L(s) = 1 | + (−3.09 − 3.92i)5-s + 0.822i·7-s + 5.93i·11-s + 11.9i·13-s − 14.0·17-s + 21.5·19-s + 26.9·23-s + (−5.84 + 24.3i)25-s − 26.9i·29-s + 27.3·31-s + (3.23 − 2.54i)35-s + 10.8i·37-s − 47.5i·41-s − 19.0i·43-s + 89.1·47-s + ⋯ |
L(s) = 1 | + (−0.618 − 0.785i)5-s + 0.117i·7-s + 0.539i·11-s + 0.917i·13-s − 0.824·17-s + 1.13·19-s + 1.17·23-s + (−0.233 + 0.972i)25-s − 0.929i·29-s + 0.881·31-s + (0.0923 − 0.0727i)35-s + 0.294i·37-s − 1.15i·41-s − 0.443i·43-s + 1.89·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.998 - 0.0519i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.998 - 0.0519i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.569733138\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.569733138\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (3.09 + 3.92i)T \) |
good | 7 | \( 1 - 0.822iT - 49T^{2} \) |
| 11 | \( 1 - 5.93iT - 121T^{2} \) |
| 13 | \( 1 - 11.9iT - 169T^{2} \) |
| 17 | \( 1 + 14.0T + 289T^{2} \) |
| 19 | \( 1 - 21.5T + 361T^{2} \) |
| 23 | \( 1 - 26.9T + 529T^{2} \) |
| 29 | \( 1 + 26.9iT - 841T^{2} \) |
| 31 | \( 1 - 27.3T + 961T^{2} \) |
| 37 | \( 1 - 10.8iT - 1.36e3T^{2} \) |
| 41 | \( 1 + 47.5iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 19.0iT - 1.84e3T^{2} \) |
| 47 | \( 1 - 89.1T + 2.20e3T^{2} \) |
| 53 | \( 1 - 15.3T + 2.80e3T^{2} \) |
| 59 | \( 1 - 15.6iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 17.6T + 3.72e3T^{2} \) |
| 67 | \( 1 - 116. iT - 4.48e3T^{2} \) |
| 71 | \( 1 + 84.4iT - 5.04e3T^{2} \) |
| 73 | \( 1 - 79.0iT - 5.32e3T^{2} \) |
| 79 | \( 1 - 94.9T + 6.24e3T^{2} \) |
| 83 | \( 1 + 74.3T + 6.88e3T^{2} \) |
| 89 | \( 1 - 90.7iT - 7.92e3T^{2} \) |
| 97 | \( 1 + 141. iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.13299449517919735763896037668, −9.148022575487812149388333250825, −8.704908062989409847858659370200, −7.53106829327361347363541970549, −6.90607273951288477838107447966, −5.59362378847504304698677553401, −4.65437814534231219369086321913, −3.89092625803490187464202616929, −2.39104390845829924636407095541, −0.917947560587468141852848191221,
0.78855771578154660031043502641, 2.72830620126721884604052081189, 3.45716111607789966458649552428, 4.69014477437059284876380755234, 5.78272888424273278275920383573, 6.82084200390352461621662704058, 7.53674214462236273691808541882, 8.396885837640545987207775679280, 9.331289755336329138038926427928, 10.43763479122412624939899521619