(597\) 0 0
\(598\) 68.2872 + 73.0256i 0.114193 + 0.122116i
\(599\) 846.934i 1.41391i −0.707257 0.706957i \(-0.750067\pi\)
0.707257 0.706957i \(-0.249933\pi\)
\(600\) 0 0
\(601\) −406.000 −0.675541 −0.337770 0.941229i \(-0.609673\pi\)
−0.337770 + 0.941229i \(0.609673\pi\)
\(602\) 89.9334 84.0979i 0.149391 0.139697i
\(603\) 0 0
\(604\) 874.295 + 58.6985i 1.44751 + 0.0971829i
\(605\) 454.976i 0.752026i
\(606\) 0 0
\(607\) 771.156i 1.27044i 0.772332 + 0.635219i \(0.219090\pi\)
−0.772332 + 0.635219i \(0.780910\pi\)
\(608\) 276.708 + 389.400i 0.455111 + 0.640461i
\(609\) 0 0
\(610\) −649.626 694.703i −1.06496 1.13886i
\(611\) 696.267 1.13955
\(612\) 0 0
\(613\) 336.699i 0.549264i 0.961549 + 0.274632i \(0.0885560\pi\)
−0.961549 + 0.274632i \(0.911444\pi\)
\(614\) 716.084 + 765.773i 1.16626 + 1.24719i
\(615\) 0 0
\(616\) 86.5847 + 106.018i 0.140560 + 0.172106i
\(617\) 908.831 1.47298 0.736492 0.676447i \(-0.236481\pi\)
0.736492 + 0.676447i \(0.236481\pi\)
\(618\) 0 0
\(619\) −1047.77 −1.69268 −0.846340 0.532643i \(-0.821199\pi\)
−0.846340 + 0.532643i \(0.821199\pi\)
\(620\) −122.851 + 1829.83i −0.198147 + 2.95134i
\(621\) 0 0
\(622\) −528.897 + 494.579i −0.850317 + 0.795143i
\(623\) 284.754i 0.457068i
\(624\) 0 0
\(625\) −94.1384 −0.150622
\(626\) −344.617 368.529i −0.550506 0.588705i
\(627\) 0 0
\(628\) 1011.48 + 67.9090i 1.61064 + 0.108135i
\(629\) 327.836i 0.521202i
\(630\) 0 0
\(631\) 610.758i 0.967921i −0.875090 0.483961i \(-0.839198\pi\)
0.875090 0.483961i \(-0.160802\pi\)
\(632\) 225.731 + 276.393i 0.357169 + 0.437331i
\(633\) 0 0
\(634\) 117.440 109.819i 0.185236 0.173217i
\(635\) −1477.89 −2.32739
\(636\) 0 0
\(637\) 519.180i 0.815040i
\(638\) −6.69735 + 6.26278i −0.0104974 + 0.00981627i
\(639\) 0 0
\(640\) −534.697 870.614i −0.835465 1.36034i
\(641\) −9.60015 −0.0149768 −0.00748842 0.999972i \(-0.502384\pi\)
−0.00748842 + 0.999972i \(0.502384\pi\)
\(642\) 0 0
\(643\) 86.1999 0.134059 0.0670295 0.997751i \(-0.478648\pi\)
0.0670295 + 0.997751i \(0.478648\pi\)
\(644\) 2.45140 36.5128i 0.00380652 0.0566969i
\(645\) 0 0
\(646\) 241.779 + 258.556i 0.374272 + 0.400242i
\(647\) 352.580i 0.544946i −0.962163 0.272473i \(-0.912158\pi\)
0.962163 0.272473i \(-0.0878416\pi\)
\(648\) 0 0
\(649\) 422.277 0.650658
\(650\) −660.897 + 618.014i −1.01677 + 0.950790i
\(651\) 0 0
\(652\) 27.4256 408.496i 0.0420638 0.626527i
\(653\) 319.322i 0.489008i −0.969648 0.244504i \(-0.921375\pi\)
0.969648 0.244504i \(-0.0786252\pi\)
\(654\) 0 0
\(655\) 1000.62i 1.52766i
\(656\) −500.574 67.5196i −0.763071 0.102926i
\(657\) 0 0
\(658\) −174.067 186.145i −0.264539 0.282895i
\(659\) −275.328 −0.417797 −0.208898 0.977937i \(-0.566988\pi\)
−0.208898 + 0.977937i \(0.566988\pi\)
\(660\) 0 0
\(661\) 133.668i 0.202221i 0.994875 + 0.101111i \(0.0322396\pi\)
−0.994875 + 0.101111i \(0.967760\pi\)
\(662\) −235.033 251.342i −0.355035 0.379671i
\(663\) 0 0
\(664\) −419.559 + 342.654i −0.631866 + 0.516046i
\(665\) −254.851 −0.383235
\(666\) 0 0
\(667\) 2.45140 0.00367526
\(668\) 1121.84 + 75.3179i 1.67939 + 0.112751i
\(669\) 0 0
\(670\) −988.610 + 924.462i −1.47554 + 1.37979i
\(671\) 476.630i 0.710327i
\(672\) 0 0
\(673\) 187.703 0.278904 0.139452 0.990229i \(-0.455466\pi\)
0.139452 + 0.990229i \(0.455466\pi\)
\(674\) −770.817 824.303i −1.14364 1.22300i
\(675\) 0 0
\(676\) −8.68842 + 129.411i −0.0128527 + 0.191437i
\(677\) 1169.84i 1.72797i −0.503515 0.863986i \(-0.667960\pi\)
0.503515 0.863986i \(-0.332040\pi\)
\(678\) 0 0
\(679\) 207.758i 0.305976i
\(680\) −478.908 586.393i −0.704276 0.862342i
\(681\) 0 0
\(682\) −671.272 + 627.715i −0.984269 + 0.920403i
\(683\) −89.4566 −0.130976 −0.0654880 0.997853i \(-0.520860\pi\)
−0.0654880 + 0.997853i \(0.520860\pi\)
\(684\) 0 0
\(685\) 794.765i 1.16024i
\(686\) 291.895 272.955i 0.425503 0.397893i
\(687\) 0 0
\(688\) −456.420 61.5639i −0.663402 0.0894824i
\(689\) 366.431 0.531830
\(690\) 0 0
\(691\) 139.103 0.201306 0.100653 0.994922i \(-0.467907\pi\)
0.100653 + 0.994922i \(0.467907\pi\)
\(692\) −969.251 65.0737i −1.40065 0.0940371i
\(693\) 0 0
\(694\) −390.851 417.972i −0.563186 0.602265i
\(695\) 1416.75i 2.03849i
\(696\) 0 0
\(697\) −374.297 −0.537012
\(698\) −615.033 + 575.126i −0.881137 + 0.823962i
\(699\) 0 0
\(700\) 330.449 + 22.1857i 0.472069 + 0.0316938i
\(701\) 1218.34i 1.73801i 0.494804 + 0.869004i \(0.335240\pi\)
−0.494804 + 0.869004i \(0.664760\pi\)
\(702\) 0 0
\(703\) 412.773i 0.587160i
\(704\) 102.277 501.681i 0.145280 0.712615i
\(705\) 0 0
\(706\) 586.214 + 626.891i 0.830331 + 0.887948i
\(707\) −132.897 −0.187974
\(708\) 0 0
\(709\) 1080.13i 1.52346i −0.647895 0.761730i \(-0.724351\pi\)
0.647895 0.761730i \(-0.275649\pi\)
\(710\) 463.061 + 495.193i 0.652199 + 0.697455i
\(711\) 0 0
\(712\) 824.946 673.734i 1.15863 0.946256i
\(713\) 245.703 0.344604
\(714\) 0 0
\(715\) −746.256 −1.04372
\(716\) 85.3027 1270.56i 0.119138 1.77452i
\(717\) 0 0
\(718\) 385.177 360.184i 0.536458 0.501649i
\(719\) 20.7736i 0.0288923i 0.999896 + 0.0144461i \(0.00459851\pi\)
−0.999896 + 0.0144461i \(0.995401\pi\)
\(720\) 0 0
\(721\) 59.4669 0.0824783
\(722\) 188.715 + 201.809i 0.261378 + 0.279515i
\(723\) 0 0
\(724\) −317.338 21.3055i −0.438313 0.0294275i
\(725\) 22.1857i 0.0306010i
\(726\) 0 0
\(727\) 1031.17i 1.41838i 0.705015 + 0.709192i \(0.250940\pi\)
−0.705015 + 0.709192i \(0.749060\pi\)
\(728\) −154.872 + 126.484i −0.212736 + 0.173742i
\(729\) 0 0
\(730\) −63.2642 + 59.1592i −0.0866633 + 0.0810399i
\(731\) −341.282 −0.466870
\(732\) 0 0
\(733\) 881.072i 1.20201i −0.799246 0.601004i \(-0.794767\pi\)
0.799246 0.601004i \(-0.205233\pi\)
\(734\) 189.240 176.961i 0.257820 0.241091i
\(735\) 0 0
\(736\) −111.580 + 79.2884i −0.151603 + 0.107729i
\(737\) −678.277 −0.920321
\(738\) 0 0
\(739\) −671.195 −0.908247 −0.454124 0.890939i \(-0.650048\pi\)
−0.454124 + 0.890939i \(0.650048\pi\)
\(740\) 59.1384 880.848i 0.0799168 1.19033i
\(741\) 0 0
\(742\) −91.6077 97.9643i −0.123461 0.132027i
\(743\) 254.197i 0.342122i 0.985260 + 0.171061i \(0.0547195\pi\)
−0.985260 + 0.171061i \(0.945281\pi\)
\(744\) 0 0
\(745\) 700.841 0.940726
\(746\) 441.864 413.193i 0.592311 0.553878i
\(747\) 0 0
\(748\) 25.4153 378.553i 0.0339777 0.506087i
\(749\) 80.8019i 0.107880i
\(750\) 0 0
\(751\) 728.994i 0.970698i −0.874320 0.485349i \(-0.838693\pi\)
0.874320 0.485349i \(-0.161307\pi\)
\(752\) −127.426 + 944.704i −0.169449 + 1.25626i
\(753\) 0 0
\(754\) −9.14875 9.78357i −0.0121336 0.0129756i
\(755\) 1748.59 2.31601
\(756\) 0 0
\(757\) 372.679i 0.492311i 0.969230 + 0.246155i \(0.0791674\pi\)
−0.969230 + 0.246155i \(0.920833\pi\)
\(758\) 158.746 + 169.761i 0.209428 + 0.223960i
\(759\) 0 0
\(760\) 602.985 + 738.317i 0.793401 + 0.971470i
\(761\) −1257.80 −1.65283 −0.826416 0.563060i \(-0.809624\pi\)
−0.826416 + 0.563060i \(0.809624\pi\)
\(762\) 0 0
\(763\) −303.046 −0.397177
\(764\) 1408.38 + 94.5559i 1.84343 + 0.123764i
\(765\) 0 0
\(766\) 827.041 773.377i 1.07969 1.00963i
\(767\) 616.868i 0.804260i
\(768\) 0 0
\(769\) 247.703 0.322110 0.161055 0.986945i \(-0.448510\pi\)
0.161055 + 0.986945i \(0.448510\pi\)
\(770\) 186.564 + 199.510i 0.242291 + 0.259103i
\(771\) 0 0
\(772\) 76.1718 1134.55i 0.0986681 1.46963i
\(773\) 587.805i 0.760420i 0.924900 + 0.380210i \(0.124148\pi\)
−0.924900 + 0.380210i \(0.875852\pi\)
\(774\) 0 0
\(775\) 2223.66i 2.86924i
\(776\) 601.885 491.560i 0.775624 0.633453i
\(777\) 0 0
\(778\) −511.437 + 478.251i −0.657374 + 0.614719i
\(779\) 471.272 0.604970
\(780\) 0 0
\(781\) 339.748i 0.435016i
\(782\) −74.0873 + 69.2800i −0.0947407 + 0.0885933i
\(783\) 0 0
\(784\) −704.431 95.0166i −0.898509 0.121195i
\(785\) 2022.96 2.57702
\(786\) 0 0
\(787\) −31.0821 −0.0394944 −0.0197472 0.999805i \(-0.506286\pi\)
−0.0197472 + 0.999805i \(0.506286\pi\)
\(788\) 302.554 + 20.3129i 0.383951 + 0.0257778i
\(789\) 0 0
\(790\) 486.382 + 520.132i 0.615673 + 0.658395i
\(791\) 124.663i 0.157602i
\(792\) 0 0
\(793\) 696.267 0.878016
\(794\) −794.900 + 743.321i −1.00113 + 0.936173i
\(795\) 0 0
\(796\) 415.808 + 27.9165i 0.522371 + 0.0350710i
\(797\) 490.260i 0.615132i −0.951527 0.307566i \(-0.900486\pi\)
0.951527 0.307566i \(-0.0995145\pi\)
\(798\) 0 0
\(799\) 706.389i 0.884092i
\(800\) −717.577 1009.82i −0.896971 1.26227i
\(801\) 0 0
\(802\) −404.932 433.030i −0.504903 0.539938i
\(803\) −43.4050 −0.0540536
\(804\) 0 0
\(805\) 73.0256i 0.0907150i
\(806\) −916.974 980.602i −1.13769 1.21663i
\(807\) 0 0
\(808\) 314.438 + 385.010i 0.389156 + 0.476498i
\(809\) −676.102 −0.835726 −0.417863 0.908510i \(-0.637221\pi\)
−0.417863 + 0.908510i \(0.637221\pi\)
\(810\) 0 0
\(811\) −74.1793 −0.0914665 −0.0457332 0.998954i \(-0.514562\pi\)
−0.0457332 + 0.998954i \(0.514562\pi\)
\(812\) −0.328425 + 4.89179i −0.000404465 + 0.00602437i
\(813\) 0 0
\(814\) 323.138 302.171i 0.396976 0.371217i
\(815\) 816.991i 1.00244i
\(816\) 0 0
\(817\) 429.703 0.525952
\(818\) 337.976 + 361.428i 0.413173 + 0.441843i
\(819\) 0 0
\(820\) −1005.68 67.5196i −1.22644 0.0823409i
\(821\) 1130.58i 1.37708i 0.725198 + 0.688540i \(0.241748\pi\)
−0.725198 + 0.688540i \(0.758252\pi\)
\(822\) 0 0
\(823\) 82.1839i 0.0998589i −0.998753 0.0499295i \(-0.984100\pi\)
0.998753 0.0499295i \(-0.0158997\pi\)
\(824\) −140.700 172.279i −0.170753 0.209076i
\(825\) 0 0
\(826\) 164.918 154.217i 0.199658 0.186703i
\(827\) −1504.57 −1.81931 −0.909655 0.415365i \(-0.863654\pi\)
−0.909655 + 0.415365i \(0.863654\pi\)
\(828\) 0 0
\(829\) 1409.65i 1.70042i 0.526445 + 0.850209i \(0.323525\pi\)
−0.526445 + 0.850209i \(0.676475\pi\)
\(830\) −789.549 + 738.317i −0.951263 + 0.889539i
\(831\) 0 0
\(832\) 732.862 + 149.407i 0.880843 + 0.179576i
\(833\) −526.728 −0.632327
\(834\) 0 0
\(835\) 2243.67 2.68703
\(836\) −32.0000 + 476.630i −0.0382775 + 0.570131i
\(837\) 0 0
\(838\) −125.856 134.589i −0.150187 0.160608i
\(839\) 288.110i 0.343397i 0.985150 + 0.171698i \(0.0549254\pi\)
−0.985150 + 0.171698i \(0.945075\pi\)
\(840\) 0 0
\(841\) 840.672 0.999609
\(842\) 650.851 608.620i 0.772982 0.722826i
\(843\) 0 0
\(844\) −36.6870 + 546.441i −0.0434681 + 0.647442i
\(845\) 258.822i 0.306299i
\(846\) 0 0
\(847\) 121.910i 0.143932i
\(848\) −67.0615 + 497.178i −0.0790819 + 0.586295i
\(849\) 0 0
\(850\) −626.999 670.506i −0.737645 0.788830i
\(851\) −118.277 −0.138986
\(852\) 0 0
\(853\) 645.132i 0.756310i −0.925742 0.378155i \(-0.876559\pi\)
0.925742 0.378155i \(-0.123441\pi\)
\(854\) −174.067 186.145i −0.203825 0.217968i
\(855\) 0 0
\(856\) −234.087 + 191.179i −0.273466 + 0.223340i
\(857\) 995.549 1.16167 0.580833 0.814022i \(-0.302727\pi\)
0.580833 + 0.814022i \(0.302727\pi\)
\(858\) 0 0
\(859\) −774.354 −0.901460 −0.450730 0.892660i \(-0.648836\pi\)
−0.450730 + 0.892660i \(0.648836\pi\)
\(860\) −916.974 61.5639i −1.06625 0.0715859i
\(861\) 0 0
\(862\) −272.700 + 255.005i −0.316357 + 0.295830i
\(863\) 1007.33i 1.16724i −0.812025 0.583622i \(-0.801635\pi\)
0.812025 0.583622i \(-0.198365\pi\)
\(864\) 0 0
\(865\) −1938.50 −2.24104
\(866\) −397.688 425.284i −0.459225 0.491090i
\(867\) 0 0
\(868\) −32.9179 + 490.301i −0.0379238 + 0.564863i
\(869\) 356.858i 0.410654i
\(870\) 0 0
\(871\) 990.836i 1.13758i
\(872\) 717.015 + 877.941i 0.822265 + 1.00681i
\(873\) 0 0
\(874\) 93.2820 87.2293i 0.106730 0.0998046i
\(875\) 234.102 0.267546
\(876\) 0 0
\(877\) 681.645i 0.777246i 0.921397 + 0.388623i \(0.127049\pi\)
−0.921397 + 0.388623i \(0.872951\pi\)
\(878\) −128.099 + 119.787i −0.145898 + 0.136431i
\(879\) 0 0
\(880\) 136.574 1012.53i 0.155198 1.15060i
\(881\) 679.108 0.770837 0.385419 0.922742i \(-0.374057\pi\)
0.385419 + 0.922742i \(0.374057\pi\)
\(882\) 0 0
\(883\) −1059.44 −1.19982 −0.599910 0.800068i \(-0.704797\pi\)
−0.599910 + 0.800068i \(0.704797\pi\)
\(884\) 552.995 + 37.1270i 0.625560 + 0.0419989i
\(885\) 0 0
\(886\) 28.2872 + 30.2500i 0.0319268 + 0.0341422i
\(887\) 856.411i 0.965514i 0.875754 + 0.482757i \(0.160365\pi\)
−0.875754 + 0.482757i \(0.839635\pi\)
\(888\) 0 0
\(889\) −396.000 −0.445444
\(890\) 1552.43 1451.70i 1.74430 1.63112i
\(891\) 0 0
\(892\) 212.172 + 14.2448i 0.237861 + 0.0159695i
\(893\) 889.403i 0.995972i
\(894\) 0 0
\(895\) 2541.11i 2.83923i
\(896\) −143.272 233.280i −0.159901 0.260358i
\(897\) 0 0
\(898\) 798.319 + 853.714i 0.888997 + 0.950684i
\(899\) −32.9179 −0.0366161
\(900\) 0 0
\(901\) 371.758i 0.412606i
\(902\) −344.995 368.934i −0.382478 0.409018i
\(903\) 0 0
\(904\) 361.156 294.957i 0.399509 0.326280i
\(905\) −634.677 −0.701300
\(906\) 0 0
\(907\) −761.492 −0.839573 −0.419786 0.907623i \(-0.637895\pi\)
−0.419786 + 0.907623i \(0.637895\pi\)
\(908\) −32.1127 + 478.308i −0.0353664 + 0.526770i
\(909\) 0 0
\(910\) −291.446 + 272.535i −0.320271 + 0.299489i
\(911\) 897.344i 0.985009i 0.870310 + 0.492505i \(0.163919\pi\)
−0.870310 + 0.492505i \(0.836081\pi\)
\(912\) 0 0
\(913\) −541.703 −0.593321
\(914\) 368.406 + 393.970i 0.403070 + 0.431039i
\(915\) 0 0
\(916\) −854.487 57.3686i −0.932846 0.0626295i
\(917\) 268.115i 0.292383i
\(918\) 0 0
\(919\) 62.6388i 0.0681598i 0.999419 + 0.0340799i \(0.0108501\pi\)
−0.999419 + 0.0340799i \(0.989150\pi\)
\(920\) −211.559 + 172.780i −0.229955 + 0.187805i
\(921\) 0 0
\(922\) −64.9986 + 60.7811i −0.0704974 + 0.0659231i
\(923\) −496.308 −0.537712
\(924\) 0 0
\(925\) 1070.43i 1.15722i
\(926\) 892.652 834.731i 0.963987 0.901437i
\(927\) 0 0
\(928\) 14.9488 10.6226i 0.0161086 0.0114468i
\(929\) −253.313 −0.272673 −0.136336 0.990663i \(-0.543533\pi\)
−0.136336 + 0.990663i \(0.543533\pi\)
\(930\) 0 0
\(931\) 663.195 0.712347
\(932\) −34.1464 + 508.599i −0.0366377 + 0.545707i
\(933\) 0 0
\(934\) 200.000 + 213.878i 0.214133 + 0.228991i
\(935\) 757.106i 0.809739i
\(936\) 0 0
\(937\) −30.5538 −0.0326081 −0.0163040 0.999867i \(-0.505190\pi\)
−0.0163040 + 0.999867i \(0.505190\pi\)
\(938\) −264.897 + 247.709i −0.282406 + 0.264082i
\(939\) 0 0
\(940\) −127.426 + 1897.96i −0.135559 + 2.01911i
\(941\) 388.745i 0.413119i 0.978434 + 0.206559i \(0.0662267\pi\)
−0.978434 + 0.206559i \(0.933773\pi\)
\(942\) 0 0
\(943\) 135.039i 0.143202i
\(944\) −836.974 112.895i −0.886625 0.119592i
\(945\) 0 0
\(946\) −314.564 336.391i −0.332520 0.355594i
\(947\) 263.615 0.278369 0.139184 0.990266i \(-0.455552\pi\)
0.139184 + 0.990266i \(0.455552\pi\)
\(948\) 0 0
\(949\) 63.4066i 0.0668141i
\(950\) 789.443 + 844.222i 0.830993 + 0.888655i
\(951\) 0 0
\(952\) −128.323 157.123i −0.134793 0.165046i
\(953\) −1292.41 −1.35615 −0.678075 0.734993i \(-0.737185\pi\)
−0.678075 + 0.734993i \(0.737185\pi\)
\(954\) 0 0
\(955\) 2816.76 2.94949
\(956\) −1274.26 85.5511i −1.33290 0.0894886i
\(957\) 0 0
\(958\) −280.295 + 262.107i −0.292583 + 0.273598i
\(959\) 212.957i 0.222061i
\(960\) 0 0
\(961\) −2338.34 −2.43324
\(962\) 441.415 + 472.045i 0.458852 + 0.490691i
\(963\) 0 0
\(964\) 66.2947 987.438i 0.0687705 1.02431i
\(965\) 2269.11i 2.35141i
\(966\) 0 0
\(967\) 1110.00i 1.14788i −0.818896 0.573942i \(-0.805413\pi\)
0.818896 0.573942i \(-0.194587\pi\)
\(968\) −353.181 + 288.443i −0.364856 + 0.297978i
\(969\) 0 0
\(970\) 1132.66 1059.16i 1.16769 1.09192i
\(971\) 1341.66 1.38173 0.690866 0.722983i \(-0.257230\pi\)
0.690866 + 0.722983i \(0.257230\pi\)
\(972\) 0 0
\(973\) 379.617i 0.390151i
\(974\) −892.204 + 834.311i −0.916020 + 0.856583i
\(975\) 0 0
\(976\) −127.426 + 944.704i −0.130559 + 0.967934i
\(977\) 920.431 0.942099 0.471050 0.882107i \(-0.343875\pi\)
0.471050 + 0.882107i \(0.343875\pi\)
\(978\) 0 0
\(979\) 1065.11 1.08795
\(980\) −1415.24 95.0166i −1.44412 0.0969557i
\(981\) 0 0
\(982\) −194.459 207.952i −0.198023 0.211764i
\(983\) 1697.84i 1.72720i −0.504176 0.863601i \(-0.668204\pi\)
0.504176 0.863601i \(-0.331796\pi\)
\(984\) 0 0
\(985\) 605.108 0.614322
\(986\) 9.92581 9.28176i 0.0100667 0.00941355i
\(987\) 0 0
\(988\) −696.267 46.7460i −0.704723 0.0473138i
\(989\) 123.128i 0.124497i
\(990\) 0 0
\(991\) 284.765i 0.287351i 0.989625 + 0.143675i \(0.0458921\pi\)
−0.989625 + 0.143675i \(0.954108\pi\)
\(992\) 1498.31 1064.70i 1.51040 1.07329i
\(993\) 0 0
\(994\) 124.077 + 132.687i 0.124826 + 0.133487i
\(995\) 831.615 0.835794
\(996\) 0 0
\(997\) 1093.80i 1.09710i 0.836119 + 0.548548i \(0.184819\pi\)
−0.836119 + 0.548548i \(0.815181\pi\)
\(998\) −124.813 133.473i −0.125063 0.133741i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 72.3.b.b.19.1 4
3.2 odd 2 24.3.b.a.19.4 yes 4
4.3 odd 2 288.3.b.b.271.4 4
8.3 odd 2 inner 72.3.b.b.19.2 4
8.5 even 2 288.3.b.b.271.1 4
12.11 even 2 96.3.b.a.79.3 4
15.2 even 4 600.3.p.a.499.4 8
15.8 even 4 600.3.p.a.499.5 8
15.14 odd 2 600.3.g.a.451.1 4
16.3 odd 4 2304.3.g.z.1279.8 8
16.5 even 4 2304.3.g.z.1279.1 8
16.11 odd 4 2304.3.g.z.1279.2 8
16.13 even 4 2304.3.g.z.1279.7 8
24.5 odd 2 96.3.b.a.79.4 4
24.11 even 2 24.3.b.a.19.3 4
48.5 odd 4 768.3.g.h.511.8 8
48.11 even 4 768.3.g.h.511.4 8
48.29 odd 4 768.3.g.h.511.1 8
48.35 even 4 768.3.g.h.511.5 8
60.23 odd 4 2400.3.p.a.1999.6 8
60.47 odd 4 2400.3.p.a.1999.3 8
60.59 even 2 2400.3.g.a.751.2 4
120.29 odd 2 2400.3.g.a.751.1 4
120.53 even 4 2400.3.p.a.1999.7 8
120.59 even 2 600.3.g.a.451.2 4
120.77 even 4 2400.3.p.a.1999.2 8
120.83 odd 4 600.3.p.a.499.3 8
120.107 odd 4 600.3.p.a.499.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
24.3.b.a.19.3 4 24.11 even 2
24.3.b.a.19.4 yes 4 3.2 odd 2
72.3.b.b.19.1 4 1.1 even 1 trivial
72.3.b.b.19.2 4 8.3 odd 2 inner
96.3.b.a.79.3 4 12.11 even 2
96.3.b.a.79.4 4 24.5 odd 2
288.3.b.b.271.1 4 8.5 even 2
288.3.b.b.271.4 4 4.3 odd 2
600.3.g.a.451.1 4 15.14 odd 2
600.3.g.a.451.2 4 120.59 even 2
600.3.p.a.499.3 8 120.83 odd 4
600.3.p.a.499.4 8 15.2 even 4
600.3.p.a.499.5 8 15.8 even 4
600.3.p.a.499.6 8 120.107 odd 4
768.3.g.h.511.1 8 48.29 odd 4
768.3.g.h.511.4 8 48.11 even 4
768.3.g.h.511.5 8 48.35 even 4
768.3.g.h.511.8 8 48.5 odd 4
2304.3.g.z.1279.1 8 16.5 even 4
2304.3.g.z.1279.2 8 16.11 odd 4
2304.3.g.z.1279.7 8 16.13 even 4
2304.3.g.z.1279.8 8 16.3 odd 4
2400.3.g.a.751.1 4 120.29 odd 2
2400.3.g.a.751.2 4 60.59 even 2
2400.3.p.a.1999.2 8 120.77 even 4
2400.3.p.a.1999.3 8 60.47 odd 4
2400.3.p.a.1999.6 8 60.23 odd 4
2400.3.p.a.1999.7 8 120.53 even 4