Properties

Label 288.3.b.b.271.4
Level $288$
Weight $3$
Character 288.271
Analytic conductor $7.847$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [288,3,Mod(271,288)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(288, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("288.271");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 288 = 2^{5} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 288.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.84743161358\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.0.4752.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} - 6x + 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 24)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 271.4
Root \(-0.866025 - 1.99551i\) of defining polynomial
Character \(\chi\) \(=\) 288.271
Dual form 288.3.b.b.271.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+7.98203i q^{5} -2.13878i q^{7} +O(q^{10})\) \(q+7.98203i q^{5} -2.13878i q^{7} -8.00000 q^{11} +11.6865i q^{13} -11.8564 q^{17} -14.9282 q^{19} -4.27756i q^{23} -38.7128 q^{25} -0.573084i q^{29} +57.4399i q^{31} +17.0718 q^{35} +27.6506i q^{37} +31.5692 q^{41} -28.7846 q^{43} +59.5787i q^{47} +44.4256 q^{49} -31.3550i q^{53} -63.8562i q^{55} -52.7846 q^{59} -59.5787i q^{61} -93.2820 q^{65} +84.7846 q^{67} -42.4685i q^{71} -5.42563 q^{73} +17.1102i q^{77} -44.6072i q^{79} +67.7128 q^{83} -94.6382i q^{85} +133.138 q^{89} +24.9948 q^{91} -119.157i q^{95} +97.1384 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 32 q^{11} + 8 q^{17} - 32 q^{19} - 44 q^{25} + 96 q^{35} - 40 q^{41} - 32 q^{43} - 44 q^{49} - 128 q^{59} - 96 q^{65} + 256 q^{67} + 200 q^{73} + 160 q^{83} + 200 q^{89} - 288 q^{91} + 56 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/288\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(65\) \(127\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 7.98203i 1.59641i 0.602388 + 0.798203i \(0.294216\pi\)
−0.602388 + 0.798203i \(0.705784\pi\)
\(6\) 0 0
\(7\) − 2.13878i − 0.305540i −0.988262 0.152770i \(-0.951181\pi\)
0.988262 0.152770i \(-0.0488193\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −8.00000 −0.727273 −0.363636 0.931541i \(-0.618465\pi\)
−0.363636 + 0.931541i \(0.618465\pi\)
\(12\) 0 0
\(13\) 11.6865i 0.898962i 0.893290 + 0.449481i \(0.148391\pi\)
−0.893290 + 0.449481i \(0.851609\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −11.8564 −0.697436 −0.348718 0.937228i \(-0.613383\pi\)
−0.348718 + 0.937228i \(0.613383\pi\)
\(18\) 0 0
\(19\) −14.9282 −0.785695 −0.392847 0.919604i \(-0.628510\pi\)
−0.392847 + 0.919604i \(0.628510\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 4.27756i − 0.185981i −0.995667 0.0929904i \(-0.970357\pi\)
0.995667 0.0929904i \(-0.0296426\pi\)
\(24\) 0 0
\(25\) −38.7128 −1.54851
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 0.573084i − 0.0197615i −0.999951 0.00988076i \(-0.996855\pi\)
0.999951 0.00988076i \(-0.00314519\pi\)
\(30\) 0 0
\(31\) 57.4399i 1.85290i 0.376417 + 0.926450i \(0.377156\pi\)
−0.376417 + 0.926450i \(0.622844\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 17.0718 0.487766
\(36\) 0 0
\(37\) 27.6506i 0.747313i 0.927567 + 0.373656i \(0.121896\pi\)
−0.927567 + 0.373656i \(0.878104\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 31.5692 0.769981 0.384990 0.922921i \(-0.374205\pi\)
0.384990 + 0.922921i \(0.374205\pi\)
\(42\) 0 0
\(43\) −28.7846 −0.669410 −0.334705 0.942323i \(-0.608637\pi\)
−0.334705 + 0.942323i \(0.608637\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 59.5787i 1.26763i 0.773484 + 0.633816i \(0.218512\pi\)
−0.773484 + 0.633816i \(0.781488\pi\)
\(48\) 0 0
\(49\) 44.4256 0.906645
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 31.3550i − 0.591604i −0.955249 0.295802i \(-0.904413\pi\)
0.955249 0.295802i \(-0.0955869\pi\)
\(54\) 0 0
\(55\) − 63.8562i − 1.16102i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −52.7846 −0.894654 −0.447327 0.894370i \(-0.647624\pi\)
−0.447327 + 0.894370i \(0.647624\pi\)
\(60\) 0 0
\(61\) − 59.5787i − 0.976700i −0.872648 0.488350i \(-0.837599\pi\)
0.872648 0.488350i \(-0.162401\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −93.2820 −1.43511
\(66\) 0 0
\(67\) 84.7846 1.26544 0.632721 0.774380i \(-0.281938\pi\)
0.632721 + 0.774380i \(0.281938\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) − 42.4685i − 0.598147i −0.954230 0.299074i \(-0.903322\pi\)
0.954230 0.299074i \(-0.0966776\pi\)
\(72\) 0 0
\(73\) −5.42563 −0.0743236 −0.0371618 0.999309i \(-0.511832\pi\)
−0.0371618 + 0.999309i \(0.511832\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 17.1102i 0.222211i
\(78\) 0 0
\(79\) − 44.6072i − 0.564649i −0.959319 0.282324i \(-0.908895\pi\)
0.959319 0.282324i \(-0.0911054\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 67.7128 0.815817 0.407909 0.913023i \(-0.366258\pi\)
0.407909 + 0.913023i \(0.366258\pi\)
\(84\) 0 0
\(85\) − 94.6382i − 1.11339i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 133.138 1.49594 0.747969 0.663734i \(-0.231029\pi\)
0.747969 + 0.663734i \(0.231029\pi\)
\(90\) 0 0
\(91\) 24.9948 0.274669
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) − 119.157i − 1.25429i
\(96\) 0 0
\(97\) 97.1384 1.00143 0.500714 0.865613i \(-0.333071\pi\)
0.500714 + 0.865613i \(0.333071\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 62.1370i 0.615218i 0.951513 + 0.307609i \(0.0995288\pi\)
−0.951513 + 0.307609i \(0.900471\pi\)
\(102\) 0 0
\(103\) 27.8041i 0.269943i 0.990849 + 0.134971i \(0.0430943\pi\)
−0.990849 + 0.134971i \(0.956906\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 37.7795 0.353079 0.176540 0.984294i \(-0.443510\pi\)
0.176540 + 0.984294i \(0.443510\pi\)
\(108\) 0 0
\(109\) 141.691i 1.29992i 0.759968 + 0.649960i \(0.225214\pi\)
−0.759968 + 0.649960i \(0.774786\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 58.2872 0.515816 0.257908 0.966170i \(-0.416967\pi\)
0.257908 + 0.966170i \(0.416967\pi\)
\(114\) 0 0
\(115\) 34.1436 0.296901
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 25.3582i 0.213094i
\(120\) 0 0
\(121\) −57.0000 −0.471074
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 109.456i − 0.875649i
\(126\) 0 0
\(127\) − 185.152i − 1.45789i −0.684571 0.728946i \(-0.740010\pi\)
0.684571 0.728946i \(-0.259990\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 125.359 0.956939 0.478469 0.878104i \(-0.341192\pi\)
0.478469 + 0.878104i \(0.341192\pi\)
\(132\) 0 0
\(133\) 31.9281i 0.240061i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −99.5692 −0.726783 −0.363391 0.931637i \(-0.618381\pi\)
−0.363391 + 0.931637i \(0.618381\pi\)
\(138\) 0 0
\(139\) −177.492 −1.27692 −0.638461 0.769654i \(-0.720429\pi\)
−0.638461 + 0.769654i \(0.720429\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) − 93.4920i − 0.653790i
\(144\) 0 0
\(145\) 4.57437 0.0315474
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 87.8023i − 0.589277i −0.955609 0.294639i \(-0.904801\pi\)
0.955609 0.294639i \(-0.0951993\pi\)
\(150\) 0 0
\(151\) 219.066i 1.45077i 0.688345 + 0.725383i \(0.258337\pi\)
−0.688345 + 0.725383i \(0.741663\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −458.487 −2.95798
\(156\) 0 0
\(157\) − 253.440i − 1.61427i −0.590370 0.807133i \(-0.701018\pi\)
0.590370 0.807133i \(-0.298982\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −9.14875 −0.0568245
\(162\) 0 0
\(163\) 102.354 0.627938 0.313969 0.949433i \(-0.398341\pi\)
0.313969 + 0.949433i \(0.398341\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 281.090i 1.68318i 0.540120 + 0.841588i \(0.318379\pi\)
−0.540120 + 0.841588i \(0.681621\pi\)
\(168\) 0 0
\(169\) 32.4256 0.191868
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 242.858i 1.40381i 0.712273 + 0.701903i \(0.247666\pi\)
−0.712273 + 0.701903i \(0.752334\pi\)
\(174\) 0 0
\(175\) 82.7981i 0.473132i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 318.354 1.77851 0.889257 0.457409i \(-0.151222\pi\)
0.889257 + 0.457409i \(0.151222\pi\)
\(180\) 0 0
\(181\) 79.5132i 0.439299i 0.975579 + 0.219650i \(0.0704914\pi\)
−0.975579 + 0.219650i \(0.929509\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −220.708 −1.19301
\(186\) 0 0
\(187\) 94.8513 0.507226
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 352.887i 1.84758i 0.382902 + 0.923789i \(0.374925\pi\)
−0.382902 + 0.923789i \(0.625075\pi\)
\(192\) 0 0
\(193\) −284.277 −1.47294 −0.736469 0.676472i \(-0.763508\pi\)
−0.736469 + 0.676472i \(0.763508\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 75.8087i − 0.384816i −0.981315 0.192408i \(-0.938370\pi\)
0.981315 0.192408i \(-0.0616297\pi\)
\(198\) 0 0
\(199\) 104.186i 0.523547i 0.965129 + 0.261774i \(0.0843074\pi\)
−0.965129 + 0.261774i \(0.915693\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1.22570 −0.00603793
\(204\) 0 0
\(205\) 251.986i 1.22920i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 119.426 0.571414
\(210\) 0 0
\(211\) −136.918 −0.648900 −0.324450 0.945903i \(-0.605179\pi\)
−0.324450 + 0.945903i \(0.605179\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) − 229.760i − 1.06865i
\(216\) 0 0
\(217\) 122.851 0.566135
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 138.560i − 0.626968i
\(222\) 0 0
\(223\) 53.1624i 0.238396i 0.992870 + 0.119198i \(0.0380324\pi\)
−0.992870 + 0.119198i \(0.961968\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −119.846 −0.527956 −0.263978 0.964529i \(-0.585035\pi\)
−0.263978 + 0.964529i \(0.585035\pi\)
\(228\) 0 0
\(229\) 214.103i 0.934946i 0.884007 + 0.467473i \(0.154836\pi\)
−0.884007 + 0.467473i \(0.845164\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 127.436 0.546935 0.273468 0.961881i \(-0.411829\pi\)
0.273468 + 0.961881i \(0.411829\pi\)
\(234\) 0 0
\(235\) −475.559 −2.02365
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 319.281i − 1.33590i −0.744204 0.667952i \(-0.767171\pi\)
0.744204 0.667952i \(-0.232829\pi\)
\(240\) 0 0
\(241\) −247.415 −1.02662 −0.513310 0.858203i \(-0.671581\pi\)
−0.513310 + 0.858203i \(0.671581\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 354.607i 1.44737i
\(246\) 0 0
\(247\) − 174.459i − 0.706310i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −214.851 −0.855981 −0.427991 0.903783i \(-0.640778\pi\)
−0.427991 + 0.903783i \(0.640778\pi\)
\(252\) 0 0
\(253\) 34.2205i 0.135259i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 84.2769 0.327926 0.163963 0.986467i \(-0.447572\pi\)
0.163963 + 0.986467i \(0.447572\pi\)
\(258\) 0 0
\(259\) 59.1384 0.228334
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 277.120i − 1.05369i −0.849962 0.526844i \(-0.823375\pi\)
0.849962 0.526844i \(-0.176625\pi\)
\(264\) 0 0
\(265\) 250.277 0.944441
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 123.701i − 0.459855i −0.973208 0.229927i \(-0.926151\pi\)
0.973208 0.229927i \(-0.0738489\pi\)
\(270\) 0 0
\(271\) 197.985i 0.730572i 0.930895 + 0.365286i \(0.119029\pi\)
−0.930895 + 0.365286i \(0.880971\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 309.703 1.12619
\(276\) 0 0
\(277\) − 247.709i − 0.894256i −0.894470 0.447128i \(-0.852447\pi\)
0.894470 0.447128i \(-0.147553\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −443.128 −1.57697 −0.788484 0.615055i \(-0.789134\pi\)
−0.788484 + 0.615055i \(0.789134\pi\)
\(282\) 0 0
\(283\) 294.620 1.04106 0.520531 0.853843i \(-0.325734\pi\)
0.520531 + 0.853843i \(0.325734\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 67.5196i − 0.235260i
\(288\) 0 0
\(289\) −148.426 −0.513583
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 66.7217i 0.227719i 0.993497 + 0.113859i \(0.0363214\pi\)
−0.993497 + 0.113859i \(0.963679\pi\)
\(294\) 0 0
\(295\) − 421.328i − 1.42823i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 49.9897 0.167190
\(300\) 0 0
\(301\) 61.5639i 0.204531i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 475.559 1.55921
\(306\) 0 0
\(307\) 524.210 1.70753 0.853763 0.520662i \(-0.174315\pi\)
0.853763 + 0.520662i \(0.174315\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 362.057i 1.16417i 0.813128 + 0.582085i \(0.197763\pi\)
−0.813128 + 0.582085i \(0.802237\pi\)
\(312\) 0 0
\(313\) 252.277 0.805996 0.402998 0.915201i \(-0.367968\pi\)
0.402998 + 0.915201i \(0.367968\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 80.3934i 0.253607i 0.991928 + 0.126803i \(0.0404717\pi\)
−0.991928 + 0.126803i \(0.959528\pi\)
\(318\) 0 0
\(319\) 4.58467i 0.0143720i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 176.995 0.547972
\(324\) 0 0
\(325\) − 452.417i − 1.39205i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 127.426 0.387312
\(330\) 0 0
\(331\) −172.056 −0.519808 −0.259904 0.965635i \(-0.583691\pi\)
−0.259904 + 0.965635i \(0.583691\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 676.753i 2.02016i
\(336\) 0 0
\(337\) 564.277 1.67441 0.837206 0.546888i \(-0.184187\pi\)
0.837206 + 0.546888i \(0.184187\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 459.519i − 1.34756i
\(342\) 0 0
\(343\) − 199.817i − 0.582556i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −286.123 −0.824562 −0.412281 0.911057i \(-0.635268\pi\)
−0.412281 + 0.911057i \(0.635268\pi\)
\(348\) 0 0
\(349\) − 421.021i − 1.20636i −0.797603 0.603182i \(-0.793899\pi\)
0.797603 0.603182i \(-0.206101\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −429.138 −1.21569 −0.607845 0.794056i \(-0.707966\pi\)
−0.607845 + 0.794056i \(0.707966\pi\)
\(354\) 0 0
\(355\) 338.985 0.954886
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) − 263.673i − 0.734465i −0.930129 0.367233i \(-0.880305\pi\)
0.930129 0.367233i \(-0.119695\pi\)
\(360\) 0 0
\(361\) −138.149 −0.382684
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 43.3075i − 0.118651i
\(366\) 0 0
\(367\) − 129.544i − 0.352981i −0.984302 0.176491i \(-0.943525\pi\)
0.984302 0.176491i \(-0.0564745\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −67.0615 −0.180759
\(372\) 0 0
\(373\) 302.478i 0.810933i 0.914110 + 0.405467i \(0.132891\pi\)
−0.914110 + 0.405467i \(0.867109\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 6.69735 0.0177649
\(378\) 0 0
\(379\) 116.210 0.306623 0.153312 0.988178i \(-0.451006\pi\)
0.153312 + 0.988178i \(0.451006\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) − 566.151i − 1.47820i −0.673595 0.739101i \(-0.735251\pi\)
0.673595 0.739101i \(-0.264749\pi\)
\(384\) 0 0
\(385\) −136.574 −0.354739
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 350.104i − 0.900011i −0.893026 0.450006i \(-0.851422\pi\)
0.893026 0.450006i \(-0.148578\pi\)
\(390\) 0 0
\(391\) 50.7165i 0.129710i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 356.056 0.901408
\(396\) 0 0
\(397\) − 544.149i − 1.37065i −0.728236 0.685326i \(-0.759660\pi\)
0.728236 0.685326i \(-0.240340\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 296.431 0.739229 0.369614 0.929185i \(-0.379490\pi\)
0.369614 + 0.929185i \(0.379490\pi\)
\(402\) 0 0
\(403\) −671.272 −1.66569
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 221.205i − 0.543500i
\(408\) 0 0
\(409\) −247.415 −0.604927 −0.302464 0.953161i \(-0.597809\pi\)
−0.302464 + 0.953161i \(0.597809\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 112.895i 0.273353i
\(414\) 0 0
\(415\) 540.486i 1.30238i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −92.1333 −0.219889 −0.109944 0.993938i \(-0.535067\pi\)
−0.109944 + 0.993938i \(0.535067\pi\)
\(420\) 0 0
\(421\) 445.540i 1.05829i 0.848531 + 0.529145i \(0.177487\pi\)
−0.848531 + 0.529145i \(0.822513\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 458.995 1.07999
\(426\) 0 0
\(427\) −127.426 −0.298421
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 186.677i 0.433125i 0.976269 + 0.216563i \(0.0694845\pi\)
−0.976269 + 0.216563i \(0.930515\pi\)
\(432\) 0 0
\(433\) 291.128 0.672351 0.336176 0.941799i \(-0.390866\pi\)
0.336176 + 0.941799i \(0.390866\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 63.8562i 0.146124i
\(438\) 0 0
\(439\) 87.6899i 0.199749i 0.995000 + 0.0998746i \(0.0318442\pi\)
−0.995000 + 0.0998746i \(0.968156\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 20.7077 0.0467441 0.0233721 0.999727i \(-0.492560\pi\)
0.0233721 + 0.999727i \(0.492560\pi\)
\(444\) 0 0
\(445\) 1062.72i 2.38812i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −584.410 −1.30158 −0.650791 0.759257i \(-0.725563\pi\)
−0.650791 + 0.759257i \(0.725563\pi\)
\(450\) 0 0
\(451\) −252.554 −0.559986
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 199.510i 0.438483i
\(456\) 0 0
\(457\) −269.692 −0.590136 −0.295068 0.955476i \(-0.595342\pi\)
−0.295068 + 0.955476i \(0.595342\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 44.4948i − 0.0965181i −0.998835 0.0482590i \(-0.984633\pi\)
0.998835 0.0482590i \(-0.0153673\pi\)
\(462\) 0 0
\(463\) − 611.065i − 1.31980i −0.751355 0.659898i \(-0.770600\pi\)
0.751355 0.659898i \(-0.229400\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 146.410 0.313512 0.156756 0.987637i \(-0.449896\pi\)
0.156756 + 0.987637i \(0.449896\pi\)
\(468\) 0 0
\(469\) − 181.336i − 0.386643i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 230.277 0.486843
\(474\) 0 0
\(475\) 577.913 1.21666
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 191.876i 0.400576i 0.979737 + 0.200288i \(0.0641878\pi\)
−0.979737 + 0.200288i \(0.935812\pi\)
\(480\) 0 0
\(481\) −323.138 −0.671805
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 775.362i 1.59868i
\(486\) 0 0
\(487\) 610.758i 1.25412i 0.778969 + 0.627062i \(0.215743\pi\)
−0.778969 + 0.627062i \(0.784257\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −142.354 −0.289926 −0.144963 0.989437i \(-0.546306\pi\)
−0.144963 + 0.989437i \(0.546306\pi\)
\(492\) 0 0
\(493\) 6.79472i 0.0137824i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −90.8306 −0.182758
\(498\) 0 0
\(499\) −91.3693 −0.183105 −0.0915524 0.995800i \(-0.529183\pi\)
−0.0915524 + 0.995800i \(0.529183\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 230.067i 0.457389i 0.973498 + 0.228695i \(0.0734457\pi\)
−0.973498 + 0.228695i \(0.926554\pi\)
\(504\) 0 0
\(505\) −495.979 −0.982137
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 527.387i 1.03612i 0.855343 + 0.518062i \(0.173346\pi\)
−0.855343 + 0.518062i \(0.826654\pi\)
\(510\) 0 0
\(511\) 11.6042i 0.0227088i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −221.933 −0.430939
\(516\) 0 0
\(517\) − 476.630i − 0.921914i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −191.856 −0.368246 −0.184123 0.982903i \(-0.558945\pi\)
−0.184123 + 0.982903i \(0.558945\pi\)
\(522\) 0 0
\(523\) −105.492 −0.201706 −0.100853 0.994901i \(-0.532157\pi\)
−0.100853 + 0.994901i \(0.532157\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 681.031i − 1.29228i
\(528\) 0 0
\(529\) 510.703 0.965411
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 368.934i 0.692184i
\(534\) 0 0
\(535\) 301.557i 0.563658i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −355.405 −0.659378
\(540\) 0 0
\(541\) 459.744i 0.849804i 0.905239 + 0.424902i \(0.139691\pi\)
−0.905239 + 0.424902i \(0.860309\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −1130.98 −2.07520
\(546\) 0 0
\(547\) −67.3693 −0.123161 −0.0615807 0.998102i \(-0.519614\pi\)
−0.0615807 + 0.998102i \(0.519614\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 8.55511i 0.0155265i
\(552\) 0 0
\(553\) −95.4050 −0.172523
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 476.671i − 0.855782i −0.903830 0.427891i \(-0.859257\pi\)
0.903830 0.427891i \(-0.140743\pi\)
\(558\) 0 0
\(559\) − 336.391i − 0.601774i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −910.123 −1.61656 −0.808280 0.588799i \(-0.799601\pi\)
−0.808280 + 0.588799i \(0.799601\pi\)
\(564\) 0 0
\(565\) 465.250i 0.823452i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 124.123 0.218142 0.109071 0.994034i \(-0.465212\pi\)
0.109071 + 0.994034i \(0.465212\pi\)
\(570\) 0 0
\(571\) −945.031 −1.65504 −0.827522 0.561433i \(-0.810250\pi\)
−0.827522 + 0.561433i \(0.810250\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 165.596i 0.287994i
\(576\) 0 0
\(577\) 215.682 0.373799 0.186899 0.982379i \(-0.440156\pi\)
0.186899 + 0.982379i \(0.440156\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 144.823i − 0.249265i
\(582\) 0 0
\(583\) 250.840i 0.430258i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 900.785 1.53456 0.767278 0.641314i \(-0.221611\pi\)
0.767278 + 0.641314i \(0.221611\pi\)
\(588\) 0 0
\(589\) − 857.475i − 1.45581i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 508.585 0.857647 0.428824 0.903388i \(-0.358928\pi\)
0.428824 + 0.903388i \(0.358928\pi\)
\(594\) 0 0
\(595\) −202.410 −0.340185
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 846.934i 1.41391i 0.707257 + 0.706957i \(0.249933\pi\)
−0.707257 + 0.706957i \(0.750067\pi\)
\(600\) 0 0
\(601\) −406.000 −0.675541 −0.337770 0.941229i \(-0.609673\pi\)
−0.337770 + 0.941229i \(0.609673\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 454.976i − 0.752026i
\(606\) 0 0
\(607\) − 771.156i − 1.27044i −0.772332 0.635219i \(-0.780910\pi\)
0.772332 0.635219i \(-0.219090\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −696.267 −1.13955
\(612\) 0 0
\(613\) 336.699i 0.549264i 0.961549 + 0.274632i \(0.0885560\pi\)
−0.961549 + 0.274632i \(0.911444\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 908.831 1.47298 0.736492 0.676447i \(-0.236481\pi\)
0.736492 + 0.676447i \(0.236481\pi\)
\(618\) 0 0
\(619\) 1047.77 1.69268 0.846340 0.532643i \(-0.178801\pi\)
0.846340 + 0.532643i \(0.178801\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) − 284.754i − 0.457068i
\(624\) 0 0
\(625\) −94.1384 −0.150622
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 327.836i − 0.521202i
\(630\) 0 0
\(631\) 610.758i 0.967921i 0.875090 + 0.483961i \(0.160802\pi\)
−0.875090 + 0.483961i \(0.839198\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 1477.89 2.32739
\(636\) 0 0
\(637\) 519.180i 0.815040i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −9.60015 −0.0149768 −0.00748842 0.999972i \(-0.502384\pi\)
−0.00748842 + 0.999972i \(0.502384\pi\)
\(642\) 0 0
\(643\) −86.1999 −0.134059 −0.0670295 0.997751i \(-0.521352\pi\)
−0.0670295 + 0.997751i \(0.521352\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 352.580i 0.544946i 0.962163 + 0.272473i \(0.0878416\pi\)
−0.962163 + 0.272473i \(0.912158\pi\)
\(648\) 0 0
\(649\) 422.277 0.650658
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 319.322i − 0.489008i −0.969648 0.244504i \(-0.921375\pi\)
0.969648 0.244504i \(-0.0786252\pi\)
\(654\) 0 0
\(655\) 1000.62i 1.52766i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 275.328 0.417797 0.208898 0.977937i \(-0.433012\pi\)
0.208898 + 0.977937i \(0.433012\pi\)
\(660\) 0 0
\(661\) 133.668i 0.202221i 0.994875 + 0.101111i \(0.0322396\pi\)
−0.994875 + 0.101111i \(0.967760\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −254.851 −0.383235
\(666\) 0 0
\(667\) −2.45140 −0.00367526
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 476.630i 0.710327i
\(672\) 0 0
\(673\) 187.703 0.278904 0.139452 0.990229i \(-0.455466\pi\)
0.139452 + 0.990229i \(0.455466\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 1169.84i − 1.72797i −0.503515 0.863986i \(-0.667960\pi\)
0.503515 0.863986i \(-0.332040\pi\)
\(678\) 0 0
\(679\) − 207.758i − 0.305976i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 89.4566 0.130976 0.0654880 0.997853i \(-0.479140\pi\)
0.0654880 + 0.997853i \(0.479140\pi\)
\(684\) 0 0
\(685\) − 794.765i − 1.16024i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 366.431 0.531830
\(690\) 0 0
\(691\) −139.103 −0.201306 −0.100653 0.994922i \(-0.532093\pi\)
−0.100653 + 0.994922i \(0.532093\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) − 1416.75i − 2.03849i
\(696\) 0 0
\(697\) −374.297 −0.537012
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 1218.34i 1.73801i 0.494804 + 0.869004i \(0.335240\pi\)
−0.494804 + 0.869004i \(0.664760\pi\)
\(702\) 0 0
\(703\) − 412.773i − 0.587160i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 132.897 0.187974
\(708\) 0 0
\(709\) − 1080.13i − 1.52346i −0.647895 0.761730i \(-0.724351\pi\)
0.647895 0.761730i \(-0.275649\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 245.703 0.344604
\(714\) 0 0
\(715\) 746.256 1.04372
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) − 20.7736i − 0.0288923i −0.999896 0.0144461i \(-0.995401\pi\)
0.999896 0.0144461i \(-0.00459851\pi\)
\(720\) 0 0
\(721\) 59.4669 0.0824783
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 22.1857i 0.0306010i
\(726\) 0 0
\(727\) − 1031.17i − 1.41838i −0.705015 0.709192i \(-0.749060\pi\)
0.705015 0.709192i \(-0.250940\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 341.282 0.466870
\(732\) 0 0
\(733\) − 881.072i − 1.20201i −0.799246 0.601004i \(-0.794767\pi\)
0.799246 0.601004i \(-0.205233\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −678.277 −0.920321
\(738\) 0 0
\(739\) 671.195 0.908247 0.454124 0.890939i \(-0.349952\pi\)
0.454124 + 0.890939i \(0.349952\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 254.197i − 0.342122i −0.985260 0.171061i \(-0.945281\pi\)
0.985260 0.171061i \(-0.0547195\pi\)
\(744\) 0 0
\(745\) 700.841 0.940726
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 80.8019i − 0.107880i
\(750\) 0 0
\(751\) 728.994i 0.970698i 0.874320 + 0.485349i \(0.161307\pi\)
−0.874320 + 0.485349i \(0.838693\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −1748.59 −2.31601
\(756\) 0 0
\(757\) 372.679i 0.492311i 0.969230 + 0.246155i \(0.0791674\pi\)
−0.969230 + 0.246155i \(0.920833\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −1257.80 −1.65283 −0.826416 0.563060i \(-0.809624\pi\)
−0.826416 + 0.563060i \(0.809624\pi\)
\(762\) 0 0
\(763\) 303.046 0.397177
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 616.868i − 0.804260i
\(768\) 0 0
\(769\) 247.703 0.322110 0.161055 0.986945i \(-0.448510\pi\)
0.161055 + 0.986945i \(0.448510\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 587.805i 0.760420i 0.924900 + 0.380210i \(0.124148\pi\)
−0.924900 + 0.380210i \(0.875852\pi\)
\(774\) 0 0
\(775\) − 2223.66i − 2.86924i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −471.272 −0.604970
\(780\) 0 0
\(781\) 339.748i 0.435016i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 2022.96 2.57702
\(786\) 0 0
\(787\) 31.0821 0.0394944 0.0197472 0.999805i \(-0.493714\pi\)
0.0197472 + 0.999805i \(0.493714\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) − 124.663i − 0.157602i
\(792\) 0 0
\(793\) 696.267 0.878016
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 490.260i − 0.615132i −0.951527 0.307566i \(-0.900486\pi\)
0.951527 0.307566i \(-0.0995145\pi\)
\(798\) 0 0
\(799\) − 706.389i − 0.884092i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 43.4050 0.0540536
\(804\) 0 0
\(805\) − 73.0256i − 0.0907150i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −676.102 −0.835726 −0.417863 0.908510i \(-0.637221\pi\)
−0.417863 + 0.908510i \(0.637221\pi\)
\(810\) 0 0
\(811\) 74.1793 0.0914665 0.0457332 0.998954i \(-0.485438\pi\)
0.0457332 + 0.998954i \(0.485438\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 816.991i 1.00244i
\(816\) 0 0
\(817\) 429.703 0.525952
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1130.58i 1.37708i 0.725198 + 0.688540i \(0.241748\pi\)
−0.725198 + 0.688540i \(0.758252\pi\)
\(822\) 0 0
\(823\) 82.1839i 0.0998589i 0.998753 + 0.0499295i \(0.0158997\pi\)
−0.998753 + 0.0499295i \(0.984100\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1504.57 1.81931 0.909655 0.415365i \(-0.136346\pi\)
0.909655 + 0.415365i \(0.136346\pi\)
\(828\) 0 0
\(829\) 1409.65i 1.70042i 0.526445 + 0.850209i \(0.323525\pi\)
−0.526445 + 0.850209i \(0.676475\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −526.728 −0.632327
\(834\) 0 0
\(835\) −2243.67 −2.68703
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) − 288.110i − 0.343397i −0.985150 0.171698i \(-0.945075\pi\)
0.985150 0.171698i \(-0.0549254\pi\)
\(840\) 0 0
\(841\) 840.672 0.999609
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 258.822i 0.306299i
\(846\) 0 0
\(847\) 121.910i 0.143932i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 118.277 0.138986
\(852\) 0 0
\(853\) − 645.132i − 0.756310i −0.925742 0.378155i \(-0.876559\pi\)
0.925742 0.378155i \(-0.123441\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 995.549 1.16167 0.580833 0.814022i \(-0.302727\pi\)
0.580833 + 0.814022i \(0.302727\pi\)
\(858\) 0 0
\(859\) 774.354 0.901460 0.450730 0.892660i \(-0.351164\pi\)
0.450730 + 0.892660i \(0.351164\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1007.33i 1.16724i 0.812025 + 0.583622i \(0.198365\pi\)
−0.812025 + 0.583622i \(0.801635\pi\)
\(864\) 0 0
\(865\) −1938.50 −2.24104
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 356.858i 0.410654i
\(870\) 0 0
\(871\) 990.836i 1.13758i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −234.102 −0.267546
\(876\) 0 0
\(877\) 681.645i 0.777246i 0.921397 + 0.388623i \(0.127049\pi\)
−0.921397 + 0.388623i \(0.872951\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 679.108 0.770837 0.385419 0.922742i \(-0.374057\pi\)
0.385419 + 0.922742i \(0.374057\pi\)
\(882\) 0 0
\(883\) 1059.44 1.19982 0.599910 0.800068i \(-0.295203\pi\)
0.599910 + 0.800068i \(0.295203\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 856.411i − 0.965514i −0.875754 0.482757i \(-0.839635\pi\)
0.875754 0.482757i \(-0.160365\pi\)
\(888\) 0 0
\(889\) −396.000 −0.445444
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 889.403i − 0.995972i
\(894\) 0 0
\(895\) 2541.11i 2.83923i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 32.9179 0.0366161
\(900\) 0 0
\(901\) 371.758i 0.412606i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −634.677 −0.701300
\(906\) 0 0
\(907\) 761.492 0.839573 0.419786 0.907623i \(-0.362105\pi\)
0.419786 + 0.907623i \(0.362105\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) − 897.344i − 0.985009i −0.870310 0.492505i \(-0.836081\pi\)
0.870310 0.492505i \(-0.163919\pi\)
\(912\) 0 0
\(913\) −541.703 −0.593321
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 268.115i − 0.292383i
\(918\) 0 0
\(919\) − 62.6388i − 0.0681598i −0.999419 0.0340799i \(-0.989150\pi\)
0.999419 0.0340799i \(-0.0108501\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 496.308 0.537712
\(924\) 0 0
\(925\) − 1070.43i − 1.15722i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −253.313 −0.272673 −0.136336 0.990663i \(-0.543533\pi\)
−0.136336 + 0.990663i \(0.543533\pi\)
\(930\) 0 0
\(931\) −663.195 −0.712347
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 757.106i 0.809739i
\(936\) 0 0
\(937\) −30.5538 −0.0326081 −0.0163040 0.999867i \(-0.505190\pi\)
−0.0163040 + 0.999867i \(0.505190\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 388.745i 0.413119i 0.978434 + 0.206559i \(0.0662267\pi\)
−0.978434 + 0.206559i \(0.933773\pi\)
\(942\) 0 0
\(943\) − 135.039i − 0.143202i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −263.615 −0.278369 −0.139184 0.990266i \(-0.544448\pi\)
−0.139184 + 0.990266i \(0.544448\pi\)
\(948\) 0 0
\(949\) − 63.4066i − 0.0668141i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −1292.41 −1.35615 −0.678075 0.734993i \(-0.737185\pi\)
−0.678075 + 0.734993i \(0.737185\pi\)
\(954\) 0 0
\(955\) −2816.76 −2.94949
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 212.957i 0.222061i
\(960\) 0 0
\(961\) −2338.34 −2.43324
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 2269.11i − 2.35141i
\(966\) 0 0
\(967\) 1110.00i 1.14788i 0.818896 + 0.573942i \(0.194587\pi\)
−0.818896 + 0.573942i \(0.805413\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −1341.66 −1.38173 −0.690866 0.722983i \(-0.742770\pi\)
−0.690866 + 0.722983i \(0.742770\pi\)
\(972\) 0 0
\(973\) 379.617i 0.390151i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 920.431 0.942099 0.471050 0.882107i \(-0.343875\pi\)
0.471050 + 0.882107i \(0.343875\pi\)
\(978\) 0 0
\(979\) −1065.11 −1.08795
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1697.84i 1.72720i 0.504176 + 0.863601i \(0.331796\pi\)
−0.504176 + 0.863601i \(0.668204\pi\)
\(984\) 0 0
\(985\) 605.108 0.614322
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 123.128i 0.124497i
\(990\) 0 0
\(991\) − 284.765i − 0.287351i −0.989625 0.143675i \(-0.954108\pi\)
0.989625 0.143675i \(-0.0458921\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −831.615 −0.835794
\(996\) 0 0
\(997\) 1093.80i 1.09710i 0.836119 + 0.548548i \(0.184819\pi\)
−0.836119 + 0.548548i \(0.815181\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 288.3.b.b.271.4 4
3.2 odd 2 96.3.b.a.79.3 4
4.3 odd 2 72.3.b.b.19.1 4
8.3 odd 2 inner 288.3.b.b.271.1 4
8.5 even 2 72.3.b.b.19.2 4
12.11 even 2 24.3.b.a.19.4 yes 4
15.2 even 4 2400.3.p.a.1999.3 8
15.8 even 4 2400.3.p.a.1999.6 8
15.14 odd 2 2400.3.g.a.751.2 4
16.3 odd 4 2304.3.g.z.1279.7 8
16.5 even 4 2304.3.g.z.1279.2 8
16.11 odd 4 2304.3.g.z.1279.1 8
16.13 even 4 2304.3.g.z.1279.8 8
24.5 odd 2 24.3.b.a.19.3 4
24.11 even 2 96.3.b.a.79.4 4
48.5 odd 4 768.3.g.h.511.4 8
48.11 even 4 768.3.g.h.511.8 8
48.29 odd 4 768.3.g.h.511.5 8
48.35 even 4 768.3.g.h.511.1 8
60.23 odd 4 600.3.p.a.499.5 8
60.47 odd 4 600.3.p.a.499.4 8
60.59 even 2 600.3.g.a.451.1 4
120.29 odd 2 600.3.g.a.451.2 4
120.53 even 4 600.3.p.a.499.3 8
120.59 even 2 2400.3.g.a.751.1 4
120.77 even 4 600.3.p.a.499.6 8
120.83 odd 4 2400.3.p.a.1999.7 8
120.107 odd 4 2400.3.p.a.1999.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
24.3.b.a.19.3 4 24.5 odd 2
24.3.b.a.19.4 yes 4 12.11 even 2
72.3.b.b.19.1 4 4.3 odd 2
72.3.b.b.19.2 4 8.5 even 2
96.3.b.a.79.3 4 3.2 odd 2
96.3.b.a.79.4 4 24.11 even 2
288.3.b.b.271.1 4 8.3 odd 2 inner
288.3.b.b.271.4 4 1.1 even 1 trivial
600.3.g.a.451.1 4 60.59 even 2
600.3.g.a.451.2 4 120.29 odd 2
600.3.p.a.499.3 8 120.53 even 4
600.3.p.a.499.4 8 60.47 odd 4
600.3.p.a.499.5 8 60.23 odd 4
600.3.p.a.499.6 8 120.77 even 4
768.3.g.h.511.1 8 48.35 even 4
768.3.g.h.511.4 8 48.5 odd 4
768.3.g.h.511.5 8 48.29 odd 4
768.3.g.h.511.8 8 48.11 even 4
2304.3.g.z.1279.1 8 16.11 odd 4
2304.3.g.z.1279.2 8 16.5 even 4
2304.3.g.z.1279.7 8 16.3 odd 4
2304.3.g.z.1279.8 8 16.13 even 4
2400.3.g.a.751.1 4 120.59 even 2
2400.3.g.a.751.2 4 15.14 odd 2
2400.3.p.a.1999.2 8 120.107 odd 4
2400.3.p.a.1999.3 8 15.2 even 4
2400.3.p.a.1999.6 8 15.8 even 4
2400.3.p.a.1999.7 8 120.83 odd 4