L(s) = 1 | + (−3.09 − 3.92i)5-s + 0.822i·7-s + 5.93i·11-s + 11.9i·13-s − 14.0·17-s + 21.5·19-s + 26.9·23-s + (−5.84 + 24.3i)25-s − 26.9i·29-s + 27.3·31-s + (3.23 − 2.54i)35-s + 10.8i·37-s − 47.5i·41-s − 19.0i·43-s + 89.1·47-s + ⋯ |
L(s) = 1 | + (−0.618 − 0.785i)5-s + 0.117i·7-s + 0.539i·11-s + 0.917i·13-s − 0.824·17-s + 1.13·19-s + 1.17·23-s + (−0.233 + 0.972i)25-s − 0.929i·29-s + 0.881·31-s + (0.0923 − 0.0727i)35-s + 0.294i·37-s − 1.15i·41-s − 0.443i·43-s + 1.89·47-s + ⋯ |
Λ(s)=(=(720s/2ΓC(s)L(s)(0.998−0.0519i)Λ(3−s)
Λ(s)=(=(720s/2ΓC(s+1)L(s)(0.998−0.0519i)Λ(1−s)
Degree: |
2 |
Conductor: |
720
= 24⋅32⋅5
|
Sign: |
0.998−0.0519i
|
Analytic conductor: |
19.6185 |
Root analytic conductor: |
4.42928 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ720(449,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 720, ( :1), 0.998−0.0519i)
|
Particular Values
L(23) |
≈ |
1.569733138 |
L(21) |
≈ |
1.569733138 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(3.09+3.92i)T |
good | 7 | 1−0.822iT−49T2 |
| 11 | 1−5.93iT−121T2 |
| 13 | 1−11.9iT−169T2 |
| 17 | 1+14.0T+289T2 |
| 19 | 1−21.5T+361T2 |
| 23 | 1−26.9T+529T2 |
| 29 | 1+26.9iT−841T2 |
| 31 | 1−27.3T+961T2 |
| 37 | 1−10.8iT−1.36e3T2 |
| 41 | 1+47.5iT−1.68e3T2 |
| 43 | 1+19.0iT−1.84e3T2 |
| 47 | 1−89.1T+2.20e3T2 |
| 53 | 1−15.3T+2.80e3T2 |
| 59 | 1−15.6iT−3.48e3T2 |
| 61 | 1−17.6T+3.72e3T2 |
| 67 | 1−116.iT−4.48e3T2 |
| 71 | 1+84.4iT−5.04e3T2 |
| 73 | 1−79.0iT−5.32e3T2 |
| 79 | 1−94.9T+6.24e3T2 |
| 83 | 1+74.3T+6.88e3T2 |
| 89 | 1−90.7iT−7.92e3T2 |
| 97 | 1+141.iT−9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.13299449517919735763896037668, −9.148022575487812149388333250825, −8.704908062989409847858659370200, −7.53106829327361347363541970549, −6.90607273951288477838107447966, −5.59362378847504304698677553401, −4.65437814534231219369086321913, −3.89092625803490187464202616929, −2.39104390845829924636407095541, −0.917947560587468141852848191221,
0.78855771578154660031043502641, 2.72830620126721884604052081189, 3.45716111607789966458649552428, 4.69014477437059284876380755234, 5.78272888424273278275920383573, 6.82084200390352461621662704058, 7.53674214462236273691808541882, 8.396885837640545987207775679280, 9.331289755336329138038926427928, 10.43763479122412624939899521619