Properties

Label 600.3.p.a.499.6
Level $600$
Weight $3$
Character 600.499
Analytic conductor $16.349$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [600,3,Mod(499,600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(600, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("600.499");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 600.p (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.3488158616\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.22581504.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 5x^{6} + 2x^{5} - 11x^{4} + 4x^{3} + 20x^{2} - 32x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 24)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 499.6
Root \(1.20036 - 0.747754i\) of defining polynomial
Character \(\chi\) \(=\) 600.499
Dual form 600.3.p.a.499.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.46081 + 1.36603i) q^{2} +1.73205i q^{3} +(0.267949 + 3.99102i) q^{4} +(-2.36603 + 2.53020i) q^{6} +2.13878 q^{7} +(-5.06040 + 6.19615i) q^{8} -3.00000 q^{9} +O(q^{10})\) \(q+(1.46081 + 1.36603i) q^{2} +1.73205i q^{3} +(0.267949 + 3.99102i) q^{4} +(-2.36603 + 2.53020i) q^{6} +2.13878 q^{7} +(-5.06040 + 6.19615i) q^{8} -3.00000 q^{9} -8.00000 q^{11} +(-6.91264 + 0.464102i) q^{12} -11.6865 q^{13} +(3.12436 + 2.92163i) q^{14} +(-15.8564 + 2.13878i) q^{16} +11.8564i q^{17} +(-4.38244 - 4.09808i) q^{18} -14.9282 q^{19} +3.70447i q^{21} +(-11.6865 - 10.9282i) q^{22} +4.27756 q^{23} +(-10.7321 - 8.76488i) q^{24} +(-17.0718 - 15.9641i) q^{26} -5.19615i q^{27} +(0.573084 + 8.53590i) q^{28} +0.573084i q^{29} +57.4399i q^{31} +(-26.0849 - 18.5359i) q^{32} -13.8564i q^{33} +(-16.1962 + 17.3200i) q^{34} +(-0.803848 - 11.9730i) q^{36} +27.6506 q^{37} +(-21.8073 - 20.3923i) q^{38} -20.2416i q^{39} -31.5692 q^{41} +(-5.06040 + 5.41154i) q^{42} -28.7846i q^{43} +(-2.14359 - 31.9281i) q^{44} +(6.24871 + 5.84325i) q^{46} +59.5787 q^{47} +(-3.70447 - 27.4641i) q^{48} -44.4256 q^{49} -20.5359 q^{51} +(-3.13139 - 46.6410i) q^{52} -31.3550 q^{53} +(7.09808 - 7.59061i) q^{54} +(-10.8231 + 13.2522i) q^{56} -25.8564i q^{57} +(-0.782847 + 0.837169i) q^{58} +52.7846 q^{59} +59.5787i q^{61} +(-78.4644 + 83.9090i) q^{62} -6.41634 q^{63} +(-12.7846 - 62.7101i) q^{64} +(18.9282 - 20.2416i) q^{66} -84.7846i q^{67} +(-47.3191 + 3.17691i) q^{68} +7.40895i q^{69} +42.4685i q^{71} +(15.1812 - 18.5885i) q^{72} +5.42563i q^{73} +(40.3923 + 37.7714i) q^{74} +(-4.00000 - 59.5787i) q^{76} -17.1102 q^{77} +(27.6506 - 29.5692i) q^{78} +44.6072i q^{79} +9.00000 q^{81} +(-46.1167 - 43.1244i) q^{82} -67.7128i q^{83} +(-14.7846 + 0.992611i) q^{84} +(39.3205 - 42.0489i) q^{86} -0.992611 q^{87} +(40.4832 - 49.5692i) q^{88} +133.138 q^{89} -24.9948 q^{91} +(1.14617 + 17.0718i) q^{92} -99.4888 q^{93} +(87.0333 + 81.3860i) q^{94} +(32.1051 - 45.1803i) q^{96} +97.1384i q^{97} +(-64.8975 - 60.6865i) q^{98} +24.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 16 q^{4} - 12 q^{6} - 24 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 16 q^{4} - 12 q^{6} - 24 q^{9} - 64 q^{11} - 72 q^{14} - 16 q^{16} - 64 q^{19} - 72 q^{24} - 192 q^{26} - 88 q^{34} - 48 q^{36} + 80 q^{41} - 128 q^{44} - 144 q^{46} + 88 q^{49} - 192 q^{51} + 36 q^{54} - 336 q^{56} + 256 q^{59} + 64 q^{64} + 96 q^{66} + 240 q^{74} - 32 q^{76} + 72 q^{81} + 48 q^{84} + 176 q^{86} + 400 q^{89} + 576 q^{91} + 336 q^{94} - 48 q^{96} + 192 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/600\mathbb{Z}\right)^\times\).

\(n\) \(151\) \(301\) \(401\) \(577\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.46081 + 1.36603i 0.730406 + 0.683013i
\(3\) 1.73205i 0.577350i
\(4\) 0.267949 + 3.99102i 0.0669873 + 0.997754i
\(5\) 0 0
\(6\) −2.36603 + 2.53020i −0.394338 + 0.421700i
\(7\) 2.13878 0.305540 0.152770 0.988262i \(-0.451181\pi\)
0.152770 + 0.988262i \(0.451181\pi\)
\(8\) −5.06040 + 6.19615i −0.632551 + 0.774519i
\(9\) −3.00000 −0.333333
\(10\) 0 0
\(11\) −8.00000 −0.727273 −0.363636 0.931541i \(-0.618465\pi\)
−0.363636 + 0.931541i \(0.618465\pi\)
\(12\) −6.91264 + 0.464102i −0.576053 + 0.0386751i
\(13\) −11.6865 −0.898962 −0.449481 0.893290i \(-0.648391\pi\)
−0.449481 + 0.893290i \(0.648391\pi\)
\(14\) 3.12436 + 2.92163i 0.223168 + 0.208688i
\(15\) 0 0
\(16\) −15.8564 + 2.13878i −0.991025 + 0.133674i
\(17\) 11.8564i 0.697436i 0.937228 + 0.348718i \(0.113383\pi\)
−0.937228 + 0.348718i \(0.886617\pi\)
\(18\) −4.38244 4.09808i −0.243469 0.227671i
\(19\) −14.9282 −0.785695 −0.392847 0.919604i \(-0.628510\pi\)
−0.392847 + 0.919604i \(0.628510\pi\)
\(20\) 0 0
\(21\) 3.70447i 0.176403i
\(22\) −11.6865 10.9282i −0.531205 0.496737i
\(23\) 4.27756 0.185981 0.0929904 0.995667i \(-0.470357\pi\)
0.0929904 + 0.995667i \(0.470357\pi\)
\(24\) −10.7321 8.76488i −0.447169 0.365203i
\(25\) 0 0
\(26\) −17.0718 15.9641i −0.656608 0.614002i
\(27\) 5.19615i 0.192450i
\(28\) 0.573084 + 8.53590i 0.0204673 + 0.304854i
\(29\) 0.573084i 0.0197615i 0.999951 + 0.00988076i \(0.00314519\pi\)
−0.999951 + 0.00988076i \(0.996855\pi\)
\(30\) 0 0
\(31\) 57.4399i 1.85290i 0.376417 + 0.926450i \(0.377156\pi\)
−0.376417 + 0.926450i \(0.622844\pi\)
\(32\) −26.0849 18.5359i −0.815152 0.579247i
\(33\) 13.8564i 0.419891i
\(34\) −16.1962 + 17.3200i −0.476357 + 0.509412i
\(35\) 0 0
\(36\) −0.803848 11.9730i −0.0223291 0.332585i
\(37\) 27.6506 0.747313 0.373656 0.927567i \(-0.378104\pi\)
0.373656 + 0.927567i \(0.378104\pi\)
\(38\) −21.8073 20.3923i −0.573877 0.536640i
\(39\) 20.2416i 0.519016i
\(40\) 0 0
\(41\) −31.5692 −0.769981 −0.384990 0.922921i \(-0.625795\pi\)
−0.384990 + 0.922921i \(0.625795\pi\)
\(42\) −5.06040 + 5.41154i −0.120486 + 0.128846i
\(43\) 28.7846i 0.669410i −0.942323 0.334705i \(-0.891363\pi\)
0.942323 0.334705i \(-0.108637\pi\)
\(44\) −2.14359 31.9281i −0.0487180 0.725639i
\(45\) 0 0
\(46\) 6.24871 + 5.84325i 0.135842 + 0.127027i
\(47\) 59.5787 1.26763 0.633816 0.773484i \(-0.281488\pi\)
0.633816 + 0.773484i \(0.281488\pi\)
\(48\) −3.70447 27.4641i −0.0771765 0.572169i
\(49\) −44.4256 −0.906645
\(50\) 0 0
\(51\) −20.5359 −0.402665
\(52\) −3.13139 46.6410i −0.0602190 0.896943i
\(53\) −31.3550 −0.591604 −0.295802 0.955249i \(-0.595587\pi\)
−0.295802 + 0.955249i \(0.595587\pi\)
\(54\) 7.09808 7.59061i 0.131446 0.140567i
\(55\) 0 0
\(56\) −10.8231 + 13.2522i −0.193269 + 0.236646i
\(57\) 25.8564i 0.453621i
\(58\) −0.782847 + 0.837169i −0.0134974 + 0.0144339i
\(59\) 52.7846 0.894654 0.447327 0.894370i \(-0.352376\pi\)
0.447327 + 0.894370i \(0.352376\pi\)
\(60\) 0 0
\(61\) 59.5787i 0.976700i 0.872648 + 0.488350i \(0.162401\pi\)
−0.872648 + 0.488350i \(0.837599\pi\)
\(62\) −78.4644 + 83.9090i −1.26555 + 1.35337i
\(63\) −6.41634 −0.101847
\(64\) −12.7846 62.7101i −0.199760 0.979845i
\(65\) 0 0
\(66\) 18.9282 20.2416i 0.286791 0.306691i
\(67\) 84.7846i 1.26544i −0.774380 0.632721i \(-0.781938\pi\)
0.774380 0.632721i \(-0.218062\pi\)
\(68\) −47.3191 + 3.17691i −0.695869 + 0.0467193i
\(69\) 7.40895i 0.107376i
\(70\) 0 0
\(71\) 42.4685i 0.598147i 0.954230 + 0.299074i \(0.0966776\pi\)
−0.954230 + 0.299074i \(0.903322\pi\)
\(72\) 15.1812 18.5885i 0.210850 0.258173i
\(73\) 5.42563i 0.0743236i 0.999309 + 0.0371618i \(0.0118317\pi\)
−0.999309 + 0.0371618i \(0.988168\pi\)
\(74\) 40.3923 + 37.7714i 0.545842 + 0.510424i
\(75\) 0 0
\(76\) −4.00000 59.5787i −0.0526316 0.783930i
\(77\) −17.1102 −0.222211
\(78\) 27.6506 29.5692i 0.354494 0.379093i
\(79\) 44.6072i 0.564649i 0.959319 + 0.282324i \(0.0911054\pi\)
−0.959319 + 0.282324i \(0.908895\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) −46.1167 43.1244i −0.562399 0.525907i
\(83\) 67.7128i 0.815817i −0.913023 0.407909i \(-0.866258\pi\)
0.913023 0.407909i \(-0.133742\pi\)
\(84\) −14.7846 + 0.992611i −0.176007 + 0.0118168i
\(85\) 0 0
\(86\) 39.3205 42.0489i 0.457215 0.488941i
\(87\) −0.992611 −0.0114093
\(88\) 40.4832 49.5692i 0.460037 0.563287i
\(89\) 133.138 1.49594 0.747969 0.663734i \(-0.231029\pi\)
0.747969 + 0.663734i \(0.231029\pi\)
\(90\) 0 0
\(91\) −24.9948 −0.274669
\(92\) 1.14617 + 17.0718i 0.0124583 + 0.185563i
\(93\) −99.4888 −1.06977
\(94\) 87.0333 + 81.3860i 0.925886 + 0.865809i
\(95\) 0 0
\(96\) 32.1051 45.1803i 0.334428 0.470628i
\(97\) 97.1384i 1.00143i 0.865613 + 0.500714i \(0.166929\pi\)
−0.865613 + 0.500714i \(0.833071\pi\)
\(98\) −64.8975 60.6865i −0.662220 0.619250i
\(99\) 24.0000 0.242424
\(100\) 0 0
\(101\) 62.1370i 0.615218i 0.951513 + 0.307609i \(0.0995288\pi\)
−0.951513 + 0.307609i \(0.900471\pi\)
\(102\) −29.9991 28.0526i −0.294109 0.275025i
\(103\) 27.8041 0.269943 0.134971 0.990849i \(-0.456906\pi\)
0.134971 + 0.990849i \(0.456906\pi\)
\(104\) 59.1384 72.4114i 0.568639 0.696263i
\(105\) 0 0
\(106\) −45.8038 42.8318i −0.432112 0.404073i
\(107\) 37.7795i 0.353079i 0.984294 + 0.176540i \(0.0564903\pi\)
−0.984294 + 0.176540i \(0.943510\pi\)
\(108\) 20.7379 1.39230i 0.192018 0.0128917i
\(109\) 141.691i 1.29992i 0.759968 + 0.649960i \(0.225214\pi\)
−0.759968 + 0.649960i \(0.774786\pi\)
\(110\) 0 0
\(111\) 47.8922i 0.431461i
\(112\) −33.9133 + 4.57437i −0.302798 + 0.0408426i
\(113\) 58.2872i 0.515816i 0.966170 + 0.257908i \(0.0830331\pi\)
−0.966170 + 0.257908i \(0.916967\pi\)
\(114\) 35.3205 37.7714i 0.309829 0.331328i
\(115\) 0 0
\(116\) −2.28719 + 0.153557i −0.0197171 + 0.00132377i
\(117\) 35.0595 0.299654
\(118\) 77.1084 + 72.1051i 0.653461 + 0.611060i
\(119\) 25.3582i 0.213094i
\(120\) 0 0
\(121\) −57.0000 −0.471074
\(122\) −81.3860 + 87.0333i −0.667098 + 0.713388i
\(123\) 54.6795i 0.444549i
\(124\) −229.244 + 15.3910i −1.84874 + 0.124121i
\(125\) 0 0
\(126\) −9.37307 8.76488i −0.0743894 0.0695625i
\(127\) 185.152 1.45789 0.728946 0.684571i \(-0.240010\pi\)
0.728946 + 0.684571i \(0.240010\pi\)
\(128\) 66.9876 109.072i 0.523341 0.852123i
\(129\) 49.8564 0.386484
\(130\) 0 0
\(131\) 125.359 0.956939 0.478469 0.878104i \(-0.341192\pi\)
0.478469 + 0.878104i \(0.341192\pi\)
\(132\) 55.3011 3.71281i 0.418948 0.0281274i
\(133\) −31.9281 −0.240061
\(134\) 115.818 123.854i 0.864313 0.924287i
\(135\) 0 0
\(136\) −73.4641 59.9982i −0.540177 0.441163i
\(137\) 99.5692i 0.726783i 0.931637 + 0.363391i \(0.118381\pi\)
−0.931637 + 0.363391i \(0.881619\pi\)
\(138\) −10.1208 + 10.8231i −0.0733392 + 0.0784282i
\(139\) −177.492 −1.27692 −0.638461 0.769654i \(-0.720429\pi\)
−0.638461 + 0.769654i \(0.720429\pi\)
\(140\) 0 0
\(141\) 103.193i 0.731867i
\(142\) −58.0130 + 62.0385i −0.408542 + 0.436891i
\(143\) 93.4920 0.653790
\(144\) 47.5692 6.41634i 0.330342 0.0445579i
\(145\) 0 0
\(146\) −7.41154 + 7.92582i −0.0507640 + 0.0542865i
\(147\) 76.9474i 0.523452i
\(148\) 7.40895 + 110.354i 0.0500605 + 0.745634i
\(149\) 87.8023i 0.589277i 0.955609 + 0.294639i \(0.0951993\pi\)
−0.955609 + 0.294639i \(0.904801\pi\)
\(150\) 0 0
\(151\) 219.066i 1.45077i 0.688345 + 0.725383i \(0.258337\pi\)
−0.688345 + 0.725383i \(0.741663\pi\)
\(152\) 75.5427 92.4974i 0.496992 0.608536i
\(153\) 35.5692i 0.232479i
\(154\) −24.9948 23.3730i −0.162304 0.151773i
\(155\) 0 0
\(156\) 80.7846 5.42373i 0.517850 0.0347675i
\(157\) −253.440 −1.61427 −0.807133 0.590370i \(-0.798982\pi\)
−0.807133 + 0.590370i \(0.798982\pi\)
\(158\) −60.9346 + 65.1628i −0.385662 + 0.412423i
\(159\) 54.3085i 0.341563i
\(160\) 0 0
\(161\) 9.14875 0.0568245
\(162\) 13.1473 + 12.2942i 0.0811563 + 0.0758903i
\(163\) 102.354i 0.627938i 0.949433 + 0.313969i \(0.101659\pi\)
−0.949433 + 0.313969i \(0.898341\pi\)
\(164\) −8.45895 125.993i −0.0515789 0.768251i
\(165\) 0 0
\(166\) 92.4974 98.9158i 0.557213 0.595878i
\(167\) 281.090 1.68318 0.841588 0.540120i \(-0.181621\pi\)
0.841588 + 0.540120i \(0.181621\pi\)
\(168\) −22.9535 18.7461i −0.136628 0.111584i
\(169\) −32.4256 −0.191868
\(170\) 0 0
\(171\) 44.7846 0.261898
\(172\) 114.880 7.71281i 0.667906 0.0448419i
\(173\) 242.858 1.40381 0.701903 0.712273i \(-0.252334\pi\)
0.701903 + 0.712273i \(0.252334\pi\)
\(174\) −1.45002 1.35593i −0.00833344 0.00779271i
\(175\) 0 0
\(176\) 126.851 17.1102i 0.720746 0.0972172i
\(177\) 91.4256i 0.516529i
\(178\) 194.490 + 181.870i 1.09264 + 1.02174i
\(179\) −318.354 −1.77851 −0.889257 0.457409i \(-0.848778\pi\)
−0.889257 + 0.457409i \(0.848778\pi\)
\(180\) 0 0
\(181\) 79.5132i 0.439299i −0.975579 0.219650i \(-0.929509\pi\)
0.975579 0.219650i \(-0.0704914\pi\)
\(182\) −36.5128 34.1436i −0.200620 0.187602i
\(183\) −103.193 −0.563898
\(184\) −21.6462 + 26.5044i −0.117642 + 0.144046i
\(185\) 0 0
\(186\) −145.335 135.904i −0.781369 0.730668i
\(187\) 94.8513i 0.507226i
\(188\) 15.9641 + 237.779i 0.0849152 + 1.26478i
\(189\) 11.1134i 0.0588012i
\(190\) 0 0
\(191\) 352.887i 1.84758i −0.382902 0.923789i \(-0.625075\pi\)
0.382902 0.923789i \(-0.374925\pi\)
\(192\) 108.617 22.1436i 0.565714 0.115331i
\(193\) 284.277i 1.47294i 0.676472 + 0.736469i \(0.263508\pi\)
−0.676472 + 0.736469i \(0.736492\pi\)
\(194\) −132.694 + 141.901i −0.683988 + 0.731449i
\(195\) 0 0
\(196\) −11.9038 177.303i −0.0607337 0.904609i
\(197\) 75.8087 0.384816 0.192408 0.981315i \(-0.438370\pi\)
0.192408 + 0.981315i \(0.438370\pi\)
\(198\) 35.0595 + 32.7846i 0.177068 + 0.165579i
\(199\) 104.186i 0.523547i −0.965129 0.261774i \(-0.915693\pi\)
0.965129 0.261774i \(-0.0843074\pi\)
\(200\) 0 0
\(201\) 146.851 0.730603
\(202\) −84.8807 + 90.7705i −0.420202 + 0.449359i
\(203\) 1.22570i 0.00603793i
\(204\) −5.50258 81.9591i −0.0269734 0.401760i
\(205\) 0 0
\(206\) 40.6166 + 37.9811i 0.197168 + 0.184374i
\(207\) −12.8327 −0.0619936
\(208\) 185.306 24.9948i 0.890894 0.120168i
\(209\) 119.426 0.571414
\(210\) 0 0
\(211\) 136.918 0.648900 0.324450 0.945903i \(-0.394821\pi\)
0.324450 + 0.945903i \(0.394821\pi\)
\(212\) −8.40156 125.138i −0.0396300 0.590276i
\(213\) −73.5575 −0.345341
\(214\) −51.6077 + 55.1887i −0.241157 + 0.257891i
\(215\) 0 0
\(216\) 32.1962 + 26.2946i 0.149056 + 0.121734i
\(217\) 122.851i 0.566135i
\(218\) −193.554 + 206.985i −0.887862 + 0.949470i
\(219\) −9.39746 −0.0429108
\(220\) 0 0
\(221\) 138.560i 0.626968i
\(222\) −65.4219 + 69.9615i −0.294693 + 0.315142i
\(223\) 53.1624 0.238396 0.119198 0.992870i \(-0.461968\pi\)
0.119198 + 0.992870i \(0.461968\pi\)
\(224\) −55.7898 39.6442i −0.249061 0.176983i
\(225\) 0 0
\(226\) −79.6218 + 85.1467i −0.352309 + 0.376755i
\(227\) 119.846i 0.527956i −0.964529 0.263978i \(-0.914965\pi\)
0.964529 0.263978i \(-0.0850347\pi\)
\(228\) 103.193 6.92820i 0.452602 0.0303869i
\(229\) 214.103i 0.934946i 0.884007 + 0.467473i \(0.154836\pi\)
−0.884007 + 0.467473i \(0.845164\pi\)
\(230\) 0 0
\(231\) 29.6358i 0.128293i
\(232\) −3.55092 2.90004i −0.0153057 0.0125002i
\(233\) 127.436i 0.546935i 0.961881 + 0.273468i \(0.0881707\pi\)
−0.961881 + 0.273468i \(0.911829\pi\)
\(234\) 51.2154 + 47.8922i 0.218869 + 0.204667i
\(235\) 0 0
\(236\) 14.1436 + 210.664i 0.0599305 + 0.892645i
\(237\) −77.2620 −0.326000
\(238\) −34.6400 + 37.0436i −0.145546 + 0.155646i
\(239\) 319.281i 1.33590i −0.744204 0.667952i \(-0.767171\pi\)
0.744204 0.667952i \(-0.232829\pi\)
\(240\) 0 0
\(241\) −247.415 −1.02662 −0.513310 0.858203i \(-0.671581\pi\)
−0.513310 + 0.858203i \(0.671581\pi\)
\(242\) −83.2663 77.8634i −0.344076 0.321750i
\(243\) 15.5885i 0.0641500i
\(244\) −237.779 + 15.9641i −0.974506 + 0.0654265i
\(245\) 0 0
\(246\) 74.6936 79.8765i 0.303632 0.324701i
\(247\) 174.459 0.706310
\(248\) −355.906 290.669i −1.43511 1.17205i
\(249\) 117.282 0.471012
\(250\) 0 0
\(251\) −214.851 −0.855981 −0.427991 0.903783i \(-0.640778\pi\)
−0.427991 + 0.903783i \(0.640778\pi\)
\(252\) −1.71925 25.6077i −0.00682243 0.101618i
\(253\) −34.2205 −0.135259
\(254\) 270.473 + 252.923i 1.06485 + 0.995759i
\(255\) 0 0
\(256\) 246.851 67.8267i 0.964263 0.264948i
\(257\) 84.2769i 0.327926i −0.986467 0.163963i \(-0.947572\pi\)
0.986467 0.163963i \(-0.0524277\pi\)
\(258\) 72.8309 + 68.1051i 0.282290 + 0.263973i
\(259\) 59.1384 0.228334
\(260\) 0 0
\(261\) 1.71925i 0.00658717i
\(262\) 183.126 + 171.244i 0.698954 + 0.653601i
\(263\) 277.120 1.05369 0.526844 0.849962i \(-0.323375\pi\)
0.526844 + 0.849962i \(0.323375\pi\)
\(264\) 85.8564 + 70.1190i 0.325214 + 0.265602i
\(265\) 0 0
\(266\) −46.6410 43.6146i −0.175342 0.163965i
\(267\) 230.603i 0.863680i
\(268\) 338.377 22.7180i 1.26260 0.0847685i
\(269\) 123.701i 0.459855i 0.973208 + 0.229927i \(0.0738489\pi\)
−0.973208 + 0.229927i \(0.926151\pi\)
\(270\) 0 0
\(271\) 197.985i 0.730572i 0.930895 + 0.365286i \(0.119029\pi\)
−0.930895 + 0.365286i \(0.880971\pi\)
\(272\) −25.3582 188.000i −0.0932288 0.691176i
\(273\) 43.2923i 0.158580i
\(274\) −136.014 + 145.452i −0.496402 + 0.530847i
\(275\) 0 0
\(276\) −29.5692 + 1.98522i −0.107135 + 0.00719283i
\(277\) −247.709 −0.894256 −0.447128 0.894470i \(-0.647553\pi\)
−0.447128 + 0.894470i \(0.647553\pi\)
\(278\) −259.283 242.459i −0.932673 0.872154i
\(279\) 172.320i 0.617633i
\(280\) 0 0
\(281\) 443.128 1.57697 0.788484 0.615055i \(-0.210866\pi\)
0.788484 + 0.615055i \(0.210866\pi\)
\(282\) −140.965 + 150.746i −0.499875 + 0.534561i
\(283\) 294.620i 1.04106i 0.853843 + 0.520531i \(0.174266\pi\)
−0.853843 + 0.520531i \(0.825734\pi\)
\(284\) −169.492 + 11.3794i −0.596804 + 0.0400683i
\(285\) 0 0
\(286\) 136.574 + 127.712i 0.477533 + 0.446547i
\(287\) −67.5196 −0.235260
\(288\) 78.2546 + 55.6077i 0.271717 + 0.193082i
\(289\) 148.426 0.513583
\(290\) 0 0
\(291\) −168.249 −0.578174
\(292\) −21.6538 + 1.45379i −0.0741567 + 0.00497874i
\(293\) 66.7217 0.227719 0.113859 0.993497i \(-0.463679\pi\)
0.113859 + 0.993497i \(0.463679\pi\)
\(294\) 105.112 112.406i 0.357524 0.382333i
\(295\) 0 0
\(296\) −139.923 + 171.327i −0.472713 + 0.578808i
\(297\) 41.5692i 0.139964i
\(298\) −119.940 + 128.263i −0.402484 + 0.430412i
\(299\) −49.9897 −0.167190
\(300\) 0 0
\(301\) 61.5639i 0.204531i
\(302\) −299.249 + 320.014i −0.990892 + 1.05965i
\(303\) −107.624 −0.355196
\(304\) 236.708 31.9281i 0.778644 0.105027i
\(305\) 0 0
\(306\) 48.5885 51.9600i 0.158786 0.169804i
\(307\) 524.210i 1.70753i −0.520662 0.853763i \(-0.674315\pi\)
0.520662 0.853763i \(-0.325685\pi\)
\(308\) −4.58467 68.2872i −0.0148853 0.221712i
\(309\) 48.1582i 0.155852i
\(310\) 0 0
\(311\) 362.057i 1.16417i −0.813128 0.582085i \(-0.802237\pi\)
0.813128 0.582085i \(-0.197763\pi\)
\(312\) 125.420 + 102.431i 0.401988 + 0.328304i
\(313\) 252.277i 0.805996i −0.915201 0.402998i \(-0.867968\pi\)
0.915201 0.402998i \(-0.132032\pi\)
\(314\) −370.228 346.205i −1.17907 1.10256i
\(315\) 0 0
\(316\) −178.028 + 11.9525i −0.563380 + 0.0378243i
\(317\) −80.3934 −0.253607 −0.126803 0.991928i \(-0.540472\pi\)
−0.126803 + 0.991928i \(0.540472\pi\)
\(318\) 74.1868 79.3346i 0.233292 0.249480i
\(319\) 4.58467i 0.0143720i
\(320\) 0 0
\(321\) −65.4359 −0.203850
\(322\) 13.3646 + 12.4974i 0.0415050 + 0.0388119i
\(323\) 176.995i 0.547972i
\(324\) 2.41154 + 35.9191i 0.00744303 + 0.110862i
\(325\) 0 0
\(326\) −139.818 + 149.520i −0.428889 + 0.458650i
\(327\) −245.417 −0.750509
\(328\) 159.753 195.608i 0.487052 0.596365i
\(329\) 127.426 0.387312
\(330\) 0 0
\(331\) 172.056 0.519808 0.259904 0.965635i \(-0.416309\pi\)
0.259904 + 0.965635i \(0.416309\pi\)
\(332\) 270.243 18.1436i 0.813985 0.0546494i
\(333\) −82.9517 −0.249104
\(334\) 410.620 + 383.977i 1.22940 + 1.14963i
\(335\) 0 0
\(336\) −7.92305 58.7396i −0.0235805 0.174820i
\(337\) 564.277i 1.67441i 0.546888 + 0.837206i \(0.315813\pi\)
−0.546888 + 0.837206i \(0.684187\pi\)
\(338\) −47.3678 44.2942i −0.140141 0.131048i
\(339\) −100.956 −0.297806
\(340\) 0 0
\(341\) 459.519i 1.34756i
\(342\) 65.4219 + 61.1769i 0.191292 + 0.178880i
\(343\) −199.817 −0.582556
\(344\) 178.354 + 145.662i 0.518470 + 0.423435i
\(345\) 0 0
\(346\) 354.771 + 331.751i 1.02535 + 0.958817i
\(347\) 286.123i 0.824562i −0.911057 0.412281i \(-0.864732\pi\)
0.911057 0.412281i \(-0.135268\pi\)
\(348\) −0.265969 3.96152i −0.000764279 0.0113837i
\(349\) 421.021i 1.20636i −0.797603 0.603182i \(-0.793899\pi\)
0.797603 0.603182i \(-0.206101\pi\)
\(350\) 0 0
\(351\) 60.7249i 0.173005i
\(352\) 208.679 + 148.287i 0.592838 + 0.421270i
\(353\) 429.138i 1.21569i −0.794056 0.607845i \(-0.792034\pi\)
0.794056 0.607845i \(-0.207966\pi\)
\(354\) −124.890 + 133.556i −0.352796 + 0.377276i
\(355\) 0 0
\(356\) 35.6743 + 531.358i 0.100209 + 1.49258i
\(357\) −43.9217 −0.123030
\(358\) −465.055 434.879i −1.29904 1.21475i
\(359\) 263.673i 0.734465i −0.930129 0.367233i \(-0.880305\pi\)
0.930129 0.367233i \(-0.119695\pi\)
\(360\) 0 0
\(361\) −138.149 −0.382684
\(362\) 108.617 116.154i 0.300047 0.320867i
\(363\) 98.7269i 0.271975i
\(364\) −6.69735 99.7548i −0.0183993 0.274052i
\(365\) 0 0
\(366\) −150.746 140.965i −0.411875 0.385149i
\(367\) 129.544 0.352981 0.176491 0.984302i \(-0.443525\pi\)
0.176491 + 0.984302i \(0.443525\pi\)
\(368\) −67.8267 + 9.14875i −0.184312 + 0.0248607i
\(369\) 94.7077 0.256660
\(370\) 0 0
\(371\) −67.0615 −0.180759
\(372\) −26.6580 397.061i −0.0716612 1.06737i
\(373\) −302.478 −0.810933 −0.405467 0.914110i \(-0.632891\pi\)
−0.405467 + 0.914110i \(0.632891\pi\)
\(374\) 129.569 138.560i 0.346442 0.370481i
\(375\) 0 0
\(376\) −301.492 + 369.159i −0.801841 + 0.981805i
\(377\) 6.69735i 0.0177649i
\(378\) 15.1812 16.2346i 0.0401619 0.0429488i
\(379\) 116.210 0.306623 0.153312 0.988178i \(-0.451006\pi\)
0.153312 + 0.988178i \(0.451006\pi\)
\(380\) 0 0
\(381\) 320.693i 0.841715i
\(382\) 482.053 515.503i 1.26192 1.34948i
\(383\) 566.151 1.47820 0.739101 0.673595i \(-0.235251\pi\)
0.739101 + 0.673595i \(0.235251\pi\)
\(384\) 188.918 + 116.026i 0.491974 + 0.302151i
\(385\) 0 0
\(386\) −388.329 + 415.275i −1.00603 + 1.07584i
\(387\) 86.3538i 0.223137i
\(388\) −387.681 + 26.0282i −0.999178 + 0.0670829i
\(389\) 350.104i 0.900011i 0.893026 + 0.450006i \(0.148578\pi\)
−0.893026 + 0.450006i \(0.851422\pi\)
\(390\) 0 0
\(391\) 50.7165i 0.129710i
\(392\) 224.812 275.268i 0.573499 0.702214i
\(393\) 217.128i 0.552489i
\(394\) 110.742 + 103.557i 0.281072 + 0.262834i
\(395\) 0 0
\(396\) 6.43078 + 95.7844i 0.0162393 + 0.241880i
\(397\) −544.149 −1.37065 −0.685326 0.728236i \(-0.740340\pi\)
−0.685326 + 0.728236i \(0.740340\pi\)
\(398\) 142.321 152.196i 0.357589 0.382402i
\(399\) 55.3011i 0.138599i
\(400\) 0 0
\(401\) −296.431 −0.739229 −0.369614 0.929185i \(-0.620510\pi\)
−0.369614 + 0.929185i \(0.620510\pi\)
\(402\) 214.522 + 200.603i 0.533637 + 0.499011i
\(403\) 671.272i 1.66569i
\(404\) −247.990 + 16.6496i −0.613836 + 0.0412118i
\(405\) 0 0
\(406\) −1.67434 + 1.79052i −0.00412398 + 0.00441014i
\(407\) −221.205 −0.543500
\(408\) 103.920 127.244i 0.254706 0.311871i
\(409\) 247.415 0.604927 0.302464 0.953161i \(-0.402191\pi\)
0.302464 + 0.953161i \(0.402191\pi\)
\(410\) 0 0
\(411\) −172.459 −0.419608
\(412\) 7.45009 + 110.967i 0.0180827 + 0.269337i
\(413\) 112.895 0.273353
\(414\) −18.7461 17.5298i −0.0452805 0.0423424i
\(415\) 0 0
\(416\) 304.841 + 216.620i 0.732791 + 0.520721i
\(417\) 307.426i 0.737232i
\(418\) 174.459 + 163.138i 0.417365 + 0.390283i
\(419\) 92.1333 0.219889 0.109944 0.993938i \(-0.464933\pi\)
0.109944 + 0.993938i \(0.464933\pi\)
\(420\) 0 0
\(421\) 445.540i 1.05829i −0.848531 0.529145i \(-0.822513\pi\)
0.848531 0.529145i \(-0.177487\pi\)
\(422\) 200.011 + 187.033i 0.473961 + 0.443207i
\(423\) −178.736 −0.422544
\(424\) 158.669 194.281i 0.374220 0.458209i
\(425\) 0 0
\(426\) −107.454 100.481i −0.252239 0.235872i
\(427\) 127.426i 0.298421i
\(428\) −150.778 + 10.1230i −0.352286 + 0.0236518i
\(429\) 161.933i 0.377466i
\(430\) 0 0
\(431\) 186.677i 0.433125i −0.976269 0.216563i \(-0.930515\pi\)
0.976269 0.216563i \(-0.0694845\pi\)
\(432\) 11.1134 + 82.3923i 0.0257255 + 0.190723i
\(433\) 291.128i 0.672351i −0.941799 0.336176i \(-0.890866\pi\)
0.941799 0.336176i \(-0.109134\pi\)
\(434\) −167.818 + 179.463i −0.386677 + 0.413509i
\(435\) 0 0
\(436\) −565.492 + 37.9661i −1.29700 + 0.0870782i
\(437\) −63.8562 −0.146124
\(438\) −13.7279 12.8372i −0.0313423 0.0293086i
\(439\) 87.6899i 0.199749i −0.995000 0.0998746i \(-0.968156\pi\)
0.995000 0.0998746i \(-0.0318442\pi\)
\(440\) 0 0
\(441\) 133.277 0.302215
\(442\) 189.276 202.410i 0.428227 0.457942i
\(443\) 20.7077i 0.0467441i −0.999727 0.0233721i \(-0.992560\pi\)
0.999727 0.0233721i \(-0.00744024\pi\)
\(444\) −191.138 + 12.8327i −0.430492 + 0.0289024i
\(445\) 0 0
\(446\) 77.6603 + 72.6211i 0.174126 + 0.162828i
\(447\) −152.078 −0.340219
\(448\) −27.3435 134.123i −0.0610345 0.299382i
\(449\) −584.410 −1.30158 −0.650791 0.759257i \(-0.725563\pi\)
−0.650791 + 0.759257i \(0.725563\pi\)
\(450\) 0 0
\(451\) 252.554 0.559986
\(452\) −232.625 + 15.6180i −0.514657 + 0.0345531i
\(453\) −379.433 −0.837600
\(454\) 163.713 175.073i 0.360601 0.385623i
\(455\) 0 0
\(456\) 160.210 + 130.844i 0.351338 + 0.286938i
\(457\) 269.692i 0.590136i −0.955476 0.295068i \(-0.904658\pi\)
0.955476 0.295068i \(-0.0953423\pi\)
\(458\) −292.470 + 312.764i −0.638580 + 0.682891i
\(459\) 61.6077 0.134222
\(460\) 0 0
\(461\) 44.4948i 0.0965181i −0.998835 0.0482590i \(-0.984633\pi\)
0.998835 0.0482590i \(-0.0153673\pi\)
\(462\) 40.4832 43.2923i 0.0876261 0.0937064i
\(463\) −611.065 −1.31980 −0.659898 0.751355i \(-0.729400\pi\)
−0.659898 + 0.751355i \(0.729400\pi\)
\(464\) −1.22570 9.08705i −0.00264159 0.0195842i
\(465\) 0 0
\(466\) −174.081 + 186.160i −0.373564 + 0.399485i
\(467\) 146.410i 0.313512i 0.987637 + 0.156756i \(0.0501036\pi\)
−0.987637 + 0.156756i \(0.949896\pi\)
\(468\) 9.39417 + 139.923i 0.0200730 + 0.298981i
\(469\) 181.336i 0.386643i
\(470\) 0 0
\(471\) 438.971i 0.931997i
\(472\) −267.111 + 327.061i −0.565914 + 0.692927i
\(473\) 230.277i 0.486843i
\(474\) −112.865 105.542i −0.238113 0.222662i
\(475\) 0 0
\(476\) −101.205 + 6.79472i −0.212616 + 0.0142746i
\(477\) 94.0651 0.197201
\(478\) 436.146 466.410i 0.912440 0.975753i
\(479\) 191.876i 0.400576i 0.979737 + 0.200288i \(0.0641878\pi\)
−0.979737 + 0.200288i \(0.935812\pi\)
\(480\) 0 0
\(481\) −323.138 −0.671805
\(482\) −361.428 337.976i −0.749850 0.701194i
\(483\) 15.8461i 0.0328077i
\(484\) −15.2731 227.488i −0.0315560 0.470016i
\(485\) 0 0
\(486\) −21.2942 + 22.7718i −0.0438153 + 0.0468556i
\(487\) −610.758 −1.25412 −0.627062 0.778969i \(-0.715743\pi\)
−0.627062 + 0.778969i \(0.715743\pi\)
\(488\) −369.159 301.492i −0.756473 0.617812i
\(489\) −177.282 −0.362540
\(490\) 0 0
\(491\) −142.354 −0.289926 −0.144963 0.989437i \(-0.546306\pi\)
−0.144963 + 0.989437i \(0.546306\pi\)
\(492\) 218.227 14.6513i 0.443550 0.0297791i
\(493\) −6.79472 −0.0137824
\(494\) 254.851 + 238.315i 0.515893 + 0.482419i
\(495\) 0 0
\(496\) −122.851 910.791i −0.247684 1.83627i
\(497\) 90.8306i 0.182758i
\(498\) 171.327 + 160.210i 0.344030 + 0.321707i
\(499\) −91.3693 −0.183105 −0.0915524 0.995800i \(-0.529183\pi\)
−0.0915524 + 0.995800i \(0.529183\pi\)
\(500\) 0 0
\(501\) 486.863i 0.971782i
\(502\) −313.857 293.492i −0.625214 0.584646i
\(503\) −230.067 −0.457389 −0.228695 0.973498i \(-0.573446\pi\)
−0.228695 + 0.973498i \(0.573446\pi\)
\(504\) 32.4693 39.7566i 0.0644231 0.0788821i
\(505\) 0 0
\(506\) −49.9897 46.7460i −0.0987939 0.0923834i
\(507\) 56.1628i 0.110775i
\(508\) 49.6114 + 738.946i 0.0976603 + 1.45462i
\(509\) 527.387i 1.03612i −0.855343 0.518062i \(-0.826654\pi\)
0.855343 0.518062i \(-0.173346\pi\)
\(510\) 0 0
\(511\) 11.6042i 0.0227088i
\(512\) 453.256 + 238.123i 0.885267 + 0.465084i
\(513\) 77.5692i 0.151207i
\(514\) 115.124 123.113i 0.223977 0.239519i
\(515\) 0 0
\(516\) 13.3590 + 198.978i 0.0258895 + 0.385616i
\(517\) −476.630 −0.921914
\(518\) 86.3902 + 80.7846i 0.166776 + 0.155955i
\(519\) 420.643i 0.810487i
\(520\) 0 0
\(521\) 191.856 0.368246 0.184123 0.982903i \(-0.441055\pi\)
0.184123 + 0.982903i \(0.441055\pi\)
\(522\) 2.34854 2.51151i 0.00449912 0.00481131i
\(523\) 105.492i 0.201706i −0.994901 0.100853i \(-0.967843\pi\)
0.994901 0.100853i \(-0.0321572\pi\)
\(524\) 33.5898 + 500.310i 0.0641027 + 0.954789i
\(525\) 0 0
\(526\) 404.820 + 378.553i 0.769620 + 0.719682i
\(527\) −681.031 −1.29228
\(528\) 29.6358 + 219.713i 0.0561284 + 0.416123i
\(529\) −510.703 −0.965411
\(530\) 0 0
\(531\) −158.354 −0.298218
\(532\) −8.55511 127.426i −0.0160810 0.239522i
\(533\) 368.934 0.692184
\(534\) −315.009 + 336.867i −0.589904 + 0.630837i
\(535\) 0 0
\(536\) 525.338 + 429.044i 0.980109 + 0.800456i
\(537\) 551.405i 1.02682i
\(538\) −168.979 + 180.704i −0.314087 + 0.335881i
\(539\) 355.405 0.659378
\(540\) 0 0
\(541\) 459.744i 0.849804i −0.905239 0.424902i \(-0.860309\pi\)
0.905239 0.424902i \(-0.139691\pi\)
\(542\) −270.453 + 289.219i −0.498990 + 0.533615i
\(543\) 137.721 0.253630
\(544\) 219.769 309.273i 0.403987 0.568516i
\(545\) 0 0
\(546\) 59.1384 63.2420i 0.108312 0.115828i
\(547\) 67.3693i 0.123161i 0.998102 + 0.0615807i \(0.0196142\pi\)
−0.998102 + 0.0615807i \(0.980386\pi\)
\(548\) −397.382 + 26.6795i −0.725150 + 0.0486852i
\(549\) 178.736i 0.325567i
\(550\) 0 0
\(551\) 8.55511i 0.0155265i
\(552\) −45.9070 37.4923i −0.0831648 0.0679208i
\(553\) 95.4050i 0.172523i
\(554\) −361.856 338.377i −0.653170 0.610788i
\(555\) 0 0
\(556\) −47.5589 708.374i −0.0855376 1.27405i
\(557\) 476.671 0.855782 0.427891 0.903830i \(-0.359257\pi\)
0.427891 + 0.903830i \(0.359257\pi\)
\(558\) 235.393 251.727i 0.421851 0.451123i
\(559\) 336.391i 0.601774i
\(560\) 0 0
\(561\) 164.287 0.292847
\(562\) 647.327 + 605.324i 1.15183 + 1.07709i
\(563\) 910.123i 1.61656i 0.588799 + 0.808280i \(0.299601\pi\)
−0.588799 + 0.808280i \(0.700399\pi\)
\(564\) −411.846 + 27.6506i −0.730224 + 0.0490258i
\(565\) 0 0
\(566\) −402.459 + 430.385i −0.711058 + 0.760398i
\(567\) 19.2490 0.0339489
\(568\) −263.141 214.908i −0.463276 0.378358i
\(569\) 124.123 0.218142 0.109071 0.994034i \(-0.465212\pi\)
0.109071 + 0.994034i \(0.465212\pi\)
\(570\) 0 0
\(571\) 945.031 1.65504 0.827522 0.561433i \(-0.189750\pi\)
0.827522 + 0.561433i \(0.189750\pi\)
\(572\) 25.0511 + 373.128i 0.0437957 + 0.652322i
\(573\) 611.219 1.06670
\(574\) −98.6335 92.2335i −0.171835 0.160685i
\(575\) 0 0
\(576\) 38.3538 + 188.130i 0.0665865 + 0.326615i
\(577\) 215.682i 0.373799i 0.982379 + 0.186899i \(0.0598438\pi\)
−0.982379 + 0.186899i \(0.940156\pi\)
\(578\) 216.822 + 202.753i 0.375125 + 0.350784i
\(579\) −492.382 −0.850401
\(580\) 0 0
\(581\) 144.823i 0.249265i
\(582\) −245.780 229.832i −0.422302 0.394900i
\(583\) 250.840 0.430258
\(584\) −33.6180 27.4559i −0.0575651 0.0470135i
\(585\) 0 0
\(586\) 97.4679 + 91.1435i 0.166327 + 0.155535i
\(587\) 900.785i 1.53456i 0.641314 + 0.767278i \(0.278389\pi\)
−0.641314 + 0.767278i \(0.721611\pi\)
\(588\) 307.098 20.6180i 0.522276 0.0350646i
\(589\) 857.475i 1.45581i
\(590\) 0 0
\(591\) 131.305i 0.222174i
\(592\) −438.439 + 59.1384i −0.740606 + 0.0998960i
\(593\) 508.585i 0.857647i 0.903388 + 0.428824i \(0.141072\pi\)
−0.903388 + 0.428824i \(0.858928\pi\)
\(594\) −56.7846 + 60.7249i −0.0955970 + 0.102230i
\(595\) 0 0
\(596\) −350.420 + 23.5266i −0.587954 + 0.0394741i
\(597\) 180.455 0.302270
\(598\) −73.0256 68.2872i −0.122116 0.114193i
\(599\) 846.934i 1.41391i 0.707257 + 0.706957i \(0.249933\pi\)
−0.707257 + 0.706957i \(0.750067\pi\)
\(600\) 0 0
\(601\) −406.000 −0.675541 −0.337770 0.941229i \(-0.609673\pi\)
−0.337770 + 0.941229i \(0.609673\pi\)
\(602\) 84.0979 89.9334i 0.139697 0.149391i
\(603\) 254.354i 0.421814i
\(604\) −874.295 + 58.6985i −1.44751 + 0.0971829i
\(605\) 0 0
\(606\) −157.219 147.018i −0.259438 0.242603i
\(607\) 771.156 1.27044 0.635219 0.772332i \(-0.280910\pi\)
0.635219 + 0.772332i \(0.280910\pi\)
\(608\) 389.400 + 276.708i 0.640461 + 0.455111i
\(609\) −2.12297 −0.00348600
\(610\) 0 0
\(611\) −696.267 −1.13955
\(612\) 141.957 9.53074i 0.231956 0.0155731i
\(613\) −336.699 −0.549264 −0.274632 0.961549i \(-0.588556\pi\)
−0.274632 + 0.961549i \(0.588556\pi\)
\(614\) 716.084 765.773i 1.16626 1.24719i
\(615\) 0 0
\(616\) 86.5847 106.018i 0.140560 0.172106i
\(617\) 908.831i 1.47298i −0.676447 0.736492i \(-0.736481\pi\)
0.676447 0.736492i \(-0.263519\pi\)
\(618\) −65.7853 + 70.3501i −0.106449 + 0.113835i
\(619\) 1047.77 1.69268 0.846340 0.532643i \(-0.178801\pi\)
0.846340 + 0.532643i \(0.178801\pi\)
\(620\) 0 0
\(621\) 22.2268i 0.0357920i
\(622\) 494.579 528.897i 0.795143 0.850317i
\(623\) 284.754 0.457068
\(624\) 43.2923 + 320.959i 0.0693788 + 0.514358i
\(625\) 0 0
\(626\) 344.617 368.529i 0.550506 0.588705i
\(627\) 206.851i 0.329906i
\(628\) −67.9090 1011.48i −0.108135 1.61064i
\(629\) 327.836i 0.521202i
\(630\) 0 0
\(631\) 610.758i 0.967921i 0.875090 + 0.483961i \(0.160802\pi\)
−0.875090 + 0.483961i \(0.839198\pi\)
\(632\) −276.393 225.731i −0.437331 0.357169i
\(633\) 237.149i 0.374643i
\(634\) −117.440 109.819i −0.185236 0.173217i
\(635\) 0 0
\(636\) 216.746 14.5519i 0.340796 0.0228804i
\(637\) 519.180 0.815040
\(638\) 6.26278 6.69735i 0.00981627 0.0104974i
\(639\) 127.405i 0.199382i
\(640\) 0 0
\(641\) 9.60015 0.0149768 0.00748842 0.999972i \(-0.497616\pi\)
0.00748842 + 0.999972i \(0.497616\pi\)
\(642\) −95.5897 89.3872i −0.148894 0.139232i
\(643\) 86.1999i 0.134059i −0.997751 0.0670295i \(-0.978648\pi\)
0.997751 0.0670295i \(-0.0213522\pi\)
\(644\) 2.45140 + 36.5128i 0.00380652 + 0.0566969i
\(645\) 0 0
\(646\) 241.779 258.556i 0.374272 0.400242i
\(647\) 352.580 0.544946 0.272473 0.962163i \(-0.412158\pi\)
0.272473 + 0.962163i \(0.412158\pi\)
\(648\) −45.5436 + 55.7654i −0.0702834 + 0.0860577i
\(649\) −422.277 −0.650658
\(650\) 0 0
\(651\) −212.785 −0.326858
\(652\) −408.496 + 27.4256i −0.626527 + 0.0420638i
\(653\) −319.322 −0.489008 −0.244504 0.969648i \(-0.578625\pi\)
−0.244504 + 0.969648i \(0.578625\pi\)
\(654\) −358.508 335.245i −0.548177 0.512607i
\(655\) 0 0
\(656\) 500.574 67.5196i 0.763071 0.102926i
\(657\) 16.2769i 0.0247745i
\(658\) 186.145 + 174.067i 0.282895 + 0.264539i
\(659\) −275.328 −0.417797 −0.208898 0.977937i \(-0.566988\pi\)
−0.208898 + 0.977937i \(0.566988\pi\)
\(660\) 0 0
\(661\) 133.668i 0.202221i −0.994875 0.101111i \(-0.967760\pi\)
0.994875 0.101111i \(-0.0322396\pi\)
\(662\) 251.342 + 235.033i 0.379671 + 0.355035i
\(663\) 239.993 0.361980
\(664\) 419.559 + 342.654i 0.631866 + 0.516046i
\(665\) 0 0
\(666\) −121.177 113.314i −0.181947 0.170141i
\(667\) 2.45140i 0.00367526i
\(668\) 75.3179 + 1121.84i 0.112751 + 1.67939i
\(669\) 92.0799i 0.137638i
\(670\) 0 0
\(671\) 476.630i 0.710327i
\(672\) 68.6657 96.6307i 0.102181 0.143796i
\(673\) 187.703i 0.278904i −0.990229 0.139452i \(-0.955466\pi\)
0.990229 0.139452i \(-0.0445341\pi\)
\(674\) −770.817 + 824.303i −1.14364 + 1.22300i
\(675\) 0 0
\(676\) −8.68842 129.411i −0.0128527 0.191437i
\(677\) 1169.84 1.72797 0.863986 0.503515i \(-0.167960\pi\)
0.863986 + 0.503515i \(0.167960\pi\)
\(678\) −147.478 137.909i −0.217520 0.203406i
\(679\) 207.758i 0.305976i
\(680\) 0 0
\(681\) 207.580 0.304816
\(682\) 627.715 671.272i 0.920403 0.984269i
\(683\) 89.4566i 0.130976i −0.997853 0.0654880i \(-0.979140\pi\)
0.997853 0.0654880i \(-0.0208604\pi\)
\(684\) 12.0000 + 178.736i 0.0175439 + 0.261310i
\(685\) 0 0
\(686\) −291.895 272.955i −0.425503 0.397893i
\(687\) −370.837 −0.539791
\(688\) 61.5639 + 456.420i 0.0894824 + 0.663402i
\(689\) 366.431 0.531830
\(690\) 0 0
\(691\) 139.103 0.201306 0.100653 0.994922i \(-0.467907\pi\)
0.100653 + 0.994922i \(0.467907\pi\)
\(692\) 65.0737 + 969.251i 0.0940371 + 1.40065i
\(693\) 51.3307 0.0740703
\(694\) 390.851 417.972i 0.563186 0.602265i
\(695\) 0 0
\(696\) 5.02301 6.15037i 0.00721697 0.00883673i
\(697\) 374.297i 0.537012i
\(698\) 575.126 615.033i 0.823962 0.881137i
\(699\) −220.726 −0.315773
\(700\) 0 0
\(701\) 1218.34i 1.73801i 0.494804 + 0.869004i \(0.335240\pi\)
−0.494804 + 0.869004i \(0.664760\pi\)
\(702\) −82.9517 + 88.7077i −0.118165 + 0.126364i
\(703\) −412.773 −0.587160
\(704\) 102.277 + 501.681i 0.145280 + 0.712615i
\(705\) 0 0
\(706\) 586.214 626.891i 0.830331 0.887948i
\(707\) 132.897i 0.187974i
\(708\) −364.881 + 24.4974i −0.515369 + 0.0346009i
\(709\) 1080.13i 1.52346i −0.647895 0.761730i \(-0.724351\pi\)
0.647895 0.761730i \(-0.275649\pi\)
\(710\) 0 0
\(711\) 133.822i 0.188216i
\(712\) −673.734 + 824.946i −0.946256 + 1.15863i
\(713\) 245.703i 0.344604i
\(714\) −64.1615 59.9982i −0.0898620 0.0840311i
\(715\) 0 0
\(716\) −85.3027 1270.56i −0.119138 1.77452i
\(717\) 553.011 0.771285
\(718\) 360.184 385.177i 0.501649 0.536458i
\(719\) 20.7736i 0.0288923i −0.999896 0.0144461i \(-0.995401\pi\)
0.999896 0.0144461i \(-0.00459851\pi\)
\(720\) 0 0
\(721\) 59.4669 0.0824783
\(722\) −201.809 188.715i −0.279515 0.261378i
\(723\) 428.536i 0.592719i
\(724\) 317.338 21.3055i 0.438313 0.0294275i
\(725\) 0 0
\(726\) 134.863 144.222i 0.185762 0.198652i
\(727\) 1031.17 1.41838 0.709192 0.705015i \(-0.249060\pi\)
0.709192 + 0.705015i \(0.249060\pi\)
\(728\) 126.484 154.872i 0.173742 0.212736i
\(729\) −27.0000 −0.0370370
\(730\) 0 0
\(731\) 341.282 0.466870
\(732\) −27.6506 411.846i −0.0377740 0.562631i
\(733\) 881.072 1.20201 0.601004 0.799246i \(-0.294767\pi\)
0.601004 + 0.799246i \(0.294767\pi\)
\(734\) 189.240 + 176.961i 0.257820 + 0.241091i
\(735\) 0 0
\(736\) −111.580 79.2884i −0.151603 0.107729i
\(737\) 678.277i 0.920321i
\(738\) 138.350 + 129.373i 0.187466 + 0.175302i
\(739\) 671.195 0.908247 0.454124 0.890939i \(-0.349952\pi\)
0.454124 + 0.890939i \(0.349952\pi\)
\(740\) 0 0
\(741\) 302.171i 0.407788i
\(742\) −97.9643 91.6077i −0.132027 0.123461i
\(743\) 254.197 0.342122 0.171061 0.985260i \(-0.445281\pi\)
0.171061 + 0.985260i \(0.445281\pi\)
\(744\) 503.454 616.448i 0.676685 0.828559i
\(745\) 0 0
\(746\) −441.864 413.193i −0.592311 0.553878i
\(747\) 203.138i 0.271939i
\(748\) 378.553 25.4153i 0.506087 0.0339777i
\(749\) 80.8019i 0.107880i
\(750\) 0 0
\(751\) 728.994i 0.970698i 0.874320 + 0.485349i \(0.161307\pi\)
−0.874320 + 0.485349i \(0.838693\pi\)
\(752\) −944.704 + 127.426i −1.25626 + 0.169449i
\(753\) 372.133i 0.494201i
\(754\) 9.14875 9.78357i 0.0121336 0.0129756i
\(755\) 0 0
\(756\) 44.3538 2.97783i 0.0586691 0.00393893i
\(757\) 372.679 0.492311 0.246155 0.969230i \(-0.420833\pi\)
0.246155 + 0.969230i \(0.420833\pi\)
\(758\) 169.761 + 158.746i 0.223960 + 0.209428i
\(759\) 59.2716i 0.0780917i
\(760\) 0 0
\(761\) 1257.80 1.65283 0.826416 0.563060i \(-0.190376\pi\)
0.826416 + 0.563060i \(0.190376\pi\)
\(762\) −438.075 + 468.473i −0.574902 + 0.614794i
\(763\) 303.046i 0.397177i
\(764\) 1408.38 94.5559i 1.84343 0.123764i
\(765\) 0 0
\(766\) 827.041 + 773.377i 1.07969 + 1.00963i
\(767\) −616.868 −0.804260
\(768\) 117.479 + 427.559i 0.152968 + 0.556717i
\(769\) −247.703 −0.322110 −0.161055 0.986945i \(-0.551490\pi\)
−0.161055 + 0.986945i \(0.551490\pi\)
\(770\) 0 0
\(771\) 145.972 0.189328
\(772\) −1134.55 + 76.1718i −1.46963 + 0.0986681i
\(773\) 587.805 0.760420 0.380210 0.924900i \(-0.375852\pi\)
0.380210 + 0.924900i \(0.375852\pi\)
\(774\) −117.962 + 126.147i −0.152405 + 0.162980i
\(775\) 0 0
\(776\) −601.885 491.560i −0.775624 0.633453i
\(777\) 102.431i 0.131829i
\(778\) −478.251 + 511.437i −0.614719 + 0.657374i
\(779\) 471.272 0.604970
\(780\) 0 0
\(781\) 339.748i 0.435016i
\(782\) −69.2800 + 74.0873i −0.0885933 + 0.0947407i
\(783\) 2.97783 0.00380311
\(784\) 704.431 95.0166i 0.898509 0.121195i
\(785\) 0 0
\(786\) −296.603 + 317.184i −0.377357 + 0.403541i
\(787\) 31.0821i 0.0394944i −0.999805 0.0197472i \(-0.993714\pi\)
0.999805 0.0197472i \(-0.00628614\pi\)
\(788\) 20.3129 + 302.554i 0.0257778 + 0.383951i
\(789\) 479.986i 0.608347i
\(790\) 0 0
\(791\) 124.663i 0.157602i
\(792\) −121.450 + 148.708i −0.153346 + 0.187762i
\(793\) 696.267i 0.878016i
\(794\) −794.900 743.321i −1.00113 0.936173i
\(795\) 0 0
\(796\) 415.808 27.9165i 0.522371 0.0350710i
\(797\) 490.260 0.615132 0.307566 0.951527i \(-0.400486\pi\)
0.307566 + 0.951527i \(0.400486\pi\)
\(798\) 75.5427 80.7846i 0.0946651 0.101234i
\(799\) 706.389i 0.884092i
\(800\) 0 0
\(801\) −399.415 −0.498646
\(802\) −433.030 404.932i −0.539938 0.504903i
\(803\) 43.4050i 0.0540536i
\(804\) 39.3487 + 586.086i 0.0489411 + 0.728962i
\(805\) 0 0
\(806\) 916.974 980.602i 1.13769 1.21663i
\(807\) −214.256 −0.265497
\(808\) −385.010 314.438i −0.476498 0.389156i
\(809\) −676.102 −0.835726 −0.417863 0.908510i \(-0.637221\pi\)
−0.417863 + 0.908510i \(0.637221\pi\)
\(810\) 0 0
\(811\) −74.1793 −0.0914665 −0.0457332 0.998954i \(-0.514562\pi\)
−0.0457332 + 0.998954i \(0.514562\pi\)
\(812\) −4.89179 + 0.328425i −0.00602437 + 0.000404465i
\(813\) −342.920 −0.421796
\(814\) −323.138 302.171i −0.396976 0.371217i
\(815\) 0 0
\(816\) 325.626 43.9217i 0.399051 0.0538257i
\(817\) 429.703i 0.525952i
\(818\) 361.428 + 337.976i 0.441843 + 0.413173i
\(819\) 74.9845 0.0915562
\(820\) 0 0
\(821\) 1130.58i 1.37708i 0.725198 + 0.688540i \(0.241748\pi\)
−0.725198 + 0.688540i \(0.758252\pi\)
\(822\) −251.930 235.583i −0.306485 0.286598i
\(823\) 82.1839 0.0998589 0.0499295 0.998753i \(-0.484100\pi\)
0.0499295 + 0.998753i \(0.484100\pi\)
\(824\) −140.700 + 172.279i −0.170753 + 0.209076i
\(825\) 0 0
\(826\) 164.918 + 154.217i 0.199658 + 0.186703i
\(827\) 1504.57i 1.81931i 0.415365 + 0.909655i \(0.363654\pi\)
−0.415365 + 0.909655i \(0.636346\pi\)
\(828\) −3.43850 51.2154i −0.00415278 0.0618543i
\(829\) 1409.65i 1.70042i 0.526445 + 0.850209i \(0.323525\pi\)
−0.526445 + 0.850209i \(0.676475\pi\)
\(830\) 0 0
\(831\) 429.044i 0.516299i
\(832\) 149.407 + 732.862i 0.179576 + 0.880843i
\(833\) 526.728i 0.632327i
\(834\) 419.951 449.091i 0.503539 0.538479i
\(835\) 0 0
\(836\) 32.0000 + 476.630i 0.0382775 + 0.570131i
\(837\) 298.467 0.356591
\(838\) 134.589 + 125.856i 0.160608 + 0.150187i
\(839\) 288.110i 0.343397i −0.985150 0.171698i \(-0.945075\pi\)
0.985150 0.171698i \(-0.0549254\pi\)
\(840\) 0 0
\(841\) 840.672 0.999609
\(842\) 608.620 650.851i 0.722826 0.772982i
\(843\) 767.520i 0.910463i
\(844\) 36.6870 + 546.441i 0.0434681 + 0.647442i
\(845\) 0 0
\(846\) −261.100 244.158i −0.308629 0.288603i
\(847\) −121.910 −0.143932
\(848\) 497.178 67.0615i 0.586295 0.0790819i
\(849\) −510.297 −0.601057
\(850\) 0 0
\(851\) 118.277 0.138986
\(852\) −19.7097 293.569i −0.0231334 0.344565i
\(853\) 645.132 0.756310 0.378155 0.925742i \(-0.376559\pi\)
0.378155 + 0.925742i \(0.376559\pi\)
\(854\) −174.067 + 186.145i −0.203825 + 0.217968i
\(855\) 0 0
\(856\) −234.087 191.179i −0.273466 0.223340i
\(857\) 995.549i 1.16167i −0.814022 0.580833i \(-0.802727\pi\)
0.814022 0.580833i \(-0.197273\pi\)
\(858\) −221.205 + 236.554i −0.257814 + 0.275704i
\(859\) 774.354 0.901460 0.450730 0.892660i \(-0.351164\pi\)
0.450730 + 0.892660i \(0.351164\pi\)
\(860\) 0 0
\(861\) 116.947i 0.135827i
\(862\) 255.005 272.700i 0.295830 0.316357i
\(863\) −1007.33 −1.16724 −0.583622 0.812025i \(-0.698365\pi\)
−0.583622 + 0.812025i \(0.698365\pi\)
\(864\) −96.3154 + 135.541i −0.111476 + 0.156876i
\(865\) 0 0
\(866\) 397.688 425.284i 0.459225 0.491090i
\(867\) 257.081i 0.296518i
\(868\) −490.301 + 32.9179i −0.564863 + 0.0379238i
\(869\) 356.858i 0.410654i
\(870\) 0 0
\(871\) 990.836i 1.13758i
\(872\) −877.941 717.015i −1.00681 0.822265i
\(873\) 291.415i 0.333809i
\(874\) −93.2820 87.2293i −0.106730 0.0998046i
\(875\) 0 0
\(876\) −2.51804 37.5054i −0.00287448 0.0428144i
\(877\) 681.645 0.777246 0.388623 0.921397i \(-0.372951\pi\)
0.388623 + 0.921397i \(0.372951\pi\)
\(878\) 119.787 128.099i 0.136431 0.145898i
\(879\) 115.565i 0.131474i
\(880\) 0 0
\(881\) −679.108 −0.770837 −0.385419 0.922742i \(-0.625943\pi\)
−0.385419 + 0.922742i \(0.625943\pi\)
\(882\) 194.693 + 182.060i 0.220740 + 0.206417i
\(883\) 1059.44i 1.19982i 0.800068 + 0.599910i \(0.204797\pi\)
−0.800068 + 0.599910i \(0.795203\pi\)
\(884\) 552.995 37.1270i 0.625560 0.0419989i
\(885\) 0 0
\(886\) 28.2872 30.2500i 0.0319268 0.0341422i
\(887\) −856.411 −0.965514 −0.482757 0.875754i \(-0.660365\pi\)
−0.482757 + 0.875754i \(0.660365\pi\)
\(888\) −296.747 242.354i −0.334175 0.272921i
\(889\) 396.000 0.445444
\(890\) 0 0
\(891\) −72.0000 −0.0808081
\(892\) 14.2448 + 212.172i 0.0159695 + 0.237861i
\(893\) −889.403 −0.995972
\(894\) −222.158 207.743i −0.248499 0.232374i
\(895\) 0 0
\(896\) 143.272 233.280i 0.159901 0.260358i
\(897\) 86.5847i 0.0965270i
\(898\) −853.714 798.319i −0.950684 0.888997i
\(899\) −32.9179 −0.0366161
\(900\) 0 0
\(901\) 371.758i 0.412606i
\(902\) 368.934 + 344.995i 0.409018 + 0.382478i
\(903\) 106.632 0.118086
\(904\) −361.156 294.957i −0.399509 0.326280i
\(905\) 0 0
\(906\) −554.281 518.315i −0.611789 0.572092i
\(907\) 761.492i 0.839573i −0.907623 0.419786i \(-0.862105\pi\)
0.907623 0.419786i \(-0.137895\pi\)
\(908\) 478.308 32.1127i 0.526770 0.0353664i
\(909\) 186.411i 0.205073i
\(910\) 0 0
\(911\) 897.344i 0.985009i 0.870310 + 0.492505i \(0.163919\pi\)
−0.870310 + 0.492505i \(0.836081\pi\)
\(912\) 55.3011 + 409.990i 0.0606372 + 0.449550i
\(913\) 541.703i 0.593321i
\(914\) 368.406 393.970i 0.403070 0.431039i
\(915\) 0 0
\(916\) −854.487 + 57.3686i −0.932846 + 0.0626295i
\(917\) 268.115 0.292383
\(918\) 89.9973 + 84.1577i 0.0980363 + 0.0916750i
\(919\) 62.6388i 0.0681598i 0.999419 + 0.0340799i \(0.0108501\pi\)
−0.999419 + 0.0340799i \(0.989150\pi\)
\(920\) 0 0
\(921\) 907.959 0.985840
\(922\) 60.7811 64.9986i 0.0659231 0.0704974i
\(923\) 496.308i 0.537712i
\(924\) 118.277 7.94089i 0.128005 0.00859403i
\(925\) 0 0
\(926\) −892.652 834.731i −0.963987 0.901437i
\(927\) −83.4124 −0.0899810
\(928\) 10.6226 14.9488i 0.0114468 0.0161086i
\(929\) −253.313 −0.272673 −0.136336 0.990663i \(-0.543533\pi\)
−0.136336 + 0.990663i \(0.543533\pi\)
\(930\) 0 0
\(931\) 663.195 0.712347
\(932\) −508.599 + 34.1464i −0.545707 + 0.0366377i
\(933\) 627.101 0.672134
\(934\) −200.000 + 213.878i −0.214133 + 0.228991i
\(935\) 0 0
\(936\) −177.415 + 217.234i −0.189546 + 0.232088i
\(937\) 30.5538i 0.0326081i −0.999867 0.0163040i \(-0.994810\pi\)
0.999867 0.0163040i \(-0.00518996\pi\)
\(938\) 247.709 264.897i 0.264082 0.282406i
\(939\) 436.956 0.465342
\(940\) 0 0
\(941\) 388.745i 0.413119i 0.978434 + 0.206559i \(0.0662267\pi\)
−0.978434 + 0.206559i \(0.933773\pi\)
\(942\) 599.645 641.254i 0.636566 0.680737i
\(943\) −135.039 −0.143202
\(944\) −836.974 + 112.895i −0.886625 + 0.119592i
\(945\) 0 0
\(946\) −314.564 + 336.391i −0.332520 + 0.355594i
\(947\) 263.615i 0.278369i −0.990266 0.139184i \(-0.955552\pi\)
0.990266 0.139184i \(-0.0444481\pi\)
\(948\) −20.7023 308.354i −0.0218379 0.325268i
\(949\) 63.4066i 0.0668141i
\(950\) 0 0
\(951\) 139.245i 0.146420i
\(952\) −157.123 128.323i −0.165046 0.134793i
\(953\) 1292.41i 1.35615i −0.734993 0.678075i \(-0.762815\pi\)
0.734993 0.678075i \(-0.237185\pi\)
\(954\) 137.412 + 128.495i 0.144037 + 0.134691i
\(955\) 0 0
\(956\) 1274.26 85.5511i 1.33290 0.0894886i
\(957\) 7.94089 0.00829769
\(958\) −262.107 + 280.295i −0.273598 + 0.292583i
\(959\) 212.957i 0.222061i
\(960\) 0 0
\(961\) −2338.34 −2.43324
\(962\) −472.045 441.415i −0.490691 0.458852i
\(963\) 113.338i 0.117693i
\(964\) −66.2947 987.438i −0.0687705 1.02431i
\(965\) 0 0
\(966\) −21.6462 + 23.1482i −0.0224080 + 0.0239629i
\(967\) −1110.00 −1.14788 −0.573942 0.818896i \(-0.694587\pi\)
−0.573942 + 0.818896i \(0.694587\pi\)
\(968\) 288.443 353.181i 0.297978 0.364856i
\(969\) 306.564 0.316372
\(970\) 0 0
\(971\) −1341.66 −1.38173 −0.690866 0.722983i \(-0.742770\pi\)
−0.690866 + 0.722983i \(0.742770\pi\)
\(972\) −62.2138 + 4.17691i −0.0640059 + 0.00429724i
\(973\) −379.617 −0.390151
\(974\) −892.204 834.311i −0.916020 0.856583i
\(975\) 0 0
\(976\) −127.426 944.704i −0.130559 0.967934i
\(977\) 920.431i 0.942099i −0.882107 0.471050i \(-0.843875\pi\)
0.882107 0.471050i \(-0.156125\pi\)
\(978\) −258.976 242.172i −0.264802 0.247619i
\(979\) −1065.11 −1.08795
\(980\) 0 0
\(981\) 425.074i 0.433307i
\(982\) −207.952 194.459i −0.211764 0.198023i
\(983\) −1697.84 −1.72720 −0.863601 0.504176i \(-0.831796\pi\)
−0.863601 + 0.504176i \(0.831796\pi\)
\(984\) 338.802 + 276.700i 0.344311 + 0.281200i
\(985\) 0 0
\(986\) −9.92581 9.28176i −0.0100667 0.00941355i
\(987\) 220.708i 0.223615i
\(988\) 46.7460 + 696.267i 0.0473138 + 0.704723i
\(989\) 123.128i 0.124497i
\(990\) 0 0
\(991\) 284.765i 0.287351i −0.989625 0.143675i \(-0.954108\pi\)
0.989625 0.143675i \(-0.0458921\pi\)
\(992\) 1064.70 1498.31i 1.07329 1.51040i
\(993\) 298.010i 0.300111i
\(994\) −124.077 + 132.687i −0.124826 + 0.133487i
\(995\) 0 0
\(996\) 31.4256 + 468.074i 0.0315518 + 0.469954i
\(997\) 1093.80 1.09710 0.548548 0.836119i \(-0.315181\pi\)
0.548548 + 0.836119i \(0.315181\pi\)
\(998\) −133.473 124.813i −0.133741 0.125063i
\(999\) 143.677i 0.143820i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 600.3.p.a.499.6 8
4.3 odd 2 2400.3.p.a.1999.2 8
5.2 odd 4 600.3.g.a.451.2 4
5.3 odd 4 24.3.b.a.19.3 4
5.4 even 2 inner 600.3.p.a.499.3 8
8.3 odd 2 inner 600.3.p.a.499.4 8
8.5 even 2 2400.3.p.a.1999.3 8
15.8 even 4 72.3.b.b.19.2 4
20.3 even 4 96.3.b.a.79.4 4
20.7 even 4 2400.3.g.a.751.1 4
20.19 odd 2 2400.3.p.a.1999.7 8
40.3 even 4 24.3.b.a.19.4 yes 4
40.13 odd 4 96.3.b.a.79.3 4
40.19 odd 2 inner 600.3.p.a.499.5 8
40.27 even 4 600.3.g.a.451.1 4
40.29 even 2 2400.3.p.a.1999.6 8
40.37 odd 4 2400.3.g.a.751.2 4
60.23 odd 4 288.3.b.b.271.1 4
80.3 even 4 768.3.g.h.511.8 8
80.13 odd 4 768.3.g.h.511.4 8
80.43 even 4 768.3.g.h.511.1 8
80.53 odd 4 768.3.g.h.511.5 8
120.53 even 4 288.3.b.b.271.4 4
120.83 odd 4 72.3.b.b.19.1 4
240.53 even 4 2304.3.g.z.1279.8 8
240.83 odd 4 2304.3.g.z.1279.1 8
240.173 even 4 2304.3.g.z.1279.2 8
240.203 odd 4 2304.3.g.z.1279.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
24.3.b.a.19.3 4 5.3 odd 4
24.3.b.a.19.4 yes 4 40.3 even 4
72.3.b.b.19.1 4 120.83 odd 4
72.3.b.b.19.2 4 15.8 even 4
96.3.b.a.79.3 4 40.13 odd 4
96.3.b.a.79.4 4 20.3 even 4
288.3.b.b.271.1 4 60.23 odd 4
288.3.b.b.271.4 4 120.53 even 4
600.3.g.a.451.1 4 40.27 even 4
600.3.g.a.451.2 4 5.2 odd 4
600.3.p.a.499.3 8 5.4 even 2 inner
600.3.p.a.499.4 8 8.3 odd 2 inner
600.3.p.a.499.5 8 40.19 odd 2 inner
600.3.p.a.499.6 8 1.1 even 1 trivial
768.3.g.h.511.1 8 80.43 even 4
768.3.g.h.511.4 8 80.13 odd 4
768.3.g.h.511.5 8 80.53 odd 4
768.3.g.h.511.8 8 80.3 even 4
2304.3.g.z.1279.1 8 240.83 odd 4
2304.3.g.z.1279.2 8 240.173 even 4
2304.3.g.z.1279.7 8 240.203 odd 4
2304.3.g.z.1279.8 8 240.53 even 4
2400.3.g.a.751.1 4 20.7 even 4
2400.3.g.a.751.2 4 40.37 odd 4
2400.3.p.a.1999.2 8 4.3 odd 2
2400.3.p.a.1999.3 8 8.5 even 2
2400.3.p.a.1999.6 8 40.29 even 2
2400.3.p.a.1999.7 8 20.19 odd 2