Properties

Label 2400.3.p.a.1999.3
Level $2400$
Weight $3$
Character 2400.1999
Analytic conductor $65.395$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2400,3,Mod(1999,2400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2400.1999");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2400.p (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(65.3952634465\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.22581504.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 5x^{6} + 2x^{5} - 11x^{4} + 4x^{3} + 20x^{2} - 32x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{31}]\)
Coefficient ring index: \( 2^{14} \)
Twist minimal: no (minimal twist has level 24)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1999.3
Root \(1.20036 - 0.747754i\) of defining polynomial
Character \(\chi\) \(=\) 2400.1999
Dual form 2400.3.p.a.1999.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.73205i q^{3} +2.13878 q^{7} -3.00000 q^{9} +O(q^{10})\) \(q-1.73205i q^{3} +2.13878 q^{7} -3.00000 q^{9} +8.00000 q^{11} +11.6865 q^{13} +11.8564i q^{17} +14.9282 q^{19} -3.70447i q^{21} +4.27756 q^{23} +5.19615i q^{27} -0.573084i q^{29} +57.4399i q^{31} -13.8564i q^{33} -27.6506 q^{37} -20.2416i q^{39} -31.5692 q^{41} +28.7846i q^{43} +59.5787 q^{47} -44.4256 q^{49} +20.5359 q^{51} +31.3550 q^{53} -25.8564i q^{57} -52.7846 q^{59} -59.5787i q^{61} -6.41634 q^{63} +84.7846i q^{67} -7.40895i q^{69} +42.4685i q^{71} +5.42563i q^{73} +17.1102 q^{77} +44.6072i q^{79} +9.00000 q^{81} +67.7128i q^{83} -0.992611 q^{87} +133.138 q^{89} +24.9948 q^{91} +99.4888 q^{93} +97.1384i q^{97} -24.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 24 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 24 q^{9} + 64 q^{11} + 64 q^{19} + 80 q^{41} + 88 q^{49} + 192 q^{51} - 256 q^{59} + 72 q^{81} + 400 q^{89} - 576 q^{91} - 192 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2400\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1601\) \(1951\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 1.73205i − 0.577350i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 2.13878 0.305540 0.152770 0.988262i \(-0.451181\pi\)
0.152770 + 0.988262i \(0.451181\pi\)
\(8\) 0 0
\(9\) −3.00000 −0.333333
\(10\) 0 0
\(11\) 8.00000 0.727273 0.363636 0.931541i \(-0.381535\pi\)
0.363636 + 0.931541i \(0.381535\pi\)
\(12\) 0 0
\(13\) 11.6865 0.898962 0.449481 0.893290i \(-0.351609\pi\)
0.449481 + 0.893290i \(0.351609\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 11.8564i 0.697436i 0.937228 + 0.348718i \(0.113383\pi\)
−0.937228 + 0.348718i \(0.886617\pi\)
\(18\) 0 0
\(19\) 14.9282 0.785695 0.392847 0.919604i \(-0.371490\pi\)
0.392847 + 0.919604i \(0.371490\pi\)
\(20\) 0 0
\(21\) − 3.70447i − 0.176403i
\(22\) 0 0
\(23\) 4.27756 0.185981 0.0929904 0.995667i \(-0.470357\pi\)
0.0929904 + 0.995667i \(0.470357\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 5.19615i 0.192450i
\(28\) 0 0
\(29\) − 0.573084i − 0.0197615i −0.999951 0.00988076i \(-0.996855\pi\)
0.999951 0.00988076i \(-0.00314519\pi\)
\(30\) 0 0
\(31\) 57.4399i 1.85290i 0.376417 + 0.926450i \(0.377156\pi\)
−0.376417 + 0.926450i \(0.622844\pi\)
\(32\) 0 0
\(33\) − 13.8564i − 0.419891i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −27.6506 −0.747313 −0.373656 0.927567i \(-0.621896\pi\)
−0.373656 + 0.927567i \(0.621896\pi\)
\(38\) 0 0
\(39\) − 20.2416i − 0.519016i
\(40\) 0 0
\(41\) −31.5692 −0.769981 −0.384990 0.922921i \(-0.625795\pi\)
−0.384990 + 0.922921i \(0.625795\pi\)
\(42\) 0 0
\(43\) 28.7846i 0.669410i 0.942323 + 0.334705i \(0.108637\pi\)
−0.942323 + 0.334705i \(0.891363\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 59.5787 1.26763 0.633816 0.773484i \(-0.281488\pi\)
0.633816 + 0.773484i \(0.281488\pi\)
\(48\) 0 0
\(49\) −44.4256 −0.906645
\(50\) 0 0
\(51\) 20.5359 0.402665
\(52\) 0 0
\(53\) 31.3550 0.591604 0.295802 0.955249i \(-0.404413\pi\)
0.295802 + 0.955249i \(0.404413\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 25.8564i − 0.453621i
\(58\) 0 0
\(59\) −52.7846 −0.894654 −0.447327 0.894370i \(-0.647624\pi\)
−0.447327 + 0.894370i \(0.647624\pi\)
\(60\) 0 0
\(61\) − 59.5787i − 0.976700i −0.872648 0.488350i \(-0.837599\pi\)
0.872648 0.488350i \(-0.162401\pi\)
\(62\) 0 0
\(63\) −6.41634 −0.101847
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 84.7846i 1.26544i 0.774380 + 0.632721i \(0.218062\pi\)
−0.774380 + 0.632721i \(0.781938\pi\)
\(68\) 0 0
\(69\) − 7.40895i − 0.107376i
\(70\) 0 0
\(71\) 42.4685i 0.598147i 0.954230 + 0.299074i \(0.0966776\pi\)
−0.954230 + 0.299074i \(0.903322\pi\)
\(72\) 0 0
\(73\) 5.42563i 0.0743236i 0.999309 + 0.0371618i \(0.0118317\pi\)
−0.999309 + 0.0371618i \(0.988168\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 17.1102 0.222211
\(78\) 0 0
\(79\) 44.6072i 0.564649i 0.959319 + 0.282324i \(0.0911054\pi\)
−0.959319 + 0.282324i \(0.908895\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) 0 0
\(83\) 67.7128i 0.815817i 0.913023 + 0.407909i \(0.133742\pi\)
−0.913023 + 0.407909i \(0.866258\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −0.992611 −0.0114093
\(88\) 0 0
\(89\) 133.138 1.49594 0.747969 0.663734i \(-0.231029\pi\)
0.747969 + 0.663734i \(0.231029\pi\)
\(90\) 0 0
\(91\) 24.9948 0.274669
\(92\) 0 0
\(93\) 99.4888 1.06977
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 97.1384i 1.00143i 0.865613 + 0.500714i \(0.166929\pi\)
−0.865613 + 0.500714i \(0.833071\pi\)
\(98\) 0 0
\(99\) −24.0000 −0.242424
\(100\) 0 0
\(101\) − 62.1370i − 0.615218i −0.951513 0.307609i \(-0.900471\pi\)
0.951513 0.307609i \(-0.0995288\pi\)
\(102\) 0 0
\(103\) 27.8041 0.269943 0.134971 0.990849i \(-0.456906\pi\)
0.134971 + 0.990849i \(0.456906\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 37.7795i − 0.353079i −0.984294 0.176540i \(-0.943510\pi\)
0.984294 0.176540i \(-0.0564903\pi\)
\(108\) 0 0
\(109\) − 141.691i − 1.29992i −0.759968 0.649960i \(-0.774786\pi\)
0.759968 0.649960i \(-0.225214\pi\)
\(110\) 0 0
\(111\) 47.8922i 0.431461i
\(112\) 0 0
\(113\) 58.2872i 0.515816i 0.966170 + 0.257908i \(0.0830331\pi\)
−0.966170 + 0.257908i \(0.916967\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −35.0595 −0.299654
\(118\) 0 0
\(119\) 25.3582i 0.213094i
\(120\) 0 0
\(121\) −57.0000 −0.471074
\(122\) 0 0
\(123\) 54.6795i 0.444549i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 185.152 1.45789 0.728946 0.684571i \(-0.240010\pi\)
0.728946 + 0.684571i \(0.240010\pi\)
\(128\) 0 0
\(129\) 49.8564 0.386484
\(130\) 0 0
\(131\) −125.359 −0.956939 −0.478469 0.878104i \(-0.658808\pi\)
−0.478469 + 0.878104i \(0.658808\pi\)
\(132\) 0 0
\(133\) 31.9281 0.240061
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 99.5692i 0.726783i 0.931637 + 0.363391i \(0.118381\pi\)
−0.931637 + 0.363391i \(0.881619\pi\)
\(138\) 0 0
\(139\) 177.492 1.27692 0.638461 0.769654i \(-0.279571\pi\)
0.638461 + 0.769654i \(0.279571\pi\)
\(140\) 0 0
\(141\) − 103.193i − 0.731867i
\(142\) 0 0
\(143\) 93.4920 0.653790
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 76.9474i 0.523452i
\(148\) 0 0
\(149\) − 87.8023i − 0.589277i −0.955609 0.294639i \(-0.904801\pi\)
0.955609 0.294639i \(-0.0951993\pi\)
\(150\) 0 0
\(151\) 219.066i 1.45077i 0.688345 + 0.725383i \(0.258337\pi\)
−0.688345 + 0.725383i \(0.741663\pi\)
\(152\) 0 0
\(153\) − 35.5692i − 0.232479i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 253.440 1.61427 0.807133 0.590370i \(-0.201018\pi\)
0.807133 + 0.590370i \(0.201018\pi\)
\(158\) 0 0
\(159\) − 54.3085i − 0.341563i
\(160\) 0 0
\(161\) 9.14875 0.0568245
\(162\) 0 0
\(163\) − 102.354i − 0.627938i −0.949433 0.313969i \(-0.898341\pi\)
0.949433 0.313969i \(-0.101659\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 281.090 1.68318 0.841588 0.540120i \(-0.181621\pi\)
0.841588 + 0.540120i \(0.181621\pi\)
\(168\) 0 0
\(169\) −32.4256 −0.191868
\(170\) 0 0
\(171\) −44.7846 −0.261898
\(172\) 0 0
\(173\) −242.858 −1.40381 −0.701903 0.712273i \(-0.747666\pi\)
−0.701903 + 0.712273i \(0.747666\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 91.4256i 0.516529i
\(178\) 0 0
\(179\) 318.354 1.77851 0.889257 0.457409i \(-0.151222\pi\)
0.889257 + 0.457409i \(0.151222\pi\)
\(180\) 0 0
\(181\) 79.5132i 0.439299i 0.975579 + 0.219650i \(0.0704914\pi\)
−0.975579 + 0.219650i \(0.929509\pi\)
\(182\) 0 0
\(183\) −103.193 −0.563898
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 94.8513i 0.507226i
\(188\) 0 0
\(189\) 11.1134i 0.0588012i
\(190\) 0 0
\(191\) − 352.887i − 1.84758i −0.382902 0.923789i \(-0.625075\pi\)
0.382902 0.923789i \(-0.374925\pi\)
\(192\) 0 0
\(193\) 284.277i 1.47294i 0.676472 + 0.736469i \(0.263508\pi\)
−0.676472 + 0.736469i \(0.736492\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −75.8087 −0.384816 −0.192408 0.981315i \(-0.561630\pi\)
−0.192408 + 0.981315i \(0.561630\pi\)
\(198\) 0 0
\(199\) − 104.186i − 0.523547i −0.965129 0.261774i \(-0.915693\pi\)
0.965129 0.261774i \(-0.0843074\pi\)
\(200\) 0 0
\(201\) 146.851 0.730603
\(202\) 0 0
\(203\) − 1.22570i − 0.00603793i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −12.8327 −0.0619936
\(208\) 0 0
\(209\) 119.426 0.571414
\(210\) 0 0
\(211\) −136.918 −0.648900 −0.324450 0.945903i \(-0.605179\pi\)
−0.324450 + 0.945903i \(0.605179\pi\)
\(212\) 0 0
\(213\) 73.5575 0.345341
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 122.851i 0.566135i
\(218\) 0 0
\(219\) 9.39746 0.0429108
\(220\) 0 0
\(221\) 138.560i 0.626968i
\(222\) 0 0
\(223\) 53.1624 0.238396 0.119198 0.992870i \(-0.461968\pi\)
0.119198 + 0.992870i \(0.461968\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 119.846i 0.527956i 0.964529 + 0.263978i \(0.0850347\pi\)
−0.964529 + 0.263978i \(0.914965\pi\)
\(228\) 0 0
\(229\) − 214.103i − 0.934946i −0.884007 0.467473i \(-0.845164\pi\)
0.884007 0.467473i \(-0.154836\pi\)
\(230\) 0 0
\(231\) − 29.6358i − 0.128293i
\(232\) 0 0
\(233\) 127.436i 0.546935i 0.961881 + 0.273468i \(0.0881707\pi\)
−0.961881 + 0.273468i \(0.911829\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 77.2620 0.326000
\(238\) 0 0
\(239\) − 319.281i − 1.33590i −0.744204 0.667952i \(-0.767171\pi\)
0.744204 0.667952i \(-0.232829\pi\)
\(240\) 0 0
\(241\) −247.415 −1.02662 −0.513310 0.858203i \(-0.671581\pi\)
−0.513310 + 0.858203i \(0.671581\pi\)
\(242\) 0 0
\(243\) − 15.5885i − 0.0641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 174.459 0.706310
\(248\) 0 0
\(249\) 117.282 0.471012
\(250\) 0 0
\(251\) 214.851 0.855981 0.427991 0.903783i \(-0.359222\pi\)
0.427991 + 0.903783i \(0.359222\pi\)
\(252\) 0 0
\(253\) 34.2205 0.135259
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 84.2769i − 0.327926i −0.986467 0.163963i \(-0.947572\pi\)
0.986467 0.163963i \(-0.0524277\pi\)
\(258\) 0 0
\(259\) −59.1384 −0.228334
\(260\) 0 0
\(261\) 1.71925i 0.00658717i
\(262\) 0 0
\(263\) 277.120 1.05369 0.526844 0.849962i \(-0.323375\pi\)
0.526844 + 0.849962i \(0.323375\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 230.603i − 0.863680i
\(268\) 0 0
\(269\) − 123.701i − 0.459855i −0.973208 0.229927i \(-0.926151\pi\)
0.973208 0.229927i \(-0.0738489\pi\)
\(270\) 0 0
\(271\) 197.985i 0.730572i 0.930895 + 0.365286i \(0.119029\pi\)
−0.930895 + 0.365286i \(0.880971\pi\)
\(272\) 0 0
\(273\) − 43.2923i − 0.158580i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 247.709 0.894256 0.447128 0.894470i \(-0.352447\pi\)
0.447128 + 0.894470i \(0.352447\pi\)
\(278\) 0 0
\(279\) − 172.320i − 0.617633i
\(280\) 0 0
\(281\) 443.128 1.57697 0.788484 0.615055i \(-0.210866\pi\)
0.788484 + 0.615055i \(0.210866\pi\)
\(282\) 0 0
\(283\) − 294.620i − 1.04106i −0.853843 0.520531i \(-0.825734\pi\)
0.853843 0.520531i \(-0.174266\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −67.5196 −0.235260
\(288\) 0 0
\(289\) 148.426 0.513583
\(290\) 0 0
\(291\) 168.249 0.578174
\(292\) 0 0
\(293\) −66.7217 −0.227719 −0.113859 0.993497i \(-0.536321\pi\)
−0.113859 + 0.993497i \(0.536321\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 41.5692i 0.139964i
\(298\) 0 0
\(299\) 49.9897 0.167190
\(300\) 0 0
\(301\) 61.5639i 0.204531i
\(302\) 0 0
\(303\) −107.624 −0.355196
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 524.210i 1.70753i 0.520662 + 0.853763i \(0.325685\pi\)
−0.520662 + 0.853763i \(0.674315\pi\)
\(308\) 0 0
\(309\) − 48.1582i − 0.155852i
\(310\) 0 0
\(311\) − 362.057i − 1.16417i −0.813128 0.582085i \(-0.802237\pi\)
0.813128 0.582085i \(-0.197763\pi\)
\(312\) 0 0
\(313\) − 252.277i − 0.805996i −0.915201 0.402998i \(-0.867968\pi\)
0.915201 0.402998i \(-0.132032\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 80.3934 0.253607 0.126803 0.991928i \(-0.459528\pi\)
0.126803 + 0.991928i \(0.459528\pi\)
\(318\) 0 0
\(319\) − 4.58467i − 0.0143720i
\(320\) 0 0
\(321\) −65.4359 −0.203850
\(322\) 0 0
\(323\) 176.995i 0.547972i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −245.417 −0.750509
\(328\) 0 0
\(329\) 127.426 0.387312
\(330\) 0 0
\(331\) −172.056 −0.519808 −0.259904 0.965635i \(-0.583691\pi\)
−0.259904 + 0.965635i \(0.583691\pi\)
\(332\) 0 0
\(333\) 82.9517 0.249104
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 564.277i 1.67441i 0.546888 + 0.837206i \(0.315813\pi\)
−0.546888 + 0.837206i \(0.684187\pi\)
\(338\) 0 0
\(339\) 100.956 0.297806
\(340\) 0 0
\(341\) 459.519i 1.34756i
\(342\) 0 0
\(343\) −199.817 −0.582556
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 286.123i 0.824562i 0.911057 + 0.412281i \(0.135268\pi\)
−0.911057 + 0.412281i \(0.864732\pi\)
\(348\) 0 0
\(349\) 421.021i 1.20636i 0.797603 + 0.603182i \(0.206101\pi\)
−0.797603 + 0.603182i \(0.793899\pi\)
\(350\) 0 0
\(351\) 60.7249i 0.173005i
\(352\) 0 0
\(353\) − 429.138i − 1.21569i −0.794056 0.607845i \(-0.792034\pi\)
0.794056 0.607845i \(-0.207966\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 43.9217 0.123030
\(358\) 0 0
\(359\) − 263.673i − 0.734465i −0.930129 0.367233i \(-0.880305\pi\)
0.930129 0.367233i \(-0.119695\pi\)
\(360\) 0 0
\(361\) −138.149 −0.382684
\(362\) 0 0
\(363\) 98.7269i 0.271975i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 129.544 0.352981 0.176491 0.984302i \(-0.443525\pi\)
0.176491 + 0.984302i \(0.443525\pi\)
\(368\) 0 0
\(369\) 94.7077 0.256660
\(370\) 0 0
\(371\) 67.0615 0.180759
\(372\) 0 0
\(373\) 302.478 0.810933 0.405467 0.914110i \(-0.367109\pi\)
0.405467 + 0.914110i \(0.367109\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 6.69735i − 0.0177649i
\(378\) 0 0
\(379\) −116.210 −0.306623 −0.153312 0.988178i \(-0.548994\pi\)
−0.153312 + 0.988178i \(0.548994\pi\)
\(380\) 0 0
\(381\) − 320.693i − 0.841715i
\(382\) 0 0
\(383\) 566.151 1.47820 0.739101 0.673595i \(-0.235251\pi\)
0.739101 + 0.673595i \(0.235251\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 86.3538i − 0.223137i
\(388\) 0 0
\(389\) − 350.104i − 0.900011i −0.893026 0.450006i \(-0.851422\pi\)
0.893026 0.450006i \(-0.148578\pi\)
\(390\) 0 0
\(391\) 50.7165i 0.129710i
\(392\) 0 0
\(393\) 217.128i 0.552489i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 544.149 1.37065 0.685326 0.728236i \(-0.259660\pi\)
0.685326 + 0.728236i \(0.259660\pi\)
\(398\) 0 0
\(399\) − 55.3011i − 0.138599i
\(400\) 0 0
\(401\) −296.431 −0.739229 −0.369614 0.929185i \(-0.620510\pi\)
−0.369614 + 0.929185i \(0.620510\pi\)
\(402\) 0 0
\(403\) 671.272i 1.66569i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −221.205 −0.543500
\(408\) 0 0
\(409\) 247.415 0.604927 0.302464 0.953161i \(-0.402191\pi\)
0.302464 + 0.953161i \(0.402191\pi\)
\(410\) 0 0
\(411\) 172.459 0.419608
\(412\) 0 0
\(413\) −112.895 −0.273353
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 307.426i − 0.737232i
\(418\) 0 0
\(419\) −92.1333 −0.219889 −0.109944 0.993938i \(-0.535067\pi\)
−0.109944 + 0.993938i \(0.535067\pi\)
\(420\) 0 0
\(421\) 445.540i 1.05829i 0.848531 + 0.529145i \(0.177487\pi\)
−0.848531 + 0.529145i \(0.822513\pi\)
\(422\) 0 0
\(423\) −178.736 −0.422544
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 127.426i − 0.298421i
\(428\) 0 0
\(429\) − 161.933i − 0.377466i
\(430\) 0 0
\(431\) − 186.677i − 0.433125i −0.976269 0.216563i \(-0.930515\pi\)
0.976269 0.216563i \(-0.0694845\pi\)
\(432\) 0 0
\(433\) − 291.128i − 0.672351i −0.941799 0.336176i \(-0.890866\pi\)
0.941799 0.336176i \(-0.109134\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 63.8562 0.146124
\(438\) 0 0
\(439\) − 87.6899i − 0.199749i −0.995000 0.0998746i \(-0.968156\pi\)
0.995000 0.0998746i \(-0.0318442\pi\)
\(440\) 0 0
\(441\) 133.277 0.302215
\(442\) 0 0
\(443\) 20.7077i 0.0467441i 0.999727 + 0.0233721i \(0.00744024\pi\)
−0.999727 + 0.0233721i \(0.992560\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −152.078 −0.340219
\(448\) 0 0
\(449\) −584.410 −1.30158 −0.650791 0.759257i \(-0.725563\pi\)
−0.650791 + 0.759257i \(0.725563\pi\)
\(450\) 0 0
\(451\) −252.554 −0.559986
\(452\) 0 0
\(453\) 379.433 0.837600
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 269.692i − 0.590136i −0.955476 0.295068i \(-0.904658\pi\)
0.955476 0.295068i \(-0.0953423\pi\)
\(458\) 0 0
\(459\) −61.6077 −0.134222
\(460\) 0 0
\(461\) 44.4948i 0.0965181i 0.998835 + 0.0482590i \(0.0153673\pi\)
−0.998835 + 0.0482590i \(0.984633\pi\)
\(462\) 0 0
\(463\) −611.065 −1.31980 −0.659898 0.751355i \(-0.729400\pi\)
−0.659898 + 0.751355i \(0.729400\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 146.410i − 0.313512i −0.987637 0.156756i \(-0.949896\pi\)
0.987637 0.156756i \(-0.0501036\pi\)
\(468\) 0 0
\(469\) 181.336i 0.386643i
\(470\) 0 0
\(471\) − 438.971i − 0.931997i
\(472\) 0 0
\(473\) 230.277i 0.486843i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −94.0651 −0.197201
\(478\) 0 0
\(479\) 191.876i 0.400576i 0.979737 + 0.200288i \(0.0641878\pi\)
−0.979737 + 0.200288i \(0.935812\pi\)
\(480\) 0 0
\(481\) −323.138 −0.671805
\(482\) 0 0
\(483\) − 15.8461i − 0.0328077i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −610.758 −1.25412 −0.627062 0.778969i \(-0.715743\pi\)
−0.627062 + 0.778969i \(0.715743\pi\)
\(488\) 0 0
\(489\) −177.282 −0.362540
\(490\) 0 0
\(491\) 142.354 0.289926 0.144963 0.989437i \(-0.453694\pi\)
0.144963 + 0.989437i \(0.453694\pi\)
\(492\) 0 0
\(493\) 6.79472 0.0137824
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 90.8306i 0.182758i
\(498\) 0 0
\(499\) 91.3693 0.183105 0.0915524 0.995800i \(-0.470817\pi\)
0.0915524 + 0.995800i \(0.470817\pi\)
\(500\) 0 0
\(501\) − 486.863i − 0.971782i
\(502\) 0 0
\(503\) −230.067 −0.457389 −0.228695 0.973498i \(-0.573446\pi\)
−0.228695 + 0.973498i \(0.573446\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 56.1628i 0.110775i
\(508\) 0 0
\(509\) 527.387i 1.03612i 0.855343 + 0.518062i \(0.173346\pi\)
−0.855343 + 0.518062i \(0.826654\pi\)
\(510\) 0 0
\(511\) 11.6042i 0.0227088i
\(512\) 0 0
\(513\) 77.5692i 0.151207i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 476.630 0.921914
\(518\) 0 0
\(519\) 420.643i 0.810487i
\(520\) 0 0
\(521\) 191.856 0.368246 0.184123 0.982903i \(-0.441055\pi\)
0.184123 + 0.982903i \(0.441055\pi\)
\(522\) 0 0
\(523\) 105.492i 0.201706i 0.994901 + 0.100853i \(0.0321572\pi\)
−0.994901 + 0.100853i \(0.967843\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −681.031 −1.29228
\(528\) 0 0
\(529\) −510.703 −0.965411
\(530\) 0 0
\(531\) 158.354 0.298218
\(532\) 0 0
\(533\) −368.934 −0.692184
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 551.405i − 1.02682i
\(538\) 0 0
\(539\) −355.405 −0.659378
\(540\) 0 0
\(541\) 459.744i 0.849804i 0.905239 + 0.424902i \(0.139691\pi\)
−0.905239 + 0.424902i \(0.860309\pi\)
\(542\) 0 0
\(543\) 137.721 0.253630
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 67.3693i − 0.123161i −0.998102 0.0615807i \(-0.980386\pi\)
0.998102 0.0615807i \(-0.0196142\pi\)
\(548\) 0 0
\(549\) 178.736i 0.325567i
\(550\) 0 0
\(551\) − 8.55511i − 0.0155265i
\(552\) 0 0
\(553\) 95.4050i 0.172523i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −476.671 −0.855782 −0.427891 0.903830i \(-0.640743\pi\)
−0.427891 + 0.903830i \(0.640743\pi\)
\(558\) 0 0
\(559\) 336.391i 0.601774i
\(560\) 0 0
\(561\) 164.287 0.292847
\(562\) 0 0
\(563\) − 910.123i − 1.61656i −0.588799 0.808280i \(-0.700399\pi\)
0.588799 0.808280i \(-0.299601\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 19.2490 0.0339489
\(568\) 0 0
\(569\) 124.123 0.218142 0.109071 0.994034i \(-0.465212\pi\)
0.109071 + 0.994034i \(0.465212\pi\)
\(570\) 0 0
\(571\) −945.031 −1.65504 −0.827522 0.561433i \(-0.810250\pi\)
−0.827522 + 0.561433i \(0.810250\pi\)
\(572\) 0 0
\(573\) −611.219 −1.06670
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 215.682i 0.373799i 0.982379 + 0.186899i \(0.0598438\pi\)
−0.982379 + 0.186899i \(0.940156\pi\)
\(578\) 0 0
\(579\) 492.382 0.850401
\(580\) 0 0
\(581\) 144.823i 0.249265i
\(582\) 0 0
\(583\) 250.840 0.430258
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 900.785i − 1.53456i −0.641314 0.767278i \(-0.721611\pi\)
0.641314 0.767278i \(-0.278389\pi\)
\(588\) 0 0
\(589\) 857.475i 1.45581i
\(590\) 0 0
\(591\) 131.305i 0.222174i
\(592\) 0 0
\(593\) 508.585i 0.857647i 0.903388 + 0.428824i \(0.141072\pi\)
−0.903388 + 0.428824i \(0.858928\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −180.455 −0.302270
\(598\) 0 0
\(599\) 846.934i 1.41391i 0.707257 + 0.706957i \(0.249933\pi\)
−0.707257 + 0.706957i \(0.750067\pi\)
\(600\) 0 0
\(601\) −406.000 −0.675541 −0.337770 0.941229i \(-0.609673\pi\)
−0.337770 + 0.941229i \(0.609673\pi\)
\(602\) 0 0
\(603\) − 254.354i − 0.421814i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 771.156 1.27044 0.635219 0.772332i \(-0.280910\pi\)
0.635219 + 0.772332i \(0.280910\pi\)
\(608\) 0 0
\(609\) −2.12297 −0.00348600
\(610\) 0 0
\(611\) 696.267 1.13955
\(612\) 0 0
\(613\) 336.699 0.549264 0.274632 0.961549i \(-0.411444\pi\)
0.274632 + 0.961549i \(0.411444\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 908.831i − 1.47298i −0.676447 0.736492i \(-0.736481\pi\)
0.676447 0.736492i \(-0.263519\pi\)
\(618\) 0 0
\(619\) −1047.77 −1.69268 −0.846340 0.532643i \(-0.821199\pi\)
−0.846340 + 0.532643i \(0.821199\pi\)
\(620\) 0 0
\(621\) 22.2268i 0.0357920i
\(622\) 0 0
\(623\) 284.754 0.457068
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 206.851i − 0.329906i
\(628\) 0 0
\(629\) − 327.836i − 0.521202i
\(630\) 0 0
\(631\) 610.758i 0.967921i 0.875090 + 0.483961i \(0.160802\pi\)
−0.875090 + 0.483961i \(0.839198\pi\)
\(632\) 0 0
\(633\) 237.149i 0.374643i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −519.180 −0.815040
\(638\) 0 0
\(639\) − 127.405i − 0.199382i
\(640\) 0 0
\(641\) 9.60015 0.0149768 0.00748842 0.999972i \(-0.497616\pi\)
0.00748842 + 0.999972i \(0.497616\pi\)
\(642\) 0 0
\(643\) 86.1999i 0.134059i 0.997751 + 0.0670295i \(0.0213522\pi\)
−0.997751 + 0.0670295i \(0.978648\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 352.580 0.544946 0.272473 0.962163i \(-0.412158\pi\)
0.272473 + 0.962163i \(0.412158\pi\)
\(648\) 0 0
\(649\) −422.277 −0.650658
\(650\) 0 0
\(651\) 212.785 0.326858
\(652\) 0 0
\(653\) 319.322 0.489008 0.244504 0.969648i \(-0.421375\pi\)
0.244504 + 0.969648i \(0.421375\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 16.2769i − 0.0247745i
\(658\) 0 0
\(659\) 275.328 0.417797 0.208898 0.977937i \(-0.433012\pi\)
0.208898 + 0.977937i \(0.433012\pi\)
\(660\) 0 0
\(661\) 133.668i 0.202221i 0.994875 + 0.101111i \(0.0322396\pi\)
−0.994875 + 0.101111i \(0.967760\pi\)
\(662\) 0 0
\(663\) 239.993 0.361980
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 2.45140i − 0.00367526i
\(668\) 0 0
\(669\) − 92.0799i − 0.137638i
\(670\) 0 0
\(671\) − 476.630i − 0.710327i
\(672\) 0 0
\(673\) − 187.703i − 0.278904i −0.990229 0.139452i \(-0.955466\pi\)
0.990229 0.139452i \(-0.0445341\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −1169.84 −1.72797 −0.863986 0.503515i \(-0.832040\pi\)
−0.863986 + 0.503515i \(0.832040\pi\)
\(678\) 0 0
\(679\) 207.758i 0.305976i
\(680\) 0 0
\(681\) 207.580 0.304816
\(682\) 0 0
\(683\) 89.4566i 0.130976i 0.997853 + 0.0654880i \(0.0208604\pi\)
−0.997853 + 0.0654880i \(0.979140\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −370.837 −0.539791
\(688\) 0 0
\(689\) 366.431 0.531830
\(690\) 0 0
\(691\) −139.103 −0.201306 −0.100653 0.994922i \(-0.532093\pi\)
−0.100653 + 0.994922i \(0.532093\pi\)
\(692\) 0 0
\(693\) −51.3307 −0.0740703
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 374.297i − 0.537012i
\(698\) 0 0
\(699\) 220.726 0.315773
\(700\) 0 0
\(701\) − 1218.34i − 1.73801i −0.494804 0.869004i \(-0.664760\pi\)
0.494804 0.869004i \(-0.335240\pi\)
\(702\) 0 0
\(703\) −412.773 −0.587160
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 132.897i − 0.187974i
\(708\) 0 0
\(709\) 1080.13i 1.52346i 0.647895 + 0.761730i \(0.275649\pi\)
−0.647895 + 0.761730i \(0.724351\pi\)
\(710\) 0 0
\(711\) − 133.822i − 0.188216i
\(712\) 0 0
\(713\) 245.703i 0.344604i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −553.011 −0.771285
\(718\) 0 0
\(719\) − 20.7736i − 0.0288923i −0.999896 0.0144461i \(-0.995401\pi\)
0.999896 0.0144461i \(-0.00459851\pi\)
\(720\) 0 0
\(721\) 59.4669 0.0824783
\(722\) 0 0
\(723\) 428.536i 0.592719i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 1031.17 1.41838 0.709192 0.705015i \(-0.249060\pi\)
0.709192 + 0.705015i \(0.249060\pi\)
\(728\) 0 0
\(729\) −27.0000 −0.0370370
\(730\) 0 0
\(731\) −341.282 −0.466870
\(732\) 0 0
\(733\) −881.072 −1.20201 −0.601004 0.799246i \(-0.705233\pi\)
−0.601004 + 0.799246i \(0.705233\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 678.277i 0.920321i
\(738\) 0 0
\(739\) −671.195 −0.908247 −0.454124 0.890939i \(-0.650048\pi\)
−0.454124 + 0.890939i \(0.650048\pi\)
\(740\) 0 0
\(741\) − 302.171i − 0.407788i
\(742\) 0 0
\(743\) 254.197 0.342122 0.171061 0.985260i \(-0.445281\pi\)
0.171061 + 0.985260i \(0.445281\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 203.138i − 0.271939i
\(748\) 0 0
\(749\) − 80.8019i − 0.107880i
\(750\) 0 0
\(751\) 728.994i 0.970698i 0.874320 + 0.485349i \(0.161307\pi\)
−0.874320 + 0.485349i \(0.838693\pi\)
\(752\) 0 0
\(753\) − 372.133i − 0.494201i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −372.679 −0.492311 −0.246155 0.969230i \(-0.579167\pi\)
−0.246155 + 0.969230i \(0.579167\pi\)
\(758\) 0 0
\(759\) − 59.2716i − 0.0780917i
\(760\) 0 0
\(761\) 1257.80 1.65283 0.826416 0.563060i \(-0.190376\pi\)
0.826416 + 0.563060i \(0.190376\pi\)
\(762\) 0 0
\(763\) − 303.046i − 0.397177i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −616.868 −0.804260
\(768\) 0 0
\(769\) −247.703 −0.322110 −0.161055 0.986945i \(-0.551490\pi\)
−0.161055 + 0.986945i \(0.551490\pi\)
\(770\) 0 0
\(771\) −145.972 −0.189328
\(772\) 0 0
\(773\) −587.805 −0.760420 −0.380210 0.924900i \(-0.624148\pi\)
−0.380210 + 0.924900i \(0.624148\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 102.431i 0.131829i
\(778\) 0 0
\(779\) −471.272 −0.604970
\(780\) 0 0
\(781\) 339.748i 0.435016i
\(782\) 0 0
\(783\) 2.97783 0.00380311
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 31.0821i 0.0394944i 0.999805 + 0.0197472i \(0.00628614\pi\)
−0.999805 + 0.0197472i \(0.993714\pi\)
\(788\) 0 0
\(789\) − 479.986i − 0.608347i
\(790\) 0 0
\(791\) 124.663i 0.157602i
\(792\) 0 0
\(793\) − 696.267i − 0.878016i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −490.260 −0.615132 −0.307566 0.951527i \(-0.599514\pi\)
−0.307566 + 0.951527i \(0.599514\pi\)
\(798\) 0 0
\(799\) 706.389i 0.884092i
\(800\) 0 0
\(801\) −399.415 −0.498646
\(802\) 0 0
\(803\) 43.4050i 0.0540536i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −214.256 −0.265497
\(808\) 0 0
\(809\) −676.102 −0.835726 −0.417863 0.908510i \(-0.637221\pi\)
−0.417863 + 0.908510i \(0.637221\pi\)
\(810\) 0 0
\(811\) 74.1793 0.0914665 0.0457332 0.998954i \(-0.485438\pi\)
0.0457332 + 0.998954i \(0.485438\pi\)
\(812\) 0 0
\(813\) 342.920 0.421796
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 429.703i 0.525952i
\(818\) 0 0
\(819\) −74.9845 −0.0915562
\(820\) 0 0
\(821\) − 1130.58i − 1.37708i −0.725198 0.688540i \(-0.758252\pi\)
0.725198 0.688540i \(-0.241748\pi\)
\(822\) 0 0
\(823\) 82.1839 0.0998589 0.0499295 0.998753i \(-0.484100\pi\)
0.0499295 + 0.998753i \(0.484100\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 1504.57i − 1.81931i −0.415365 0.909655i \(-0.636346\pi\)
0.415365 0.909655i \(-0.363654\pi\)
\(828\) 0 0
\(829\) − 1409.65i − 1.70042i −0.526445 0.850209i \(-0.676475\pi\)
0.526445 0.850209i \(-0.323525\pi\)
\(830\) 0 0
\(831\) − 429.044i − 0.516299i
\(832\) 0 0
\(833\) − 526.728i − 0.632327i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −298.467 −0.356591
\(838\) 0 0
\(839\) − 288.110i − 0.343397i −0.985150 0.171698i \(-0.945075\pi\)
0.985150 0.171698i \(-0.0549254\pi\)
\(840\) 0 0
\(841\) 840.672 0.999609
\(842\) 0 0
\(843\) − 767.520i − 0.910463i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −121.910 −0.143932
\(848\) 0 0
\(849\) −510.297 −0.601057
\(850\) 0 0
\(851\) −118.277 −0.138986
\(852\) 0 0
\(853\) −645.132 −0.756310 −0.378155 0.925742i \(-0.623441\pi\)
−0.378155 + 0.925742i \(0.623441\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 995.549i − 1.16167i −0.814022 0.580833i \(-0.802727\pi\)
0.814022 0.580833i \(-0.197273\pi\)
\(858\) 0 0
\(859\) −774.354 −0.901460 −0.450730 0.892660i \(-0.648836\pi\)
−0.450730 + 0.892660i \(0.648836\pi\)
\(860\) 0 0
\(861\) 116.947i 0.135827i
\(862\) 0 0
\(863\) −1007.33 −1.16724 −0.583622 0.812025i \(-0.698365\pi\)
−0.583622 + 0.812025i \(0.698365\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 257.081i − 0.296518i
\(868\) 0 0
\(869\) 356.858i 0.410654i
\(870\) 0 0
\(871\) 990.836i 1.13758i
\(872\) 0 0
\(873\) − 291.415i − 0.333809i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −681.645 −0.777246 −0.388623 0.921397i \(-0.627049\pi\)
−0.388623 + 0.921397i \(0.627049\pi\)
\(878\) 0 0
\(879\) 115.565i 0.131474i
\(880\) 0 0
\(881\) −679.108 −0.770837 −0.385419 0.922742i \(-0.625943\pi\)
−0.385419 + 0.922742i \(0.625943\pi\)
\(882\) 0 0
\(883\) − 1059.44i − 1.19982i −0.800068 0.599910i \(-0.795203\pi\)
0.800068 0.599910i \(-0.204797\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −856.411 −0.965514 −0.482757 0.875754i \(-0.660365\pi\)
−0.482757 + 0.875754i \(0.660365\pi\)
\(888\) 0 0
\(889\) 396.000 0.445444
\(890\) 0 0
\(891\) 72.0000 0.0808081
\(892\) 0 0
\(893\) 889.403 0.995972
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 86.5847i − 0.0965270i
\(898\) 0 0
\(899\) 32.9179 0.0366161
\(900\) 0 0
\(901\) 371.758i 0.412606i
\(902\) 0 0
\(903\) 106.632 0.118086
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 761.492i 0.839573i 0.907623 + 0.419786i \(0.137895\pi\)
−0.907623 + 0.419786i \(0.862105\pi\)
\(908\) 0 0
\(909\) 186.411i 0.205073i
\(910\) 0 0
\(911\) 897.344i 0.985009i 0.870310 + 0.492505i \(0.163919\pi\)
−0.870310 + 0.492505i \(0.836081\pi\)
\(912\) 0 0
\(913\) 541.703i 0.593321i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −268.115 −0.292383
\(918\) 0 0
\(919\) 62.6388i 0.0681598i 0.999419 + 0.0340799i \(0.0108501\pi\)
−0.999419 + 0.0340799i \(0.989150\pi\)
\(920\) 0 0
\(921\) 907.959 0.985840
\(922\) 0 0
\(923\) 496.308i 0.537712i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −83.4124 −0.0899810
\(928\) 0 0
\(929\) −253.313 −0.272673 −0.136336 0.990663i \(-0.543533\pi\)
−0.136336 + 0.990663i \(0.543533\pi\)
\(930\) 0 0
\(931\) −663.195 −0.712347
\(932\) 0 0
\(933\) −627.101 −0.672134
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 30.5538i − 0.0326081i −0.999867 0.0163040i \(-0.994810\pi\)
0.999867 0.0163040i \(-0.00518996\pi\)
\(938\) 0 0
\(939\) −436.956 −0.465342
\(940\) 0 0
\(941\) − 388.745i − 0.413119i −0.978434 0.206559i \(-0.933773\pi\)
0.978434 0.206559i \(-0.0662267\pi\)
\(942\) 0 0
\(943\) −135.039 −0.143202
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 263.615i 0.278369i 0.990266 + 0.139184i \(0.0444481\pi\)
−0.990266 + 0.139184i \(0.955552\pi\)
\(948\) 0 0
\(949\) 63.4066i 0.0668141i
\(950\) 0 0
\(951\) − 139.245i − 0.146420i
\(952\) 0 0
\(953\) − 1292.41i − 1.35615i −0.734993 0.678075i \(-0.762815\pi\)
0.734993 0.678075i \(-0.237185\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −7.94089 −0.00829769
\(958\) 0 0
\(959\) 212.957i 0.222061i
\(960\) 0 0
\(961\) −2338.34 −2.43324
\(962\) 0 0
\(963\) 113.338i 0.117693i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −1110.00 −1.14788 −0.573942 0.818896i \(-0.694587\pi\)
−0.573942 + 0.818896i \(0.694587\pi\)
\(968\) 0 0
\(969\) 306.564 0.316372
\(970\) 0 0
\(971\) 1341.66 1.38173 0.690866 0.722983i \(-0.257230\pi\)
0.690866 + 0.722983i \(0.257230\pi\)
\(972\) 0 0
\(973\) 379.617 0.390151
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 920.431i − 0.942099i −0.882107 0.471050i \(-0.843875\pi\)
0.882107 0.471050i \(-0.156125\pi\)
\(978\) 0 0
\(979\) 1065.11 1.08795
\(980\) 0 0
\(981\) 425.074i 0.433307i
\(982\) 0 0
\(983\) −1697.84 −1.72720 −0.863601 0.504176i \(-0.831796\pi\)
−0.863601 + 0.504176i \(0.831796\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 220.708i − 0.223615i
\(988\) 0 0
\(989\) 123.128i 0.124497i
\(990\) 0 0
\(991\) − 284.765i − 0.287351i −0.989625 0.143675i \(-0.954108\pi\)
0.989625 0.143675i \(-0.0458921\pi\)
\(992\) 0 0
\(993\) 298.010i 0.300111i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −1093.80 −1.09710 −0.548548 0.836119i \(-0.684819\pi\)
−0.548548 + 0.836119i \(0.684819\pi\)
\(998\) 0 0
\(999\) − 143.677i − 0.143820i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2400.3.p.a.1999.3 8
4.3 odd 2 600.3.p.a.499.4 8
5.2 odd 4 2400.3.g.a.751.2 4
5.3 odd 4 96.3.b.a.79.3 4
5.4 even 2 inner 2400.3.p.a.1999.6 8
8.3 odd 2 inner 2400.3.p.a.1999.2 8
8.5 even 2 600.3.p.a.499.6 8
15.8 even 4 288.3.b.b.271.4 4
20.3 even 4 24.3.b.a.19.4 yes 4
20.7 even 4 600.3.g.a.451.1 4
20.19 odd 2 600.3.p.a.499.5 8
40.3 even 4 96.3.b.a.79.4 4
40.13 odd 4 24.3.b.a.19.3 4
40.19 odd 2 inner 2400.3.p.a.1999.7 8
40.27 even 4 2400.3.g.a.751.1 4
40.29 even 2 600.3.p.a.499.3 8
40.37 odd 4 600.3.g.a.451.2 4
60.23 odd 4 72.3.b.b.19.1 4
80.3 even 4 768.3.g.h.511.1 8
80.13 odd 4 768.3.g.h.511.5 8
80.43 even 4 768.3.g.h.511.8 8
80.53 odd 4 768.3.g.h.511.4 8
120.53 even 4 72.3.b.b.19.2 4
120.83 odd 4 288.3.b.b.271.1 4
240.53 even 4 2304.3.g.z.1279.2 8
240.83 odd 4 2304.3.g.z.1279.7 8
240.173 even 4 2304.3.g.z.1279.8 8
240.203 odd 4 2304.3.g.z.1279.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
24.3.b.a.19.3 4 40.13 odd 4
24.3.b.a.19.4 yes 4 20.3 even 4
72.3.b.b.19.1 4 60.23 odd 4
72.3.b.b.19.2 4 120.53 even 4
96.3.b.a.79.3 4 5.3 odd 4
96.3.b.a.79.4 4 40.3 even 4
288.3.b.b.271.1 4 120.83 odd 4
288.3.b.b.271.4 4 15.8 even 4
600.3.g.a.451.1 4 20.7 even 4
600.3.g.a.451.2 4 40.37 odd 4
600.3.p.a.499.3 8 40.29 even 2
600.3.p.a.499.4 8 4.3 odd 2
600.3.p.a.499.5 8 20.19 odd 2
600.3.p.a.499.6 8 8.5 even 2
768.3.g.h.511.1 8 80.3 even 4
768.3.g.h.511.4 8 80.53 odd 4
768.3.g.h.511.5 8 80.13 odd 4
768.3.g.h.511.8 8 80.43 even 4
2304.3.g.z.1279.1 8 240.203 odd 4
2304.3.g.z.1279.2 8 240.53 even 4
2304.3.g.z.1279.7 8 240.83 odd 4
2304.3.g.z.1279.8 8 240.173 even 4
2400.3.g.a.751.1 4 40.27 even 4
2400.3.g.a.751.2 4 5.2 odd 4
2400.3.p.a.1999.2 8 8.3 odd 2 inner
2400.3.p.a.1999.3 8 1.1 even 1 trivial
2400.3.p.a.1999.6 8 5.4 even 2 inner
2400.3.p.a.1999.7 8 40.19 odd 2 inner